Abstract

We propose a design to confine light absorption in flat and ultra-thin amorphous silicon solar cells with a one-dimensional silver grating embedded in the front window of the cell. We show numerically that multi-resonant light trapping is achieved in both TE and TM polarizations. Each resonance is analyzed in detail and modeled by Fabry-Perot resonances or guided modes via grating coupling. This approach is generalized to a complete amorphous silicon solar cell, with the additional degrees of freedom provided by the buffer layers. These results could guide the design of resonant structures for optimized ultra-thin solar cells.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hötzel, J. Bailat, J. Steinhauser, M. Marmelo, G. Monteduro, L. Castens, “High-efficiency amorphous silicon devices on LPCVD-ZnO TCO prepared in industrial KAI-M R&D reactor,” in Proceedings of the 24th European Photovoltaic Solar Energy Conference (Hamburg, 2009), pp. 2293–2298.
  2. P. Campbell, M. A. Green, “The limiting efficiency of silicon solar cells under concentrated light,” IEEE Trans. Electron. Dev. 33(2), 234–239 (1986).
    [CrossRef]
  3. D. L. Staebler, C. R. Wronski, “Optically induced conductivity changes in discharge-produced hydrogenated amorphous silicon,” J. Appl. Phys. 51(6), 3262–3268 (1980).
    [CrossRef]
  4. B. Rech, H. Wagner, “Potential of amorphous silicon for solar cells,” Appl. Phys. A 69, 155–167 (1999).
    [CrossRef]
  5. J. Krc, F. Smole, M. Topic, “Potential of light trapping in microcrystalline silicon solar cells with textured substrates,” Prog. Photovolt. Res. Appl. 11(7), 429–436 (2003).
    [CrossRef]
  6. C. Battaglia, K. Söderström, J. Escarré, F-J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, C. Ballif, “Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett. 96, 213504 (2010).
    [CrossRef]
  7. K. Söderström, F. J. Haug, J. Escarre, O. Cubero, C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96, 213508 (2010).
    [CrossRef]
  8. A. Abass, K. Q. Lee, A. Alù, M. Burgelman, B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012).
    [CrossRef]
  9. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010).
    [CrossRef] [PubMed]
  10. V. E. Ferry, M. A. Verschuuren, C. van Lare, R. E. I. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
    [CrossRef] [PubMed]
  11. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010).
    [CrossRef]
  12. T. Söderström, F.J. Haug, V. Terrazoni-Daudrix, C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103, 114509 (2008).
    [CrossRef]
  13. M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energ. Mater. and Sol. Cells 93, 1714–1720 (2009).
    [CrossRef]
  14. K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
  15. F. J. Beck, A. Polman, K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
    [CrossRef]
  16. O. El Daif, L. Tong, B. Figeys, K. Van Nieuwenhuysen, A. Dmitriev, P. Van Dorpe, F. Dross, “Front side plasmonic effect on thin silicon epitaxial solar cells,” Sol. Energ. Mater. and Sol. Cells 104, 58–63 (2012).
    [CrossRef]
  17. M. van Lare, F. Lenzmann, M. A. Verschuuren, A. Polman, “Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells,” Appl. Phys. Lett. 101, 221110 (2012).
    [CrossRef]
  18. Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6, 935–942 (2013).
    [CrossRef]
  19. I. Massiot, C. Colin, N. Péré-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J-L. Pelouard, S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101, 163901 (2012).
    [CrossRef]
  20. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,“ Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  21. M. A. Green, S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photon. 6, 130–132 (2012).
    [CrossRef]
  22. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  23. P. Lalanne, G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–789 (1996).
    [CrossRef]
  24. A free version of the software “Reticolo” is available at http://www.lp2n.institutoptique.fr/Membres-Services/Responsables-d-equipe/LALANNE-Philippe .
  25. P. Lalanne, M. P. Jurek, “Computation of the near-field pattern with the coupled-wave method for TM polarization,” J. Mod. Opt. 45, 1357–1374 (1998).
    [CrossRef]
  26. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985), pp. 350–357.
  27. F-J. Haug, T. Söderström, O. Cubero, V. Terrazoni-Daudrix, C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106, 044502 (2009).
    [CrossRef]
  28. A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,”Nano Lett. 11, 3557–3563 (2011).
    [CrossRef] [PubMed]

2013 (1)

Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6, 935–942 (2013).
[CrossRef]

2012 (5)

I. Massiot, C. Colin, N. Péré-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J-L. Pelouard, S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101, 163901 (2012).
[CrossRef]

