Abstract

In this paper, CuxO photocatalyst on plasmonic nanoporous Au film is proposed to enhancing the H2 evolution rate of pure water splitting. The nanoporous Au film can simultaneously provide surface-enhanced absorption and built-in potential. The reflection spectrum shows that the surface plasmon (SP) assisted absorption wavelength of the CuxO on the nanoporous Au film can be modified by changing the annealing temperature. It is found that the enhancement of the H2 evolution rate highly depends on the SP-assisted absorption. As the annealing temperature is 220°C, the H2 evolution rate is 58μmolhr−1 under the condition that the device area is 0.25cm2.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kubacka, M. L. Cerrada, C. Serrano, M. Fernández-García, M. Ferrer, M. Fernández-Garcia, “Plasmonic Nanoparticle/Polymer Nanocomposites with Enhanced Photocatalytic Antimicrobial Properties,” J. Phys. Chem. C 113(21), 9182–9190 (2009).
    [CrossRef]
  2. M. Beresna, P. G. Kazansky, O. Deparis, I. C. S. Carvalho, S. Takahashi, A. V. Zayats, “Poling-Assisted Fabrication of Plasmonic Nanocomposite Devices in Glass,” Adv. Mater. (Deerfield Beach Fla.) 22(39), 4368–4372 (2010).
    [CrossRef] [PubMed]
  3. L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007).
    [CrossRef]
  4. X. Y. Lang, P. F. Guan, L. Zhang, T. Fujita, M. W. Chen, “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett. 96(7), 073701 (2010).
    [CrossRef]
  5. P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, U. Bach, “A Solid-State Plasmonic Solar Cell via Metal Nanoparticle Self-Assembly,” Adv. Mater. (Deerfield Beach Fla.) 24(35), 4750–4755 (2012).
    [CrossRef]
  6. C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver nanoparticles and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett. 99(4), 041107 (2011).
    [CrossRef]
  7. A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238(5358), 37–38 (1972).
    [CrossRef] [PubMed]
  8. A. Kudo, H. Kato, “Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting,” Chem. Phys. Lett. 331(5-6), 373–377 (2000).
    [CrossRef]
  9. H. Kato, K. Asakura, A. Kudo, “Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure,” J. Am. Chem. Soc. 125(10), 3082–3089 (2003).
    [CrossRef] [PubMed]
  10. K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, “Characterization of Rh-Cr Mixed-Oxide Nanoparticles Dispersed on (Ga(1-x)Zn(x))(N(1-x)Ox) as a Cocatalyst for Visible-Light-Driven Overall Water Splitting,” J. Phys. Chem. B 110(28), 13753–13758 (2006).
    [CrossRef] [PubMed]
  11. K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, “Photocatalyst releasing hydrogen from water,” Nature 440(7082), 295–295 (2006).
    [CrossRef] [PubMed]
  12. K. Sayama, K. Mukasa, R. Abe, Y. Abe and H. Arakawa, “Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3−/I− shuttle redox mediator under visible light irradiation” Chem. Commun. (23), 2416–2417. (2001)
  13. K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, “A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis,” J. Photochem. Photobiol. A 148(1–3), 71–77 (2002).
    [CrossRef]
  14. R. Abe, T. Takata, H. Sugihara and K. Domen, “Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3−/I− shuttle redox mediator” Chem. Commun. (30), 3829–3831. (2005)
  15. K. Maeda, K. Teramura, D. Lu, N. Saito, Y. Inoue, and K. Domen, “Noble-Metal/Cr2O3 core/shell nanoparticles as a cocatalyst for photocatalytic overall water splitting,” Angew. Chem., Int. Ed. 2, 45 (46), 7806–7809. (2006)
  16. Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen, M. Yashima, “Zinc Germanium Oxynitride as a Photocatalyst for Overall Water Splitting under Visible Light,” J. Phys. Chem. C 111(2), 1042–1048 (2007).
    [CrossRef]
  17. Z. Zou, J. Ye, K. Sayama, H. Arakawa, “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst,” Nature 414(6864), 625–627 (2001).
    [CrossRef] [PubMed]
  18. C. Kittel, Introduction to Solid State Physics, 5th ed. (Wiley, 1976), p. 341.(1976)
  19. P. W. Baumeister, “Optical Absorption of Cuprous Oxide,” Phys. Rev. 121(2), 359–362 (1961).
    [CrossRef]
  20. G. Nagasubramanian, A. S. Gioda, A. J. Bard, “Photoelectrochemical Behavior of p-type Cu2O in Acetonitrile Solutions,” J. Electrochem. Soc. 128, 2158–2164 (1981).
    [CrossRef]
  21. M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo, K. Domen, “Cu2O as a photocatalyst for overall water splitting under visible light irradiation,” Chem. Commun. (Camb.) (3): 357–358 (1998).
    [CrossRef]
  22. H. A. Chen, J. L. Long, Y. H. Lin, C. J. Weng, H. N. Lin, “Plasmonic properties of a nanoporous gold film investigated by far-field and near-field optical techniques,” J. Appl. Phys. 110(5), 054302 (2011).
    [CrossRef]
  23. J. A. Assimos, D. Trivich, “Photovoltaic properties and barrier heights of single-crystal and polycrystalline Cu2O-Cu contacts,” J. Appl. Phys. 44(4), 1687–1692 (1973).
    [CrossRef]
  24. M. Anpo, M. Takeuchi, “The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation,” J. Catal. 216(1-2), 505–516 (2003).
    [CrossRef]
  25. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, 2007).
  26. A. Schenk, U. Krumbein, “Coupled defect-level recombination: Theory and application to anomalous diode characteristics,” J. Appl. Phys. 78(5), 3185–3192 (1995).
    [CrossRef]
  27. A. Kaminski, J. J. Marchand, H. E. Omari, A. Laugier, Q. N. Le, and D. Sarti, “Conduction processes in silicon solar cells”, Proc. 25th IEEE PVSC, Washington DC, pp. 573–576. (1996)
  28. C. Y. Lin, Y. H. Lai, D. Mersch, E. Reisner, “Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting,” Chem. Sci. 3(12), 3482–3487 (2012).
    [CrossRef]

