Abstract

We study dielectric diffraction gratings for light-trapping in quantum well solar cells and compare their performance with plasmonic and Lambertian light-trapping structures. The optimum structural parameters are identified for symmetric uni-periodic, symmetric bi-periodic and asymmetric bi-periodic gratings. The enhancement in short-circuit current density from the quantum well region with respect to a reference cell with no diffraction grating is calculated. The ratio of this enhancement to the maximum achievable enhancement (i.e. no transmission losses) is 33%, 75% and 74%, respectively for these structures. The optimum asymmetric and symmetric bi-periodic structures perform closest to Lambertian light-trapping, while all three optimum grating structures outperform optimum plasmonic light-trapping. We show that the short-circuit current density from the quantum well region is further enhanced by incorporating a rear reflector.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. G. Anderson, “Ideal theory of quantum well solar cells,” J. Appl. Phys. 78(3), 1850–1861 (1995).
    [CrossRef]
  2. K. W. J. Barnham, I. M. Ballard, J. P. Connolly, N. J. Ekins-Daukes, B. G. Kluftinger, J. Nelson, C. Rohr, “Quantum well solar cells,” Physica E 14(1-2), 27–36 (2002).
    [CrossRef]
  3. K. W. J. Barnham, G. Duggan, “A new approach to high-efficiency multi-band-gap solar cells,” J. Appl. Phys. 67(7), 3490–3493 (1990).
    [CrossRef]
  4. K. W. J. Barnham, P. Abbott, I. M. Ballard, D. B. Bushnell, J. P. Connolly, N. J. Ekins-Daukes, M. Mazzer, J. Nelson, C. Rohr, T. N. D. Tibbits, R. Airey, G. Hill, J. S. Roberts, “Recent results on quantum well solar cells,” Proceedings of 3rd World Conference on Photovoltaic Energy Conversion3rd, 606–611 (2003).
  5. J. P. Connolly, “Analytical Models of Bulk and Quantum Well Solar Cells and Relevance of the Radiative Limit,” in Advanced Solar Cell Materials, Technology, Modeling, and Simulation (IGI Global, 2013, pp. 59–77).
  6. K. W. J. Barnham, I. M. Ballard, B. C. Browne, D. B. Bushnell, J. P. Connolly, N. J. Ekins-Daukes, M. C. Lynch, M. Mazzer, J. S. Roberts, C. Rohr, and T. N. D. Tibbits, “Recent Progress in Quantum Well Solar Cells,” in Nanotechnology for Photovoltaics (CRC Press, 2010, pp. 187–210).
  7. S. Mokkapati, K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
    [CrossRef]
  8. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  9. Z. Yu, A. Raman, S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
    [CrossRef] [PubMed]
  10. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
    [CrossRef]
  11. Z. Yu, A. Raman, S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
    [CrossRef] [PubMed]
  12. Lumerical, “FDTD Solutions Package,” (2012), retrieved http://www.Lumerical.com .
  13. NREL, “Reference Solar Spectral Irradiance: Air Mass 1.5,” (2012), retrieved http://rredc.nrel.gov/solar/spectra/am1.5/ .
  14. S. Mokkapati, F. J. Beck, A. Polman, K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
    [CrossRef]
  15. A. Goetzberger, “Optical confinement in thin Si-solar cells by diffuse back reflectors,” Proceedings of Photovoltaic Specialists Conference15th, 867–870 (1981).
  16. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998, pp. 429–443).
  17. I. McKerracher, J. Wong-Leung, G. Jolley, F. Lan, H. H. Tan, C. Jagadish, “Selective Intermixing of InGaAs/GaAs Quantum Dot Infrared Photodetectors,” IEEE J. Quantum Electron. 47(5), 577–590 (2011).
    [CrossRef]
  18. P. K. Bhattacharya, Properties of Lattice-Matched and Strained Indium Gallium Arsenide (Inspec/Iee, 1993) pp. 187–191.
  19. T. B. Bahder, “Eight-band k.p model of strained zinc-blende crystals,” Phys. Rev. B 41(17), 11992–12001 (1990).
    [CrossRef]
  20. I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
    [CrossRef]
  21. S. L. Chuang, Physics of Optoelectronic Devices (John Wiley & Sons, 1995, pp. 337–345).
  22. E. Wang, T. P. White, K. R. Catchpole, “Resonant enhancement of dielectric and metal nanoparticle arrays for light trapping in solar cells,” Opt. Express 20(12), 13226–13237 (2012).
    [CrossRef] [PubMed]