O. El Daif, L. Tong, B. Figeys, K. Van Nieuwenhuysen, A. Dmitriev, P. Van Dorpe, F. Dross, “Front side plasmonic effect on thin silicon epitaxial solar cells,” Sol. Energ. Mater. and Sol. Cells 104, 58–63 (2012).
[CrossRef]

M. van Lare, F. Lenzmann, M. A. Verschuuren, A. Polman, “Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells,” Appl. Phys. Lett. 101, 221110 (2012).
[CrossRef]

A. Abass, K. Q. Lee, A. Alù, M. Burgelman, B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012).
[CrossRef]

M. A. Green, S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photon. 6, 130–132 (2012).
[CrossRef]

2011 (2)

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,”Nano Lett. 11, 3557–3563 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, C. van Lare, R. E. I. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

2010 (5)

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010).
[CrossRef]

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,“ Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

C. Battaglia, K. Söderström, J. Escarré, F-J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, C. Ballif, “Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett. 96, 213504 (2010).
[CrossRef]

K. Söderström, F. J. Haug, J. Escarre, O. Cubero, C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96, 213508 (2010).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010).
[CrossRef] [PubMed]

2009 (3)

F-J. Haug, T. Söderström, O. Cubero, V. Terrazoni-Daudrix, C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106, 044502 (2009).
[CrossRef]

M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energ. Mater. and Sol. Cells 93, 1714–1720 (2009).
[CrossRef]

F. J. Beck, A. Polman, K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[CrossRef]

2008 (1)

T. Söderström, F.J. Haug, V. Terrazoni-Daudrix, C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103, 114509 (2008).
[CrossRef]

2003 (1)

J. Krc, F. Smole, M. Topic, “Potential of light trapping in microcrystalline silicon solar cells with textured substrates,” Prog. Photovolt. Res. Appl. 11(7), 429–436 (2003).
[CrossRef]

1999 (1)

B. Rech, H. Wagner, “Potential of amorphous silicon for solar cells,” Appl. Phys. A 69, 155–167 (1999).
[CrossRef]

1998 (1)

P. Lalanne, M. P. Jurek, “Computation of the near-field pattern with the coupled-wave method for TM polarization,” J. Mod. Opt. 45, 1357–1374 (1998).
[CrossRef]

1996 (1)

1995 (1)

1986 (1)

P. Campbell, M. A. Green, “The limiting efficiency of silicon solar cells under concentrated light,” IEEE Trans. Electron. Dev. 33(2), 234–239 (1986).
[CrossRef]

1980 (1)

D. L. Staebler, C. R. Wronski, “Optically induced conductivity changes in discharge-produced hydrogenated amorphous silicon,” J. Appl. Phys. 51(6), 3262–3268 (1980).
[CrossRef]

Abass, A.

A. Abass, K. Q. Lee, A. Alù, M. Burgelman, B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012).
[CrossRef]

Alù, A.

A. Abass, K. Q. Lee, A. Alù, M. Burgelman, B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012).
[CrossRef]

Atwater, H. A.

V. E. Ferry, M. A. Verschuuren, C. van Lare, R. E. I. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010).
[CrossRef] [PubMed]

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,“ Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Bailat, J.

S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hötzel, J. Bailat, J. Steinhauser, M. Marmelo, G. Monteduro, L. Castens, “High-efficiency amorphous silicon devices on LPCVD-ZnO TCO prepared in industrial KAI-M R&D reactor,” in Proceedings of the 24th European Photovoltaic Solar Energy Conference (Hamburg, 2009), pp. 2293–2298.

Ballif, C.

K. Söderström, F. J. Haug, J. Escarre, O. Cubero, C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96, 213508 (2010).
[CrossRef]

C. Battaglia, K. Söderström, J. Escarré, F-J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, C. Ballif, “Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett. 96, 213504 (2010).
[CrossRef]

M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energ. Mater. and Sol. Cells 93, 1714–1720 (2009).
[CrossRef]

F-J. Haug, T. Söderström, O. Cubero, V. Terrazoni-Daudrix, C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106, 044502 (2009).
[CrossRef]

T. Söderström, F.J. Haug, V. Terrazoni-Daudrix, C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103, 114509 (2008).
[CrossRef]

Battaglia, C.

C. Battaglia, K. Söderström, J. Escarré, F-J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, C. Ballif, “Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett. 96, 213504 (2010).
[CrossRef]

Beck, F. J.