2012

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, U. Bach, “A Solid-State Plasmonic Solar Cell via Metal Nanoparticle Self-Assembly,” Adv. Mater. (Deerfield Beach Fla.) 24(35), 4750–4755 (2012).
[CrossRef]

C. Y. Lin, Y. H. Lai, D. Mersch, E. Reisner, “Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting,” Chem. Sci. 3(12), 3482–3487 (2012).
[CrossRef]

2011

C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver nanoparticles and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett. 99(4), 041107 (2011).
[CrossRef]

H. A. Chen, J. L. Long, Y. H. Lin, C. J. Weng, H. N. Lin, “Plasmonic properties of a nanoporous gold film investigated by far-field and near-field optical techniques,” J. Appl. Phys. 110(5), 054302 (2011).
[CrossRef]

2010

M. Beresna, P. G. Kazansky, O. Deparis, I. C. S. Carvalho, S. Takahashi, A. V. Zayats, “Poling-Assisted Fabrication of Plasmonic Nanocomposite Devices in Glass,” Adv. Mater. (Deerfield Beach Fla.) 22(39), 4368–4372 (2010).
[CrossRef] [PubMed]

X. Y. Lang, P. F. Guan, L. Zhang, T. Fujita, M. W. Chen, “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett. 96(7), 073701 (2010).
[CrossRef]

2009

A. Kubacka, M. L. Cerrada, C. Serrano, M. Fernández-García, M. Ferrer, M. Fernández-Garcia, “Plasmonic Nanoparticle/Polymer Nanocomposites with Enhanced Photocatalytic Antimicrobial Properties,” J. Phys. Chem. C 113(21), 9182–9190 (2009).
[CrossRef]