2012 (2)

2011 (1)

I. McKerracher, J. Wong-Leung, G. Jolley, F. Lan, H. H. Tan, C. Jagadish, “Selective Intermixing of InGaAs/GaAs Quantum Dot Infrared Photodetectors,” IEEE J. Quantum Electron. 47(5), 577–590 (2011).
[CrossRef]

2010 (3)

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[CrossRef] [PubMed]

2009 (1)

S. Mokkapati, F. J. Beck, A. Polman, K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[CrossRef]

2002 (1)

K. W. J. Barnham, I. M. Ballard, J. P. Connolly, N. J. Ekins-Daukes, B. G. Kluftinger, J. Nelson, C. Rohr, “Quantum well solar cells,” Physica E 14(1-2), 27–36 (2002).
[CrossRef]

2001 (1)

I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[CrossRef]

1995 (1)

N. G. Anderson, “Ideal theory of quantum well solar cells,” J. Appl. Phys. 78(3), 1850–1861 (1995).
[CrossRef]

1990 (2)

K. W. J. Barnham, G. Duggan, “A new approach to high-efficiency multi-band-gap solar cells,” J. Appl. Phys. 67(7), 3490–3493 (1990).
[CrossRef]

T. B. Bahder, “Eight-band k.p model of strained zinc-blende crystals,” Phys. Rev. B 41(17), 11992–12001 (1990).
[CrossRef]

1982 (1)

Abbott, P.

K. W. J. Barnham, P. Abbott, I. M. Ballard, D. B. Bushnell, J. P. Connolly, N. J. Ekins-Daukes, M. Mazzer, J. Nelson, C. Rohr, T. N. D. Tibbits, R. Airey, G. Hill, J. S. Roberts, “Recent results on quantum well solar cells,” Proceedings of 3rd World Conference on Photovoltaic Energy Conversion3rd, 606–611 (2003).

Airey, R.

K. W. J. Barnham, P. Abbott, I. M. Ballard, D. B. Bushnell, J. P. Connolly, N. J. Ekins-Daukes, M. Mazzer, J. Nelson, C. Rohr, T. N. D. Tibbits, R. Airey, G. Hill, J. S. Roberts, “Recent results on quantum well solar cells,” Proceedings of 3rd World Conference on Photovoltaic Energy Conversion3rd, 606–611 (2003).

Anderson, N. G.

N. G. Anderson, “Ideal theory of quantum well solar cells,” J. Appl. Phys. 78(3), 1850–1861 (1995).
[CrossRef]

Atwater, H. A.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Bahder, T. B.

T. B. Bahder, “Eight-band k.p model of strained zinc-blende crystals,” Phys. Rev. B 41(17), 11992–12001 (1990).
[CrossRef]

Ballard, I. M.

K. W. J. Barnham, I. M. Ballard, J. P. Connolly, N. J. Ekins-Daukes, B. G. Kluftinger, J. Nelson, C. Rohr, “Quantum well solar cells,” Physica E 14(1-2), 27–36 (2002).
[CrossRef]

K. W. J. Barnham, P. Abbott, I. M. Ballard, D. B. Bushnell, J. P. Connolly, N. J. Ekins-Daukes, M. Mazzer, J. Nelson, C. Rohr, T. N. D. Tibbits, R. Airey, G. Hill, J. S. Roberts, “Recent results on quantum well solar cells,” Proceedings of 3rd World Conference on Photovoltaic Energy Conversion3rd, 606–611 (2003).