F. J. Beck, A. Polman, K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[CrossRef]

Benagli, S.

S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hötzel, J. Bailat, J. Steinhauser, M. Marmelo, G. Monteduro, L. Castens, “High-efficiency amorphous silicon devices on LPCVD-ZnO TCO prepared in industrial KAI-M R&D reactor,” in Proceedings of the 24th European Photovoltaic Solar Energy Conference (Hamburg, 2009), pp. 2293–2298.

Boccard, M.

C. Battaglia, K. Söderström, J. Escarré, F-J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, C. Ballif, “Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett. 96, 213504 (2010).
[CrossRef]

Borrello, D.

S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hötzel, J. Bailat, J. Steinhauser, M. Marmelo, G. Monteduro, L. Castens, “High-efficiency amorphous silicon devices on LPCVD-ZnO TCO prepared in industrial KAI-M R&D reactor,” in Proceedings of the 24th European Photovoltaic Solar Energy Conference (Hamburg, 2009), pp. 2293–2298.

Bugnon, G.

C. Battaglia, K. Söderström, J. Escarré, F-J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, C. Ballif, “Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett. 96, 213504 (2010).
[CrossRef]

Burgelman, M.

A. Abass, K. Q. Lee, A. Alù, M. Burgelman, B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012).
[CrossRef]

Campbell, P.

P. Campbell, M. A. Green, “The limiting efficiency of silicon solar cells under concentrated light,” IEEE Trans. Electron. Dev. 33(2), 234–239 (1986).
[CrossRef]

Castens, L.

S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hötzel, J. Bailat, J. Steinhauser, M. Marmelo, G. Monteduro, L. Castens, “High-efficiency amorphous silicon devices on LPCVD-ZnO TCO prepared in industrial KAI-M R&D reactor,” in Proceedings of the 24th European Photovoltaic Solar Energy Conference (Hamburg, 2009), pp. 2293–2298.

Catchpole, K. R.

F. J. Beck, A. Polman, K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[CrossRef]

K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).

Cattoni, A.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,”Nano Lett. 11, 3557–3563 (2011).
[CrossRef] [PubMed]

Chang, H.-M.

Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6, 935–942 (2013).
[CrossRef]

Chen, H.-L.

Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6, 935–942 (2013).
[CrossRef]

Chen, J.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,”Nano Lett. 11, 3557–3563 (2011).
[CrossRef] [PubMed]

Chen, S.-H.

Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6, 935–942 (2013).
[CrossRef]

Cheng, C.-C.

Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6, 935–942 (2013).
[CrossRef]

Chi, Y.-M.

Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6, 935–942 (2013).
[CrossRef]

Colin, C.

I. Massiot, C. Colin, N. Péré-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J-L. Pelouard, S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101, 163901 (2012).
[CrossRef]

Collin, S.

I. Massiot, C. Colin, N. Péré-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J-L. Pelouard, S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101, 163901 (2012).
[CrossRef]

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,”Nano Lett. 11, 3557–3563 (2011).
[CrossRef] [PubMed]

Cubero, O.

K. Söderström, F. J. Haug, J. Escarre, O. Cubero, C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96, 213508 (2010).
[CrossRef]

F-J. Haug, T. Söderström, O. Cubero, V. Terrazoni-Daudrix, C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106, 044502 (2009).
[CrossRef]

Cui, Y.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010).
[CrossRef]

Cuony, P.

C. Battaglia, K. Söderström, J. Escarré, F-J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, C. Ballif, “Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett. 96, 213504 (2010).
[CrossRef]

Decanini, D.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,”Nano Lett. 11, 3557–3563 (2011).
[CrossRef] [PubMed]

Denizot, C.

C. Battaglia, K. Söderström, J. Escarré, F-J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, C. Ballif, “Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett. 96, 213504 (2010).
[CrossRef]

Despeisse, M.

C. Battaglia, K. Söderström, J. Escarré, F-J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, C. Ballif, “Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett. 96, 213504 (2010).
[CrossRef]

Dmitriev, A.

O. El Daif, L. Tong, B. Figeys, K. Van Nieuwenhuysen, A. Dmitriev, P. Van Dorpe, F. Dross, “Front side plasmonic effect on thin silicon epitaxial solar cells,” Sol. Energ. Mater. and Sol. Cells 104, 58–63 (2012).
[CrossRef]

Dominé, D.