2007

L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007).
[CrossRef]

Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen, M. Yashima, “Zinc Germanium Oxynitride as a Photocatalyst for Overall Water Splitting under Visible Light,” J. Phys. Chem. C 111(2), 1042–1048 (2007).
[CrossRef]

2006

K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, “Characterization of Rh-Cr Mixed-Oxide Nanoparticles Dispersed on (Ga(1-x)Zn(x))(N(1-x)Ox) as a Cocatalyst for Visible-Light-Driven Overall Water Splitting,” J. Phys. Chem. B 110(28), 13753–13758 (2006).
[CrossRef] [PubMed]

K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, “Photocatalyst releasing hydrogen from water,” Nature 440(7082), 295–295 (2006).
[CrossRef] [PubMed]

2003

H. Kato, K. Asakura, A. Kudo, “Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure,” J. Am. Chem. Soc. 125(10), 3082–3089 (2003).
[CrossRef] [PubMed]

M. Anpo, M. Takeuchi, “The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation,” J. Catal. 216(1-2), 505–516 (2003).
[CrossRef]

2002

K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, “A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis,” J. Photochem. Photobiol. A 148(1–3), 71–77 (2002).
[CrossRef]

2001

Z. Zou, J. Ye, K. Sayama, H. Arakawa, “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst,” Nature 414(6864), 625–627 (2001).
[CrossRef] [PubMed]

2000

A. Kudo, H. Kato, “Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting,” Chem. Phys. Lett. 331(5-6), 373–377 (2000).
[CrossRef]

1998

M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo, K. Domen, “Cu2O as a photocatalyst for overall water splitting under visible light irradiation,” Chem. Commun. (Camb.) (3): 357–358 (1998).
[CrossRef]

1995

A. Schenk, U. Krumbein, “Coupled defect-level recombination: Theory and application to anomalous diode characteristics,” J. Appl. Phys. 78(5), 3185–3192 (1995).
[CrossRef]

1981

G. Nagasubramanian, A. S. Gioda, A. J. Bard, “Photoelectrochemical Behavior of p-type Cu2O in Acetonitrile Solutions,” J. Electrochem. Soc. 128, 2158–2164 (1981).
[CrossRef]

1973

J. A. Assimos, D. Trivich, “Photovoltaic properties and barrier heights of single-crystal and polycrystalline Cu2O-Cu contacts,” J. Appl. Phys. 44(4), 1687–1692 (1973).
[CrossRef]

1972

A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238(5358), 37–38 (1972).
[CrossRef] [PubMed]

1961

P. W. Baumeister, “Optical Absorption of Cuprous Oxide,” Phys. Rev. 121(2), 359–362 (1961).
[CrossRef]

Abe, R.

K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, “A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis,” J. Photochem. Photobiol. A 148(1–3), 71–77 (2002).
[CrossRef]

Abe, Y.

K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, “A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis,” J. Photochem. Photobiol. A 148(1–3), 71–77 (2002).
[CrossRef]

Anpo, M.

M. Anpo, M. Takeuchi, “The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation,” J. Catal. 216(1-2), 505–516 (2003).
[CrossRef]

Arakawa, H.

K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, “A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis,” J. Photochem. Photobiol. A 148(1–3), 71–77 (2002).
[CrossRef]

Z. Zou, J. Ye, K. Sayama, H. Arakawa, “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst,” Nature 414(6864), 625–627 (2001).
[CrossRef] [PubMed]

Asakura, K.

H. Kato, K. Asakura, A. Kudo, “Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure,” J. Am. Chem. Soc. 125(10), 3082–3089 (2003).
[CrossRef] [PubMed]

Assimos, J. A.

