Abstract

Solar cells are important in the area of renewable energies. Since it is expensive to produce solar-grade silicon [Electrochem. Soc. Interface 17, 30 (2008)], especially thin-film solar cells are interesting. However, the efficiency of such solar cells is low. Therefore, it is important to increase the efficiency. The group of Polman has shown that a periodic arrangement of metal particles is able to enhance the absorbance of light [Nano Lett. 11, 1760 (2011)]. However, a quasicrystalline arrangement of the metal particles is expected to enhance the light absorbance independent of the incident polar and azimuthal angles due to the more isotropic photonic bandstructure. In this paper, we compare the absorption enhancement of a quasiperiodic photonic crystal to that of a periodic photonic crystal. We indeed find that the absorption enhancement for the quasicrystalline arrangement shows such an isotropic behavior. This implies that the absorption efficiency of the solar cell is relatively constant during the course of the day as well as the year. This is particularly important with respect to power distribution, power storage requirements, and the stability of the electric grid upon massive use of renewable energy.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Verbruggen, V. Lauber, “Basic concepts for designing renewable electricity support aiming at a fullscale transition by 2050,” Energy Policy 37(12), 5732–5743 (2009).
    [CrossRef]
  2. D. Fertl, “Germany: Nuclear power to be phased out by 2022,” http://www.greenleft.org.au/node/47834 (2011). Accessed: 23/08/2012.
  3. F. Trieb, “Trans-mediterranean interconnection for concentrating solar power,” Study report, German Aerospace Center (2006).
  4. M. Tao, “Inorganic photovoltaic solar cells: Silicon and beyond,” Electrochem. Soc. Interface 17, 30–35 (2008).
  5. D. Redfield, “Multiple-pass thin-film silicon solar cell,” Appl. Phys. Lett. 25(11), 647–648 (1974).
    [CrossRef]
  6. J. Zhao, M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991).
    [CrossRef]
  7. B. O’Regan, M. Grätzel, “A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
    [CrossRef]
  8. M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. C 4(2), 145–153 (2003).
    [CrossRef]
  9. J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
    [CrossRef]
  10. S. E. Han, G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
    [CrossRef] [PubMed]
  11. C. Haase, H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovolt. Res. Appl. 14(7), 629–641 (2006).
    [CrossRef]
  12. H. R. Stuart, D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
    [CrossRef]
  13. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
    [CrossRef]
  14. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  15. C. Rockstuhl, S. Fahr, F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
    [CrossRef]
  16. X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
    [CrossRef]
  17. Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express 17(16), 13747–13757 (2009).
    [CrossRef] [PubMed]
  18. W. H. Koo, W. Youn, P. Zhu, X.-H. Li, N. Tansu, F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater. 22(16), 3454–3459 (2012).
    [CrossRef]
  19. E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
    [CrossRef]
  20. S. Fahr, C. Rockstuhl, F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92(17), 171114 (2008).
    [CrossRef]
  21. R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
    [CrossRef]
  22. J. N. Munday, H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
    [CrossRef] [PubMed]
  23. P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
    [CrossRef] [PubMed]
  24. P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
    [CrossRef]
  25. C. Rockstuhl, F. Lederer, T. Zentgraf, H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
    [CrossRef]
  26. V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
    [CrossRef] [PubMed]
  27. Y. Nishijima, L. Rosa, S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express 20(10), 11466–11477 (2012).
    [CrossRef] [PubMed]
  28. P.-C. Tseng, M.-H. Hsu, M.-A. Tsai, C.-W. Chu, H.-C. Kuo, P. Yu, “Enhanced omnidirectional photon coupling via quasi-periodic patterning of indium-tin-oxide for organic thin-film solar cells,” Org. Electron. 12(6), 886–890 (2011).
    [CrossRef]
  29. S. Linden, J. Kuhl, H. Giessen, “Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction,” Phys. Rev. Lett. 86(20), 4688–4691 (2001).
    [CrossRef] [PubMed]
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  31. A. Christ, “Optical properties of metallic photonic crystal structures,” Ph.D. thesis, Philipps-Universität Marburg (2005).
  32. C. Bauer, G. Kobiela, H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci. Rep. 2, 681 (2012).
    [CrossRef] [PubMed]
  33. S. Fan, J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
    [CrossRef]
  34. M. J. Weber, Handbook of Optical Materials (CRC, 2003).
  35. D. Zhou, R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
    [CrossRef]
  36. C. Gueymard, “SMARTS2, Simple Model for the Atmospheric Radiative Transfer of Sunshine: Algorithms and performance assessment,” Technical Report FSEC-PF-270–95, Florida Solar Energy Center, Cocoa, FL (1995).
  37. J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, D. W. Prather, “Thin film silicon solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16(19), 15238–15248 (2008).
    [CrossRef] [PubMed]
  38. The latitude and longitude of Germany,” http://www.travelmath.com/country/Germany . Accessed: 13/12/2012.
  39. H. Schwarz and S. Ying, “Urban photovoltaic potential,” in 2010 9th International Conference on Environment and Electrical Engineering (EEEIC) (2010), pp. 26–28.
    [CrossRef]