C. Battaglia, K. Söderström, J. Escarré, F-J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, C. Ballif, “Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett. 96, 213504 (2010).
[CrossRef]

M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energ. Mater. and Sol. Cells 93, 1714–1720 (2009).
[CrossRef]

Dross, F.

O. El Daif, L. Tong, B. Figeys, K. Van Nieuwenhuysen, A. Dmitriev, P. Van Dorpe, F. Dross, “Front side plasmonic effect on thin silicon epitaxial solar cells,” Sol. Energ. Mater. and Sol. Cells 104, 58–63 (2012).
[CrossRef]

El Daif, O.

O. El Daif, L. Tong, B. Figeys, K. Van Nieuwenhuysen, A. Dmitriev, P. Van Dorpe, F. Dross, “Front side plasmonic effect on thin silicon epitaxial solar cells,” Sol. Energ. Mater. and Sol. Cells 104, 58–63 (2012).
[CrossRef]

Escarre, J.

K. Söderström, F. J. Haug, J. Escarre, O. Cubero, C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96, 213508 (2010).
[CrossRef]

Escarré, J.

C. Battaglia, K. Söderström, J. Escarré, F-J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, C. Ballif, “Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett. 96, 213504 (2010).
[CrossRef]

Fan, S.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010).
[CrossRef]

Feltrin, A.

C. Battaglia, K. Söderström, J. Escarré, F-J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, C. Ballif, “Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett. 96, 213504 (2010).
[CrossRef]

Ferry, V. E.

V. E. Ferry, M. A. Verschuuren, C. van Lare, R. E. I. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010).
[CrossRef] [PubMed]

Figeys, B.

O. El Daif, L. Tong, B. Figeys, K. Van Nieuwenhuysen, A. Dmitriev, P. Van Dorpe, F. Dross, “Front side plasmonic effect on thin silicon epitaxial solar cells,” Sol. Energ. Mater. and Sol. Cells 104, 58–63 (2012).
[CrossRef]

Gaylord, T. K.

Ghenuche, P.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,”Nano Lett. 11, 3557–3563 (2011).
[CrossRef] [PubMed]

Grann, E. B.

Green, M. A.

M. A. Green, S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photon. 6, 130–132 (2012).
[CrossRef]

P. Campbell, M. A. Green, “The limiting efficiency of silicon solar cells under concentrated light,” IEEE Trans. Electron. Dev. 33(2), 234–239 (1986).
[CrossRef]

Haghiri-Gosnet, A. M.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,”Nano Lett. 11, 3557–3563 (2011).
[CrossRef] [PubMed]

Haug, F. J.

K. Söderström, F. J. Haug, J. Escarre, O. Cubero, C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96, 213508 (2010).
[CrossRef]

Haug, F.J.

T. Söderström, F.J. Haug, V. Terrazoni-Daudrix, C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103, 114509 (2008).
[CrossRef]

Haug, F-J.

C. Battaglia, K. Söderström, J. Escarré, F-J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, C. Ballif, “Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett. 96, 213504 (2010).
[CrossRef]

F-J. Haug, T. Söderström, O. Cubero, V. Terrazoni-Daudrix, C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106, 044502 (2009).
[CrossRef]

Hötzel, J.

S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hötzel, J. Bailat, J. Steinhauser, M. Marmelo, G. Monteduro, L. Castens, “High-efficiency amorphous silicon devices on LPCVD-ZnO TCO prepared in industrial KAI-M R&D reactor,” in Proceedings of the 24th European Photovoltaic Solar Energy Conference (Hamburg, 2009), pp. 2293–2298.

Hsu, C. M.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010).
[CrossRef]

Jurek, M. P.

P. Lalanne, M. P. Jurek, “Computation of the near-field pattern with the coupled-wave method for TM polarization,” J. Mod. Opt. 45, 1357–1374 (1998).
[CrossRef]

Krc, J.

J. Krc, F. Smole, M. Topic, “Potential of light trapping in microcrystalline silicon solar cells with textured substrates,” Prog. Photovolt. Res. Appl. 11(7), 429–436 (2003).
[CrossRef]

Kroll, U.

S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hötzel, J. Bailat, J. Steinhauser, M. Marmelo, G. Monteduro, L. Castens, “High-efficiency amorphous silicon devices on LPCVD-ZnO TCO prepared in industrial KAI-M R&D reactor,” in Proceedings of the 24th European Photovoltaic Solar Energy Conference (Hamburg, 2009), pp. 2293–2298.

Lai, Y.-S.

Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6, 935–942 (2013).
[CrossRef]

Lalanne, P.