J. A. Assimos, D. Trivich, “Photovoltaic properties and barrier heights of single-crystal and polycrystalline Cu2O-Cu contacts,” J. Appl. Phys. 44(4), 1687–1692 (1973).
[CrossRef]

Bach, U.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, U. Bach, “A Solid-State Plasmonic Solar Cell via Metal Nanoparticle Self-Assembly,” Adv. Mater. (Deerfield Beach Fla.) 24(35), 4750–4755 (2012).
[CrossRef]

Bard, A. J.

G. Nagasubramanian, A. S. Gioda, A. J. Bard, “Photoelectrochemical Behavior of p-type Cu2O in Acetonitrile Solutions,” J. Electrochem. Soc. 128, 2158–2164 (1981).
[CrossRef]

Baumeister, P. W.

P. W. Baumeister, “Optical Absorption of Cuprous Oxide,” Phys. Rev. 121(2), 359–362 (1961).
[CrossRef]

Beresna, M.

M. Beresna, P. G. Kazansky, O. Deparis, I. C. S. Carvalho, S. Takahashi, A. V. Zayats, “Poling-Assisted Fabrication of Plasmonic Nanocomposite Devices in Glass,” Adv. Mater. (Deerfield Beach Fla.) 22(39), 4368–4372 (2010).
[CrossRef] [PubMed]

Brick, D.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, U. Bach, “A Solid-State Plasmonic Solar Cell via Metal Nanoparticle Self-Assembly,” Adv. Mater. (Deerfield Beach Fla.) 24(35), 4750–4755 (2012).
[CrossRef]

Carvalho, I. C. S.

M. Beresna, P. G. Kazansky, O. Deparis, I. C. S. Carvalho, S. Takahashi, A. V. Zayats, “Poling-Assisted Fabrication of Plasmonic Nanocomposite Devices in Glass,” Adv. Mater. (Deerfield Beach Fla.) 22(39), 4368–4372 (2010).
[CrossRef] [PubMed]

Cerrada, M. L.

A. Kubacka, M. L. Cerrada, C. Serrano, M. Fernández-García, M. Ferrer, M. Fernández-Garcia, “Plasmonic Nanoparticle/Polymer Nanocomposites with Enhanced Photocatalytic Antimicrobial Properties,” J. Phys. Chem. C 113(21), 9182–9190 (2009).
[CrossRef]

Chen, H. A.

H. A. Chen, J. L. Long, Y. H. Lin, C. J. Weng, H. N. Lin, “Plasmonic properties of a nanoporous gold film investigated by far-field and near-field optical techniques,” J. Appl. Phys. 110(5), 054302 (2011).
[CrossRef]

Chen, M. W.

X. Y. Lang, P. F. Guan, L. Zhang, T. Fujita, M. W. Chen, “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett. 96(7), 073701 (2010).
[CrossRef]

L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007).
[CrossRef]

Cho, C. Y.

C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver nanoparticles and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett. 99(4), 041107 (2011).
[CrossRef]

Deparis, O.

M. Beresna, P. G. Kazansky, O. Deparis, I. C. S. Carvalho, S. Takahashi, A. V. Zayats, “Poling-Assisted Fabrication of Plasmonic Nanocomposite Devices in Glass,” Adv. Mater. (Deerfield Beach Fla.) 22(39), 4368–4372 (2010).
[CrossRef] [PubMed]

Domen, K.

Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen, M. Yashima, “Zinc Germanium Oxynitride as a Photocatalyst for Overall Water Splitting under Visible Light,” J. Phys. Chem. C 111(2), 1042–1048 (2007).
[CrossRef]

K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, “Photocatalyst releasing hydrogen from water,” Nature 440(7082), 295–295 (2006).
[CrossRef] [PubMed]

K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, “Characterization of Rh-Cr Mixed-Oxide Nanoparticles Dispersed on (Ga(1-x)Zn(x))(N(1-x)Ox) as a Cocatalyst for Visible-Light-Driven Overall Water Splitting,” J. Phys. Chem. B 110(28), 13753–13758 (2006).
[CrossRef] [PubMed]

M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo, K. Domen, “Cu2O as a photocatalyst for overall water splitting under visible light irradiation,” Chem. Commun. (Camb.) (3): 357–358 (1998).
[CrossRef]

Fernández-Garcia, M.