2012 (4)

W. H. Koo, W. Youn, P. Zhu, X.-H. Li, N. Tansu, F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater. 22(16), 3454–3459 (2012).
[CrossRef]

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[CrossRef]

Y. Nishijima, L. Rosa, S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express 20(10), 11466–11477 (2012).
[CrossRef] [PubMed]

C. Bauer, G. Kobiela, H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci. Rep. 2, 681 (2012).
[CrossRef] [PubMed]

2011 (5)

P.-C. Tseng, M.-H. Hsu, M.-A. Tsai, C.-W. Chu, H.-C. Kuo, P. Yu, “Enhanced omnidirectional photon coupling via quasi-periodic patterning of indium-tin-oxide for organic thin-film solar cells,” Org. Electron. 12(6), 886–890 (2011).
[CrossRef]

J. N. Munday, H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
[CrossRef]

2010 (3)

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[CrossRef]

S. E. Han, G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

2009 (5)

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[CrossRef]

A. Verbruggen, V. Lauber, “Basic concepts for designing renewable electricity support aiming at a fullscale transition by 2050,” Energy Policy 37(12), 5732–5743 (2009).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express 17(16), 13747–13757 (2009).
[CrossRef] [PubMed]

2008 (5)

C. Rockstuhl, S. Fahr, F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[CrossRef]

S. Fahr, C. Rockstuhl, F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92(17), 171114 (2008).
[CrossRef]

M. Tao, “Inorganic photovoltaic solar cells: Silicon and beyond,” Electrochem. Soc. Interface 17, 30–35 (2008).

D. Zhou, R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
[CrossRef]

J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, D. W. Prather, “Thin film silicon solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16(19), 15238–15248 (2008).
[CrossRef] [PubMed]

2007 (1)

C. Rockstuhl, F. Lederer, T. Zentgraf, H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
[CrossRef]

2006 (1)

C. Haase, H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovolt. Res. Appl. 14(7), 629–641 (2006).
[CrossRef]

2003 (1)

M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. C 4(2), 145–153 (2003).
[CrossRef]

2002 (1)

S. Fan, J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

2001 (1)

S. Linden, J. Kuhl, H. Giessen, “Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction,” Phys. Rev. Lett. 86(20), 4688–4691 (2001).
[CrossRef] [PubMed]

1996 (1)

H. R. Stuart, D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[CrossRef]

1991 (2)

J. Zhao, M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991).
[CrossRef]

B. O’Regan, M. Grätzel, “A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[CrossRef]

1974 (1)

D. Redfield, “Multiple-pass thin-film silicon solar cell,” Appl. Phys. Lett. 25(11), 647–648 (1974).
[CrossRef]

Arif, R. A.

Atwater, H. A.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

J. N. Munday, H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Barnett, A.

Bauer, C.

C. Bauer, G. Kobiela, H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci. Rep. 2, 681 (2012).
[CrossRef] [PubMed]

Biswas, R.

D. Zhou, R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
[CrossRef]

Black, L.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

Bösch, A.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[CrossRef]

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Chen, C.

Chen, G.

S. E. Han, G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

Chu, C.-W.

P.-C. Tseng, M.-H. Hsu, M.-A. Tsai, C.-W. Chu, H.-C. Kuo, P. Yu, “Enhanced omnidirectional photon coupling via quasi-periodic patterning of indium-tin-oxide for organic thin-film solar cells,” Org. Electron. 12(6), 886–890 (2011).
[CrossRef]

Creazzo, T.

de Waele, R.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

Dimroth, F.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[CrossRef]

Ee, Y.-K.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
[CrossRef]

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express 17(16), 13747–13757 (2009).
[CrossRef] [PubMed]

Fahr, S.

S. Fahr, C. Rockstuhl, F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92(17), 171114 (2008).
[CrossRef]

C. Rockstuhl, S. Fahr, F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[CrossRef]

Fan, S.

S. Fan, J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

Ferry, V. E.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Fleury, B.

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[CrossRef]

Giessen, H.