I. Massiot, C. Colin, N. Péré-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J-L. Pelouard, S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101, 163901 (2012).
[CrossRef]

P. Lalanne, M. P. Jurek, “Computation of the near-field pattern with the coupled-wave method for TM polarization,” J. Mod. Opt. 45, 1357–1374 (1998).
[CrossRef]

P. Lalanne, G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–789 (1996).
[CrossRef]

Lee, K. Q.

A. Abass, K. Q. Lee, A. Alù, M. Burgelman, B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012).
[CrossRef]

Lenzmann, F.

M. van Lare, F. Lenzmann, M. A. Verschuuren, A. Polman, “Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells,” Appl. Phys. Lett. 101, 221110 (2012).
[CrossRef]

Li, H. B. T.

Liao, Y.-C.

Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6, 935–942 (2013).
[CrossRef]

Lin, K.-T.

Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6, 935–942 (2013).
[CrossRef]

Madani, O.

M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energ. Mater. and Sol. Cells 93, 1714–1720 (2009).
[CrossRef]

Maes, B.

A. Abass, K. Q. Lee, A. Alù, M. Burgelman, B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012).
[CrossRef]

Marmelo, M.

S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hötzel, J. Bailat, J. Steinhauser, M. Marmelo, G. Monteduro, L. Castens, “High-efficiency amorphous silicon devices on LPCVD-ZnO TCO prepared in industrial KAI-M R&D reactor,” in Proceedings of the 24th European Photovoltaic Solar Energy Conference (Hamburg, 2009), pp. 2293–2298.

Massiot, I.

I. Massiot, C. Colin, N. Péré-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J-L. Pelouard, S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101, 163901 (2012).
[CrossRef]

Meier, J.

S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hötzel, J. Bailat, J. Steinhauser, M. Marmelo, G. Monteduro, L. Castens, “High-efficiency amorphous silicon devices on LPCVD-ZnO TCO prepared in industrial KAI-M R&D reactor,” in Proceedings of the 24th European Photovoltaic Solar Energy Conference (Hamburg, 2009), pp. 2293–2298.

Meillaud, F.

M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energ. Mater. and Sol. Cells 93, 1714–1720 (2009).
[CrossRef]

Moharam, M. G.

Monteduro, G.

S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hötzel, J. Bailat, J. Steinhauser, M. Marmelo, G. Monteduro, L. Castens, “High-efficiency amorphous silicon devices on LPCVD-ZnO TCO prepared in industrial KAI-M R&D reactor,” in Proceedings of the 24th European Photovoltaic Solar Energy Conference (Hamburg, 2009), pp. 2293–2298.

Morris, G. M.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985), pp. 350–357.

Pelouard, J. L.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,”Nano Lett. 11, 3557–3563 (2011).
[CrossRef] [PubMed]

Pelouard, J-L.

I. Massiot, C. Colin, N. Péré-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J-L. Pelouard, S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101, 163901 (2012).
[CrossRef]

Péré-Laperne, N.

I. Massiot, C. Colin, N. Péré-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J-L. Pelouard, S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101, 163901 (2012).
[CrossRef]

Pillai, S.

M. A. Green, S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photon. 6, 130–132 (2012).
[CrossRef]

Polman, A.

M. van Lare, F. Lenzmann, M. A. Verschuuren, A. Polman, “Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells,” Appl. Phys. Lett. 101, 221110 (2012).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, C. van Lare, R. E. I. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010).
[CrossRef] [PubMed]

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,“ Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

F. J. Beck, A. Polman, K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[CrossRef]

K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).

Pommet, D. A.

Python, M.

M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energ. Mater. and Sol. Cells 93, 1714–1720 (2009).
[CrossRef]

Rech, B.

B. Rech, H. Wagner, “Potential of amorphous silicon for solar cells,” Appl. Phys. A 69, 155–167 (1999).
[CrossRef]

Roca i Cabarrocas, P.

I. Massiot, C. Colin, N. Péré-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J-L. Pelouard, S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101, 163901 (2012).
[CrossRef]

Sauvan, C.

I. Massiot, C. Colin, N. Péré-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J-L. Pelouard, S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101, 163901 (2012).
[CrossRef]

Schropp, R. E. I.

V. E. Ferry, M. A. Verschuuren, C. van Lare, R. E. I. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010).
[CrossRef] [PubMed]

Smole, F.