Barnham, K. W. J.

K. W. J. Barnham, I. M. Ballard, J. P. Connolly, N. J. Ekins-Daukes, B. G. Kluftinger, J. Nelson, C. Rohr, “Quantum well solar cells,” Physica E 14(1-2), 27–36 (2002).
[CrossRef]

K. W. J. Barnham, G. Duggan, “A new approach to high-efficiency multi-band-gap solar cells,” J. Appl. Phys. 67(7), 3490–3493 (1990).
[CrossRef]

K. W. J. Barnham, P. Abbott, I. M. Ballard, D. B. Bushnell, J. P. Connolly, N. J. Ekins-Daukes, M. Mazzer, J. Nelson, C. Rohr, T. N. D. Tibbits, R. Airey, G. Hill, J. S. Roberts, “Recent results on quantum well solar cells,” Proceedings of 3rd World Conference on Photovoltaic Energy Conversion3rd, 606–611 (2003).

Beck, F. J.

S. Mokkapati, F. J. Beck, A. Polman, K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[CrossRef]

Bushnell, D. B.

K. W. J. Barnham, P. Abbott, I. M. Ballard, D. B. Bushnell, J. P. Connolly, N. J. Ekins-Daukes, M. Mazzer, J. Nelson, C. Rohr, T. N. D. Tibbits, R. Airey, G. Hill, J. S. Roberts, “Recent results on quantum well solar cells,” Proceedings of 3rd World Conference on Photovoltaic Energy Conversion3rd, 606–611 (2003).

Catchpole, K. R.

S. Mokkapati, K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
[CrossRef]

E. Wang, T. P. White, K. R. Catchpole, “Resonant enhancement of dielectric and metal nanoparticle arrays for light trapping in solar cells,” Opt. Express 20(12), 13226–13237 (2012).
[CrossRef] [PubMed]

S. Mokkapati, F. J. Beck, A. Polman, K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[CrossRef]

Connolly, J. P.

K. W. J. Barnham, I. M. Ballard, J. P. Connolly, N. J. Ekins-Daukes, B. G. Kluftinger, J. Nelson, C. Rohr, “Quantum well solar cells,” Physica E 14(1-2), 27–36 (2002).
[CrossRef]

K. W. J. Barnham, P. Abbott, I. M. Ballard, D. B. Bushnell, J. P. Connolly, N. J. Ekins-Daukes, M. Mazzer, J. Nelson, C. Rohr, T. N. D. Tibbits, R. Airey, G. Hill, J. S. Roberts, “Recent results on quantum well solar cells,” Proceedings of 3rd World Conference on Photovoltaic Energy Conversion3rd, 606–611 (2003).

Duggan, G.

K. W. J. Barnham, G. Duggan, “A new approach to high-efficiency multi-band-gap solar cells,” J. Appl. Phys. 67(7), 3490–3493 (1990).
[CrossRef]

Ekins-Daukes, N. J.

K. W. J. Barnham, I. M. Ballard, J. P. Connolly, N. J. Ekins-Daukes, B. G. Kluftinger, J. Nelson, C. Rohr, “Quantum well solar cells,” Physica E 14(1-2), 27–36 (2002).
[CrossRef]

K. W. J. Barnham, P. Abbott, I. M. Ballard, D. B. Bushnell, J. P. Connolly, N. J. Ekins-Daukes, M. Mazzer, J. Nelson, C. Rohr, T. N. D. Tibbits, R. Airey, G. Hill, J. S. Roberts, “Recent results on quantum well solar cells,” Proceedings of 3rd World Conference on Photovoltaic Energy Conversion3rd, 606–611 (2003).

Fan, S.

Z. Yu, A. Raman, S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Goetzberger, A.

A. Goetzberger, “Optical confinement in thin Si-solar cells by diffuse back reflectors,” Proceedings of Photovoltaic Specialists Conference15th, 867–870 (1981).

Hill, G.