C. Bauer, G. Kobiela, H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci. Rep. 2, 681 (2012).
[CrossRef] [PubMed]

C. Rockstuhl, F. Lederer, T. Zentgraf, H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
[CrossRef]

S. Linden, J. Kuhl, H. Giessen, “Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction,” Phys. Rev. Lett. 86(20), 4688–4691 (2001).
[CrossRef] [PubMed]

Gilchrist, J. F.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
[CrossRef]

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express 17(16), 13747–13757 (2009).
[CrossRef] [PubMed]

Glunz, S. W.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[CrossRef]

Goldschmidt, J. C.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[CrossRef]

Grätzel, M.

M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. C 4(2), 145–153 (2003).
[CrossRef]

B. O’Regan, M. Grätzel, “A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[CrossRef]

Green, M. A.

J. Zhao, M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991).
[CrossRef]

Haase, C.

C. Haase, H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovolt. Res. Appl. 14(7), 629–641 (2006).
[CrossRef]

Hall, D. G.

H. R. Stuart, D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[CrossRef]

Han, S. E.

S. E. Han, G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

Hebbink, M.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

Helmers, H.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[CrossRef]

Honsberg, C.

Hsu, M.-H.

P.-C. Tseng, M.-H. Hsu, M.-A. Tsai, C.-W. Chu, H.-C. Kuo, P. Yu, “Enhanced omnidirectional photon coupling via quasi-periodic patterning of indium-tin-oxide for organic thin-film solar cells,” Org. Electron. 12(6), 886–890 (2011).
[CrossRef]

Hu, E.

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[CrossRef]

Iza, M.

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[CrossRef]

Joannopoulos, J. D.

S. Fan, J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

Juodkazis, S.

Kobiela, G.

C. Bauer, G. Kobiela, H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci. Rep. 2, 681 (2012).
[CrossRef] [PubMed]

Koo, W. H.

W. H. Koo, W. Youn, P. Zhu, X.-H. Li, N. Tansu, F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater. 22(16), 3454–3459 (2012).
[CrossRef]

Kuhl, J.

S. Linden, J. Kuhl, H. Giessen, “Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction,” Phys. Rev. Lett. 86(20), 4688–4691 (2001).
[CrossRef] [PubMed]

Kumnorkaew, P.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
[CrossRef]

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express 17(16), 13747–13757 (2009).
[CrossRef] [PubMed]

Kuo, H.-C.

P.-C. Tseng, M.-H. Hsu, M.-A. Tsai, C.-W. Chu, H.-C. Kuo, P. Yu, “Enhanced omnidirectional photon coupling via quasi-periodic patterning of indium-tin-oxide for organic thin-film solar cells,” Org. Electron. 12(6), 886–890 (2011).
[CrossRef]

Lare, M. C.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

Lauber, V.

A. Verbruggen, V. Lauber, “Basic concepts for designing renewable electricity support aiming at a fullscale transition by 2050,” Energy Policy 37(12), 5732–5743 (2009).
[CrossRef]

Lederer, F.

C. Rockstuhl, S. Fahr, F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[CrossRef]

S. Fahr, C. Rockstuhl, F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92(17), 171114 (2008).
[CrossRef]

C. Rockstuhl, F. Lederer, T. Zentgraf, H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
[CrossRef]

Lenzmann, F.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

Li, H. B. T.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Li, X.-H.

W. H. Koo, W. Youn, P. Zhu, X.-H. Li, N. Tansu, F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater. 22(16), 3454–3459 (2012).
[CrossRef]

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
[CrossRef]

Linden, S.

S. Linden, J. Kuhl, H. Giessen, “Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction,” Phys. Rev. Lett. 86(20), 4688–4691 (2001).
[CrossRef] [PubMed]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Matioli, E.

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[CrossRef]

Munday, J. N.

J. N. Munday, H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

Mutitu, J. G.

Nishijima, Y.

O’Regan, B.

B. O’Regan, M. Grätzel, “A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[CrossRef]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Peters, M.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[CrossRef]

Pfaff, N.

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[CrossRef]

Polman, A.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[CrossRef]

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Prather, D. W.

Rangel, E.

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[CrossRef]

Redfield, D.

D. Redfield, “Multiple-pass thin-film silicon solar cell,” Appl. Phys. Lett. 25(11), 647–648 (1974).
[CrossRef]

Rockstuhl, C.

C. Rockstuhl, S. Fahr, F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[CrossRef]

S. Fahr, C. Rockstuhl, F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92(17), 171114 (2008).
[CrossRef]

C. Rockstuhl, F. Lederer, T. Zentgraf, H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
[CrossRef]

Rosa, L.

Schropp, R. E. I.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Shi, S.