A. Kubacka, M. L. Cerrada, C. Serrano, M. Fernández-García, M. Ferrer, M. Fernández-Garcia, “Plasmonic Nanoparticle/Polymer Nanocomposites with Enhanced Photocatalytic Antimicrobial Properties,” J. Phys. Chem. C 113(21), 9182–9190 (2009).
[CrossRef]

Fernández-García, M.

A. Kubacka, M. L. Cerrada, C. Serrano, M. Fernández-García, M. Ferrer, M. Fernández-Garcia, “Plasmonic Nanoparticle/Polymer Nanocomposites with Enhanced Photocatalytic Antimicrobial Properties,” J. Phys. Chem. C 113(21), 9182–9190 (2009).
[CrossRef]

Ferrer, M.

A. Kubacka, M. L. Cerrada, C. Serrano, M. Fernández-García, M. Ferrer, M. Fernández-Garcia, “Plasmonic Nanoparticle/Polymer Nanocomposites with Enhanced Photocatalytic Antimicrobial Properties,” J. Phys. Chem. C 113(21), 9182–9190 (2009).
[CrossRef]

Fujishima, A.

A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238(5358), 37–38 (1972).
[CrossRef] [PubMed]

Fujita, T.

X. Y. Lang, P. F. Guan, L. Zhang, T. Fujita, M. W. Chen, “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett. 96(7), 073701 (2010).
[CrossRef]

L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007).
[CrossRef]

Gioda, A. S.

G. Nagasubramanian, A. S. Gioda, A. J. Bard, “Photoelectrochemical Behavior of p-type Cu2O in Acetonitrile Solutions,” J. Electrochem. Soc. 128, 2158–2164 (1981).
[CrossRef]

Guan, P. F.

X. Y. Lang, P. F. Guan, L. Zhang, T. Fujita, M. W. Chen, “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett. 96(7), 073701 (2010).
[CrossRef]

Hara, M.

Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen, M. Yashima, “Zinc Germanium Oxynitride as a Photocatalyst for Overall Water Splitting under Visible Light,” J. Phys. Chem. C 111(2), 1042–1048 (2007).
[CrossRef]

M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo, K. Domen, “Cu2O as a photocatalyst for overall water splitting under visible light irradiation,” Chem. Commun. (Camb.) (3): 357–358 (1998).
[CrossRef]

Honda, K.

A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238(5358), 37–38 (1972).
[CrossRef] [PubMed]

Ikeda, S.

M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo, K. Domen, “Cu2O as a photocatalyst for overall water splitting under visible light irradiation,” Chem. Commun. (Camb.) (3): 357–358 (1998).
[CrossRef]

Inoue, A.

L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007).
[CrossRef]

Inoue, Y.

K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, “Characterization of Rh-Cr Mixed-Oxide Nanoparticles Dispersed on (Ga(1-x)Zn(x))(N(1-x)Ox) as a Cocatalyst for Visible-Light-Driven Overall Water Splitting,” J. Phys. Chem. B 110(28), 13753–13758 (2006).
[CrossRef] [PubMed]

K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, “Photocatalyst releasing hydrogen from water,” Nature 440(7082), 295–295 (2006).
[CrossRef] [PubMed]

Jung, G. Y.

C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver nanoparticles and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett. 99(4), 041107 (2011).
[CrossRef]

Karg, M.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, U. Bach, “A Solid-State Plasmonic Solar Cell via Metal Nanoparticle Self-Assembly,” Adv. Mater. (Deerfield Beach Fla.) 24(35), 4750–4755 (2012).
[CrossRef]

Kato, H.