K. W. J. Barnham, P. Abbott, I. M. Ballard, D. B. Bushnell, J. P. Connolly, N. J. Ekins-Daukes, M. Mazzer, J. Nelson, C. Rohr, T. N. D. Tibbits, R. Airey, G. Hill, J. S. Roberts, “Recent results on quantum well solar cells,” Proceedings of 3rd World Conference on Photovoltaic Energy Conversion3rd, 606–611 (2003).

Jagadish, C.

I. McKerracher, J. Wong-Leung, G. Jolley, F. Lan, H. H. Tan, C. Jagadish, “Selective Intermixing of InGaAs/GaAs Quantum Dot Infrared Photodetectors,” IEEE J. Quantum Electron. 47(5), 577–590 (2011).
[CrossRef]

Jolley, G.

I. McKerracher, J. Wong-Leung, G. Jolley, F. Lan, H. H. Tan, C. Jagadish, “Selective Intermixing of InGaAs/GaAs Quantum Dot Infrared Photodetectors,” IEEE J. Quantum Electron. 47(5), 577–590 (2011).
[CrossRef]

Kluftinger, B. G.

K. W. J. Barnham, I. M. Ballard, J. P. Connolly, N. J. Ekins-Daukes, B. G. Kluftinger, J. Nelson, C. Rohr, “Quantum well solar cells,” Physica E 14(1-2), 27–36 (2002).
[CrossRef]

Lan, F.

I. McKerracher, J. Wong-Leung, G. Jolley, F. Lan, H. H. Tan, C. Jagadish, “Selective Intermixing of InGaAs/GaAs Quantum Dot Infrared Photodetectors,” IEEE J. Quantum Electron. 47(5), 577–590 (2011).
[CrossRef]

Mazzer, M.

K. W. J. Barnham, P. Abbott, I. M. Ballard, D. B. Bushnell, J. P. Connolly, N. J. Ekins-Daukes, M. Mazzer, J. Nelson, C. Rohr, T. N. D. Tibbits, R. Airey, G. Hill, J. S. Roberts, “Recent results on quantum well solar cells,” Proceedings of 3rd World Conference on Photovoltaic Energy Conversion3rd, 606–611 (2003).

McKerracher, I.

I. McKerracher, J. Wong-Leung, G. Jolley, F. Lan, H. H. Tan, C. Jagadish, “Selective Intermixing of InGaAs/GaAs Quantum Dot Infrared Photodetectors,” IEEE J. Quantum Electron. 47(5), 577–590 (2011).
[CrossRef]

Meyer, J. R.

I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[CrossRef]

Mokkapati, S.

S. Mokkapati, K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
[CrossRef]

S. Mokkapati, F. J. Beck, A. Polman, K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[CrossRef]

Nelson, J.

K. W. J. Barnham, I. M. Ballard, J. P. Connolly, N. J. Ekins-Daukes, B. G. Kluftinger, J. Nelson, C. Rohr, “Quantum well solar cells,” Physica E 14(1-2), 27–36 (2002).
[CrossRef]

K. W. J. Barnham, P. Abbott, I. M. Ballard, D. B. Bushnell, J. P. Connolly, N. J. Ekins-Daukes, M. Mazzer, J. Nelson, C. Rohr, T. N. D. Tibbits, R. Airey, G. Hill, J. S. Roberts, “Recent results on quantum well solar cells,” Proceedings of 3rd World Conference on Photovoltaic Energy Conversion3rd, 606–611 (2003).

Polman, A.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

S. Mokkapati, F. J. Beck, A. Polman, K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[CrossRef]

Raman, A.

Z. Yu, A. Raman, S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[CrossRef] [PubMed]

Ram-Mohan, L. R.

I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[CrossRef]

Roberts, J. S.

K. W. J. Barnham, P. Abbott, I. M. Ballard, D. B. Bushnell, J. P. Connolly, N. J. Ekins-Daukes, M. Mazzer, J. Nelson, C. Rohr, T. N. D. Tibbits, R. Airey, G. Hill, J. S. Roberts, “Recent results on quantum well solar cells,” Proceedings of 3rd World Conference on Photovoltaic Energy Conversion3rd, 606–611 (2003).