So, F.

W. H. Koo, W. Youn, P. Zhu, X.-H. Li, N. Tansu, F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater. 22(16), 3454–3459 (2012).
[CrossRef]

Song, R.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
[CrossRef]

Speck, J.

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[CrossRef]

Spinelli, P.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[CrossRef]

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

Stiebig, H.

C. Haase, H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovolt. Res. Appl. 14(7), 629–641 (2006).
[CrossRef]

Stuart, H. R.

H. R. Stuart, D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[CrossRef]

Tansu, N.

W. H. Koo, W. Youn, P. Zhu, X.-H. Li, N. Tansu, F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater. 22(16), 3454–3459 (2012).
[CrossRef]

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
[CrossRef]

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express 17(16), 13747–13757 (2009).
[CrossRef] [PubMed]

Tao, M.

M. Tao, “Inorganic photovoltaic solar cells: Silicon and beyond,” Electrochem. Soc. Interface 17, 30–35 (2008).

Tong, H.

Tsai, M.-A.

P.-C. Tseng, M.-H. Hsu, M.-A. Tsai, C.-W. Chu, H.-C. Kuo, P. Yu, “Enhanced omnidirectional photon coupling via quasi-periodic patterning of indium-tin-oxide for organic thin-film solar cells,” Org. Electron. 12(6), 886–890 (2011).
[CrossRef]

Tseng, P.-C.

P.-C. Tseng, M.-H. Hsu, M.-A. Tsai, C.-W. Chu, H.-C. Kuo, P. Yu, “Enhanced omnidirectional photon coupling via quasi-periodic patterning of indium-tin-oxide for organic thin-film solar cells,” Org. Electron. 12(6), 886–890 (2011).
[CrossRef]

van de Groep, J.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[CrossRef]

van Lare, M.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[CrossRef]

Verbruggen, A.

A. Verbruggen, V. Lauber, “Basic concepts for designing renewable electricity support aiming at a fullscale transition by 2050,” Energy Policy 37(12), 5732–5743 (2009).
[CrossRef]

Verschuuren, M. A.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Weisbuch, C.

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[CrossRef]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Willeke, G.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[CrossRef]

Youn, W.

W. H. Koo, W. Youn, P. Zhu, X.-H. Li, N. Tansu, F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater. 22(16), 3454–3459 (2012).
[CrossRef]

Yu, P.

P.-C. Tseng, M.-H. Hsu, M.-A. Tsai, C.-W. Chu, H.-C. Kuo, P. Yu, “Enhanced omnidirectional photon coupling via quasi-periodic patterning of indium-tin-oxide for organic thin-film solar cells,” Org. Electron. 12(6), 886–890 (2011).
[CrossRef]

Zentgraf, T.

C. Rockstuhl, F. Lederer, T. Zentgraf, H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
[CrossRef]

Zhao, J.

J. Zhao, M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991).
[CrossRef]

Zhou, D.

D. Zhou, R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
[CrossRef]

Zhu, P.

W. H. Koo, W. Youn, P. Zhu, X.-H. Li, N. Tansu, F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater. 22(16), 3454–3459 (2012).
[CrossRef]

Adv. Funct. Mater. (1)

W. H. Koo, W. Youn, P. Zhu, X.-H. Li, N. Tansu, F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater. 22(16), 3454–3459 (2012).
[CrossRef]

Adv. Mater. (1)

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Appl. Phys. Lett. (6)

C. Rockstuhl, F. Lederer, T. Zentgraf, H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
[CrossRef]

E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Appl. Phys. Lett. 96(3), 031108 (2010).
[CrossRef]

S. Fahr, C. Rockstuhl, F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett. 92(17), 171114 (2008).
[CrossRef]

H. R. Stuart, D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

D. Redfield, “Multiple-pass thin-film silicon solar cell,” Appl. Phys. Lett. 25(11), 647–648 (1974).
[CrossRef]

Electrochem. Soc. Interface (1)

M. Tao, “Inorganic photovoltaic solar cells: Silicon and beyond,” Electrochem. Soc. Interface 17, 30–35 (2008).

Energy Policy (1)

A. Verbruggen, V. Lauber, “Basic concepts for designing renewable electricity support aiming at a fullscale transition by 2050,” Energy Policy 37(12), 5732–5743 (2009).
[CrossRef]

IEEE Photon. J. (1)

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

J. Zhao, M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991).
[CrossRef]

J. Appl. Phys. (2)

C. Rockstuhl, S. Fahr, F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[CrossRef]

D. Zhou, R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
[CrossRef]

J. Opt. (1)

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[CrossRef]