J. Krc, F. Smole, M. Topic, “Potential of light trapping in microcrystalline silicon solar cells with textured substrates,” Prog. Photovolt. Res. Appl. 11(7), 429–436 (2003).
[CrossRef]

Söderström, K.

K. Söderström, F. J. Haug, J. Escarre, O. Cubero, C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96, 213508 (2010).
[CrossRef]

C. Battaglia, K. Söderström, J. Escarré, F-J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, C. Ballif, “Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett. 96, 213504 (2010).
[CrossRef]

Söderström, T.

F-J. Haug, T. Söderström, O. Cubero, V. Terrazoni-Daudrix, C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106, 044502 (2009).
[CrossRef]

T. Söderström, F.J. Haug, V. Terrazoni-Daudrix, C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103, 114509 (2008).
[CrossRef]

Staebler, D. L.

D. L. Staebler, C. R. Wronski, “Optically induced conductivity changes in discharge-produced hydrogenated amorphous silicon,” J. Appl. Phys. 51(6), 3262–3268 (1980).
[CrossRef]

Steinhauser, J.

S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hötzel, J. Bailat, J. Steinhauser, M. Marmelo, G. Monteduro, L. Castens, “High-efficiency amorphous silicon devices on LPCVD-ZnO TCO prepared in industrial KAI-M R&D reactor,” in Proceedings of the 24th European Photovoltaic Solar Energy Conference (Hamburg, 2009), pp. 2293–2298.

Terrazoni-Daudrix, V.

F-J. Haug, T. Söderström, O. Cubero, V. Terrazoni-Daudrix, C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106, 044502 (2009).
[CrossRef]

T. Söderström, F.J. Haug, V. Terrazoni-Daudrix, C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103, 114509 (2008).
[CrossRef]

Tong, L.

O. El Daif, L. Tong, B. Figeys, K. Van Nieuwenhuysen, A. Dmitriev, P. Van Dorpe, F. Dross, “Front side plasmonic effect on thin silicon epitaxial solar cells,” Sol. Energ. Mater. and Sol. Cells 104, 58–63 (2012).
[CrossRef]

Topic, M.

J. Krc, F. Smole, M. Topic, “Potential of light trapping in microcrystalline silicon solar cells with textured substrates,” Prog. Photovolt. Res. Appl. 11(7), 429–436 (2003).
[CrossRef]

Tseng, S.-C.

Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6, 935–942 (2013).
[CrossRef]

Vallat-Sauvain, E.

M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energ. Mater. and Sol. Cells 93, 1714–1720 (2009).
[CrossRef]

S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hötzel, J. Bailat, J. Steinhauser, M. Marmelo, G. Monteduro, L. Castens, “High-efficiency amorphous silicon devices on LPCVD-ZnO TCO prepared in industrial KAI-M R&D reactor,” in Proceedings of the 24th European Photovoltaic Solar Energy Conference (Hamburg, 2009), pp. 2293–2298.

Van Dorpe, P.

O. El Daif, L. Tong, B. Figeys, K. Van Nieuwenhuysen, A. Dmitriev, P. Van Dorpe, F. Dross, “Front side plasmonic effect on thin silicon epitaxial solar cells,” Sol. Energ. Mater. and Sol. Cells 104, 58–63 (2012).
[CrossRef]

van Lare, C.

V. E. Ferry, M. A. Verschuuren, C. van Lare, R. E. I. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

van Lare, M.

M. van Lare, F. Lenzmann, M. A. Verschuuren, A. Polman, “Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells,” Appl. Phys. Lett. 101, 221110 (2012).
[CrossRef]

Van Nieuwenhuysen, K.

O. El Daif, L. Tong, B. Figeys, K. Van Nieuwenhuysen, A. Dmitriev, P. Van Dorpe, F. Dross, “Front side plasmonic effect on thin silicon epitaxial solar cells,” Sol. Energ. Mater. and Sol. Cells 104, 58–63 (2012).
[CrossRef]

Verhagen, E.

Verschuuren, M. A.

M. van Lare, F. Lenzmann, M. A. Verschuuren, A. Polman, “Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells,” Appl. Phys. Lett. 101, 221110 (2012).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, C. van Lare, R. E. I. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010).
[CrossRef] [PubMed]

Wagner, H.

B. Rech, H. Wagner, “Potential of amorphous silicon for solar cells,” Appl. Phys. A 69, 155–167 (1999).
[CrossRef]

Walters, R. J.

Wronski, C. R.