Rohr, C.

K. W. J. Barnham, I. M. Ballard, J. P. Connolly, N. J. Ekins-Daukes, B. G. Kluftinger, J. Nelson, C. Rohr, “Quantum well solar cells,” Physica E 14(1-2), 27–36 (2002).
[CrossRef]

K. W. J. Barnham, P. Abbott, I. M. Ballard, D. B. Bushnell, J. P. Connolly, N. J. Ekins-Daukes, M. Mazzer, J. Nelson, C. Rohr, T. N. D. Tibbits, R. Airey, G. Hill, J. S. Roberts, “Recent results on quantum well solar cells,” Proceedings of 3rd World Conference on Photovoltaic Energy Conversion3rd, 606–611 (2003).

Tan, H. H.

I. McKerracher, J. Wong-Leung, G. Jolley, F. Lan, H. H. Tan, C. Jagadish, “Selective Intermixing of InGaAs/GaAs Quantum Dot Infrared Photodetectors,” IEEE J. Quantum Electron. 47(5), 577–590 (2011).
[CrossRef]

Tibbits, T. N. D.

K. W. J. Barnham, P. Abbott, I. M. Ballard, D. B. Bushnell, J. P. Connolly, N. J. Ekins-Daukes, M. Mazzer, J. Nelson, C. Rohr, T. N. D. Tibbits, R. Airey, G. Hill, J. S. Roberts, “Recent results on quantum well solar cells,” Proceedings of 3rd World Conference on Photovoltaic Energy Conversion3rd, 606–611 (2003).

Vurgaftman, I.

I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[CrossRef]

Wang, E.

White, T. P.

Wong-Leung, J.

I. McKerracher, J. Wong-Leung, G. Jolley, F. Lan, H. H. Tan, C. Jagadish, “Selective Intermixing of InGaAs/GaAs Quantum Dot Infrared Photodetectors,” IEEE J. Quantum Electron. 47(5), 577–590 (2011).
[CrossRef]

Yablonovitch, E.

Yu, Z.

Z. Yu, A. Raman, S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

S. Mokkapati, F. J. Beck, A. Polman, K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

I. McKerracher, J. Wong-Leung, G. Jolley, F. Lan, H. H. Tan, C. Jagadish, “Selective Intermixing of InGaAs/GaAs Quantum Dot Infrared Photodetectors,” IEEE J. Quantum Electron. 47(5), 577–590 (2011).
[CrossRef]

J. Appl. Phys. (4)

I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[CrossRef]

N. G. Anderson, “Ideal theory of quantum well solar cells,” J. Appl. Phys. 78(3), 1850–1861 (1995).
[CrossRef]

K. W. J. Barnham, G. Duggan, “A new approach to high-efficiency multi-band-gap solar cells,” J. Appl. Phys. 67(7), 3490–3493 (1990).
[CrossRef]

S. Mokkapati, K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
[CrossRef]

J. Opt. Soc. Am. (1)

Nat. Mater. (1)

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. B (1)

T. B. Bahder, “Eight-band k.p model of strained zinc-blende crystals,” Phys. Rev. B 41(17), 11992–12001 (1990).
[CrossRef]

Physica E (1)

K. W. J. Barnham, I. M. Ballard, J. P. Connolly, N. J. Ekins-Daukes, B. G. Kluftinger, J. Nelson, C. Rohr, “Quantum well solar cells,” Physica E 14(1-2), 27–36 (2002).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

Z. Yu, A. Raman, S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Other (9)

Lumerical, “FDTD Solutions Package,” (2012), retrieved http://www.Lumerical.com .

NREL, “Reference Solar Spectral Irradiance: Air Mass 1.5,” (2012), retrieved http://rredc.nrel.gov/solar/spectra/am1.5/ .