J. Photochem. Photobiol. C (1)

M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. C 4(2), 145–153 (2003).
[CrossRef]

Nano Lett. (4)

S. E. Han, G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

J. N. Munday, H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Nature (1)

B. O’Regan, M. Grätzel, “A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[CrossRef]

Opt. Express (3)

Org. Electron. (1)

P.-C. Tseng, M.-H. Hsu, M.-A. Tsai, C.-W. Chu, H.-C. Kuo, P. Yu, “Enhanced omnidirectional photon coupling via quasi-periodic patterning of indium-tin-oxide for organic thin-film solar cells,” Org. Electron. 12(6), 886–890 (2011).
[CrossRef]

Phys. Rev. B (1)

S. Fan, J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

S. Linden, J. Kuhl, H. Giessen, “Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction,” Phys. Rev. Lett. 86(20), 4688–4691 (2001).
[CrossRef] [PubMed]

Prog. Photovolt. Res. Appl. (1)

C. Haase, H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovolt. Res. Appl. 14(7), 629–641 (2006).
[CrossRef]

Sci. Rep. (1)

C. Bauer, G. Kobiela, H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci. Rep. 2, 681 (2012).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93(2), 176–182 (2009).
[CrossRef]

Other (8)

D. Fertl, “Germany: Nuclear power to be phased out by 2022,” http://www.greenleft.org.au/node/47834 (2011). Accessed: 23/08/2012.

F. Trieb, “Trans-mediterranean interconnection for concentrating solar power,” Study report, German Aerospace Center (2006).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

A. Christ, “Optical properties of metallic photonic crystal structures,” Ph.D. thesis, Philipps-Universität Marburg (2005).

M. J. Weber, Handbook of Optical Materials (CRC, 2003).

C. Gueymard, “SMARTS2, Simple Model for the Atmospheric Radiative Transfer of Sunshine: Algorithms and performance assessment,” Technical Report FSEC-PF-270–95, Florida Solar Energy Center, Cocoa, FL (1995).

The latitude and longitude of Germany,” http://www.travelmath.com/country/Germany . Accessed: 13/12/2012.

H. Schwarz and S. Ying, “Urban photovoltaic potential,” in 2010 9th International Conference on Environment and Electrical Engineering (EEEIC) (2010), pp. 26–28.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sample design with (a) a quasiperiodic arrangement as well as (b) a periodic arrangement of gold disks on top of a SiO2/Si/SiO2-substrate.

Fig. 2
Fig. 2

S-matrix calculated (a) transmittance and (b) reflectance spectra (black solid lines) as well as the corresponding Fano modelled spectra (red dashed lines) for a periodic gold disk arrangement.

Fig. 3
Fig. 3

Polarization dependent absorbance spectra for (a) p- and (b) s-polarized light of a Penrose tiling as well as (c) p- and (d) s-polarized light of a square lattice for an angle of incidence θ = 6°. The azimuthal angle ϕ was changed between 0° and 90°.

Fig. 4
Fig. 4

Angle dependent absorbance spectra for (a) p- and (b) s-polarized light of a Penrose tiling as well as (c) p- and (d) s-polarized light of a square lattice. The part from Γ to N belongs to an azimuthal angle of 18° and the part from Γ to M to ϕ = 45°. The part from Γ to X belongs to an azimuthal angle of 0°.

Fig. 5
Fig. 5

Enhancement factor versus day of the year and local time for (a) a Penrose tiling as well as for (b) a square lattice. The colored lines in (a) and (b) show the cross sections of the enhancement factor for specific local times, which is plotted versus the day of the year for (c) a Penrose tiling and (d) a square lattice. The inset in (d) shows the course of the sun for three different days of the year.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

t= t d exp(i ϕ t ) t Pl Γ Pl exp(i ϕ Pl ) E E Pl +i Γ Pl C k t k Γ k exp(i ϕ k ) E E k +i Γ k ,
r= r d exp(i ϕ r )+ r Pl Γ Pl exp(i ϕ Pl ) E E Pl +i Γ Pl +C k r k Γ k exp(i ϕ k ) E E k +i Γ k
t d =1.33700.8147E+0.3420 E 2 0.0575 E 3 ,
r d =0.0325+0.7545E0.2046 E 2 +0.0053 E 3 .
A avg = λ min λ g A tot (λ)S(λ)dλ
A tot (λ)= A ppol (λ)+ A spol (λ) 2 .
EF= A avg,enh A avg,Bare ,
E F tot = 1 365 0 24 A avg,enh d t LT d t day 1 365 0 24 A avg,Bare d t LT d t day .

Metrics