D. L. Staebler, C. R. Wronski, “Optically induced conductivity changes in discharge-produced hydrogenated amorphous silicon,” J. Appl. Phys. 51(6), 3262–3268 (1980).
[CrossRef]

Yu, Z.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010).
[CrossRef]

Zhu, J.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010).
[CrossRef]

Appl. Phys. A (1)

B. Rech, H. Wagner, “Potential of amorphous silicon for solar cells,” Appl. Phys. A 69, 155–167 (1999).
[CrossRef]

Appl. Phys. Lett. (5)

C. Battaglia, K. Söderström, J. Escarré, F-J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, C. Ballif, “Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett. 96, 213504 (2010).
[CrossRef]

K. Söderström, F. J. Haug, J. Escarre, O. Cubero, C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96, 213508 (2010).
[CrossRef]

K. R. Catchpole, A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).

M. van Lare, F. Lenzmann, M. A. Verschuuren, A. Polman, “Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells,” Appl. Phys. Lett. 101, 221110 (2012).
[CrossRef]

I. Massiot, C. Colin, N. Péré-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J-L. Pelouard, S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101, 163901 (2012).
[CrossRef]

Energy Environ. Sci. (1)

Y.-M. Chi, H.-L. Chen, Y.-S. Lai, H.-M. Chang, Y.-C. Liao, C.-C. Cheng, S.-H. Chen, S.-C. Tseng, K.-T. Lin, “Optimizing surface plasmon resonance effects on finger electrodes to enhance the efficiency of silicon-based solar cells,” Energy Environ. Sci. 6, 935–942 (2013).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

P. Campbell, M. A. Green, “The limiting efficiency of silicon solar cells under concentrated light,” IEEE Trans. Electron. Dev. 33(2), 234–239 (1986).
[CrossRef]

J. Appl. Phys. (4)

D. L. Staebler, C. R. Wronski, “Optically induced conductivity changes in discharge-produced hydrogenated amorphous silicon,” J. Appl. Phys. 51(6), 3262–3268 (1980).
[CrossRef]

F. J. Beck, A. Polman, K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[CrossRef]

T. Söderström, F.J. Haug, V. Terrazoni-Daudrix, C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103, 114509 (2008).
[CrossRef]

F-J. Haug, T. Söderström, O. Cubero, V. Terrazoni-Daudrix, C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106, 044502 (2009).
[CrossRef]

J. Mod. Opt. (1)

P. Lalanne, M. P. Jurek, “Computation of the near-field pattern with the coupled-wave method for TM polarization,” J. Mod. Opt. 45, 1357–1374 (1998).
[CrossRef]

J. Opt. Soc. Am. A (2)

Nano Lett. (3)

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, S. Collin, “λ3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,”Nano Lett. 11, 3557–3563 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, C. van Lare, R. E. I. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010).
[CrossRef]

Nat. Mater. (1)

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,“ Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Nat. Photon. (1)

M. A. Green, S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photon. 6, 130–132 (2012).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

A. Abass, K. Q. Lee, A. Alù, M. Burgelman, B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012).
[CrossRef]

Prog. Photovolt. Res. Appl. (1)

J. Krc, F. Smole, M. Topic, “Potential of light trapping in microcrystalline silicon solar cells with textured substrates,” Prog. Photovolt. Res. Appl. 11(7), 429–436 (2003).
[CrossRef]

Sol. Energ. Mater. and Sol. Cells (2)

M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energ. Mater. and Sol. Cells 93, 1714–1720 (2009).
[CrossRef]

O. El Daif, L. Tong, B. Figeys, K. Van Nieuwenhuysen, A. Dmitriev, P. Van Dorpe, F. Dross, “Front side plasmonic effect on thin silicon epitaxial solar cells,” Sol. Energ. Mater. and Sol. Cells 104, 58–63 (2012).
[CrossRef]

Other (3)

S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hötzel, J. Bailat, J. Steinhauser, M. Marmelo, G. Monteduro, L. Castens, “High-efficiency amorphous silicon devices on LPCVD-ZnO TCO prepared in industrial KAI-M R&D reactor,” in Proceedings of the 24th European Photovoltaic Solar Energy Conference (Hamburg, 2009), pp. 2293–2298.

A free version of the software “Reticolo” is available at http://www.lp2n.institutoptique.fr/Membres-Services/Responsables-d-equipe/LALANNE-Philippe .