K. W. J. Barnham, P. Abbott, I. M. Ballard, D. B. Bushnell, J. P. Connolly, N. J. Ekins-Daukes, M. Mazzer, J. Nelson, C. Rohr, T. N. D. Tibbits, R. Airey, G. Hill, J. S. Roberts, “Recent results on quantum well solar cells,” Proceedings of 3rd World Conference on Photovoltaic Energy Conversion3rd, 606–611 (2003).

J. P. Connolly, “Analytical Models of Bulk and Quantum Well Solar Cells and Relevance of the Radiative Limit,” in Advanced Solar Cell Materials, Technology, Modeling, and Simulation (IGI Global, 2013, pp. 59–77).

K. W. J. Barnham, I. M. Ballard, B. C. Browne, D. B. Bushnell, J. P. Connolly, N. J. Ekins-Daukes, M. C. Lynch, M. Mazzer, J. S. Roberts, C. Rohr, and T. N. D. Tibbits, “Recent Progress in Quantum Well Solar Cells,” in Nanotechnology for Photovoltaics (CRC Press, 2010, pp. 187–210).

A. Goetzberger, “Optical confinement in thin Si-solar cells by diffuse back reflectors,” Proceedings of Photovoltaic Specialists Conference15th, 867–870 (1981).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998, pp. 429–443).

S. L. Chuang, Physics of Optoelectronic Devices (John Wiley & Sons, 1995, pp. 337–345).

P. K. Bhattacharya, Properties of Lattice-Matched and Strained Indium Gallium Arsenide (Inspec/Iee, 1993) pp. 187–191.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Diffraction orders generated by a wavelength-scale diffraction grating at the quantum well solar cell – air interface.

Fig. 2
Fig. 2

In0.21Ga0.79As-GaAs QWSC structure and single period of wavelength-scale TiO2 diffraction gratings: (a) Schematic of the In0.21Ga0.79As-GaAs QWSC with rear-side TiO2 diffraction grating. FDTD simulation setup is also illustrated. (b) Rectangular strip grating (c) Square pillar grating (d) Skewed pyramid grating.

Fig. 3
Fig. 3

Jsc contribution of the QWs (875 – 1010 nm) under AM 1.5G conditions as a function of grating periodicity for the rectangular strip, square pillar and skewed pyramid gratings optimized over their height and fill-factor.

Fig. 4
Fig. 4

Jsc [mAcm−2] contribution of the QWs (875 – 1010 nm) under AM 1.5G conditions for the optimum TiO2 diffraction gratings: (a) Rectangular strip grating, period 850 nm (b) Square pillar grating, period 850 nm (c) Skewed pyramid grating, fill-factor 0.33.

Fig. 5
Fig. 5

In0.21Ga0.79As-GaAs QWSC absorption spectra for the optimum square pillar grating, plasmonic nanoparticles, Lambertian rear reflector and reference.

Fig. 6
Fig. 6

Fraction of light over the QW region reflected into the QWSC at the cell-grating interface and the fraction of reflected light that is outside the loss cone for the optimum TiO2 square pillar grating and the optimum plasmonic grating.

Fig. 7
Fig. 7

Jsc contribution of the QWs (875 – 1000 nm) as a function of grating-mirror separation for the optimum square pillar grating. The Jsc for the optimum square pillar grating without a rear mirror is included and the inset depicts the simulation setup.

Tables (2)

Tables Icon

Table 1 Optimum height, fill-factor and periodicity for the rectangular strip, square pillar and skewed pyramid gratings over the QW region (875 – 1010 nm)

Tables Icon

Table 2 Relative enhancement (ΔJ/ΔJMax) in Jsc (875 – 1010 nm) for the optimum TiO2 diffraction gratings, plasmonic nanoparticles and Lambertian rear reflector. For this comparison, a fill-factor and height of 0.6 and 500 nm, respectively, are chosen for the symmetric bi-periodic grating and a height of 1000 nm is chosen for the asymmetric bi-periodic grating.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n 1 sin θ 1 = n 2 sin θ 2 = mλ L ,
k= λ 4π α,

Metrics