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985), pp. 350–357.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the simplified structure made of a ZnO:Al/a-Si:H/Ag stack. A 1D silver grating (width w, pitch p, metal thickness hm) is deposited on the a-Si:H layer (thickness hs) and embedded in a ZnO:Al anti-reflection coating layer (thickness h1). (b) Spectra of the numerically computed total absorption of the reference structure under TM (orange) and TE (green) polarized light at normal incidence. The parameters of the metallic grating are p=200 nm, w=80 nm and hm=20 nm. The total absorption spectrum of a planar ZnO:Al (50 nm)/a-Si:H (90 nm)/Ag structure is shown with the black dashed curve for the sake of comparison.

Fig. 2
Fig. 2

Study of the short wavelengths resonances (AE) (TE) and (AM) (TM). (a) Sketch of the asymmetric Fabry-Perot resonator model used to fit the numerical calculations. The influence of the metallic grating is neglected. ϕ1 and ϕ2 are the phase shifts induced by reflection at the ZnO:Al/Air and ZnO:Al/a-Si:H interfaces. (b, c) Total light absorption spectrum in the simplified structure depicted in Fig. 1 as a function of the wavelength and the ZnO:Al layer thickness h1. Excitation at normal incidence light in (b) TE and (c) TM polarizations. The position of the absorption bands with low dependence on h1 can be attributed to resonances BE, CE, BM and CM as shown with orange dashed lines. The resonance position h1 = f(λ) given by the Fabry-Perot model (Eq.(1)) is shown with black dashed curves for q = 0, 1.

Fig. 3
Fig. 3

Study of the resonances (BE) (TE) and (BM) (TM).(a) Sketch of the asymmetric Fabry-Perot resonator model used to fit the numerical calculations. The influence of the metallic grating is neglected. ϕ1 and ϕ2 are the phase shifts induced by reflection at the a-Si:H/ZnO:Al and a-Si:H/Ag interfaces. (b, c) Total light absorption spectrum in the simplified structure depicted in Fig. 1 as a function of the wavelength and the absorber layer thickness hs. Excitation at normal incidence light in (b) TE and (c) TM polarizations. The resonance position hs = f(λ) given by the Fabry-Perot model (Eq.(1)) with h1 = hs and n1 = ns, is shown in black dashed lines for q = 0, 1, 2, 3. (d,e) Electric field intensity maps for a 1D silver grating with w= 80 nm, p= 200 nm, hm= 20 nm for an excitation at (d) λBE = 631 nm under TE polarized light and (e) λBM = 649 nm under TM polarized light.

Fig. 4
Fig. 4

Study of the long wavelength (CE) resonance for TE polarization. (a) Total light absorption spectrum as a function of the wavelength and the angle of incidence (plane of incidence perpendicular to the wires). (b) Total light absorption spectrum as a function of the wavelength and the grating period at normal incidence. The absorption bands attributed to resonances AE and BE are shown in orange dashed lines in Figs. 4 (a) and (b). (c) Electric field intensity map for an excitation at λCE = 687 nm for a TE polarization at normal incidence.

Fig. 5
Fig. 5

Numerically computed optical absorption in each material of an ultra-thin a-Si:H solar cell for an excitation under TE (a, left) and TM (b, right) polarizations at normal incidence (red curve: absorption only in a-Si:H; blue curve: absorption in a-Si:H and the ITO and ZnO:Al spacing layers; grey curve: total absorption). The bandgap of amorphous silicon is shown in grey. Inset of Fig. (a): Sketch of the structure investigated: solar cell made of a Si3N4(Ag)/ITO/a-Si:H/ZnO:Al/Ag stack with a 90 nm-thick p-i-n a-Si:H absorber layer. A 1D silver grating (thickness=20 nm, width=80 nm and period=200 nm) is embedded in the front Si3N4 layer. Other geometrical parameters are hSi3N4 =60 nm, hITO=10 nm, hZnO:Al=15 nm.

Fig. 6
Fig. 6

(a) Evolution of the absorption in the a-Si:H layer for the complete cell as a function of the ZnO:Al layer thickness hAZO for a TM polarized light at normal incidence. (b, c) Electric field intensity maps for an excitation at λCM = 770 nm (simplified structure)(b) and λG= 709 nm (complete cell)(c) at normal incidence for a TM polarization.

Tables (1)

Tables Icon

Table 1 Influence of the geometrical parameters of the structure shown in the inset of Fig. 5(a).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

h 1 = λ 2 n 1 ( q φ 2 π )
2 π λ C E Re ( n eff ) = | 2 π λ C E sin θ + m 2 π p |

Metrics