H. Kato, K. Asakura, A. Kudo, “Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure,” J. Am. Chem. Soc. 125(10), 3082–3089 (2003).
[CrossRef] [PubMed]

A. Kudo, H. Kato, “Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting,” Chem. Phys. Lett. 331(5-6), 373–377 (2000).
[CrossRef]

Kazansky, P. G.

M. Beresna, P. G. Kazansky, O. Deparis, I. C. S. Carvalho, S. Takahashi, A. V. Zayats, “Poling-Assisted Fabrication of Plasmonic Nanocomposite Devices in Glass,” Adv. Mater. (Deerfield Beach Fla.) 22(39), 4368–4372 (2010).
[CrossRef] [PubMed]

Kim, K. S.

C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver nanoparticles and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett. 99(4), 041107 (2011).
[CrossRef]

Kim, S. T.

C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver nanoparticles and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett. 99(4), 041107 (2011).
[CrossRef]

Ko, H.

C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver nanoparticles and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett. 99(4), 041107 (2011).
[CrossRef]

Kobayashi, H.

Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen, M. Yashima, “Zinc Germanium Oxynitride as a Photocatalyst for Overall Water Splitting under Visible Light,” J. Phys. Chem. C 111(2), 1042–1048 (2007).
[CrossRef]

Komoda, M.

M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo, K. Domen, “Cu2O as a photocatalyst for overall water splitting under visible light irradiation,” Chem. Commun. (Camb.) (3): 357–358 (1998).
[CrossRef]

Kondo, J. N.

M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo, K. Domen, “Cu2O as a photocatalyst for overall water splitting under visible light irradiation,” Chem. Commun. (Camb.) (3): 357–358 (1998).
[CrossRef]

Kondo, T.

M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo, K. Domen, “Cu2O as a photocatalyst for overall water splitting under visible light irradiation,” Chem. Commun. (Camb.) (3): 357–358 (1998).
[CrossRef]

Krumbein, U.

A. Schenk, U. Krumbein, “Coupled defect-level recombination: Theory and application to anomalous diode characteristics,” J. Appl. Phys. 78(5), 3185–3192 (1995).
[CrossRef]

Kubacka, A.

A. Kubacka, M. L. Cerrada, C. Serrano, M. Fernández-García, M. Ferrer, M. Fernández-Garcia, “Plasmonic Nanoparticle/Polymer Nanocomposites with Enhanced Photocatalytic Antimicrobial Properties,” J. Phys. Chem. C 113(21), 9182–9190 (2009).
[CrossRef]

Kudo, A.

H. Kato, K. Asakura, A. Kudo, “Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure,” J. Am. Chem. Soc. 125(10), 3082–3089 (2003).
[CrossRef] [PubMed]

A. Kudo, H. Kato, “Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting,” Chem. Phys. Lett. 331(5-6), 373–377 (2000).
[CrossRef]

Kwon, M. K.

C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver nanoparticles and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett. 99(4), 041107 (2011).
[CrossRef]

Lai, Y. H.

C. Y. Lin, Y. H. Lai, D. Mersch, E. Reisner, “Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting,” Chem. Sci. 3(12), 3482–3487 (2012).
[CrossRef]

Lang, X. Y.

X. Y. Lang, P. F. Guan, L. Zhang, T. Fujita, M. W. Chen, “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett. 96(7), 073701 (2010).
[CrossRef]

Lee, G. P.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, U. Bach, “A Solid-State Plasmonic Solar Cell via Metal Nanoparticle Self-Assembly,” Adv. Mater. (Deerfield Beach Fla.) 24(35), 4750–4755 (2012).
[CrossRef]

Lee, S. J.

C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver nanoparticles and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett. 99(4), 041107 (2011).
[CrossRef]

Lee, Y.

Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen, M. Yashima, “Zinc Germanium Oxynitride as a Photocatalyst for Overall Water Splitting under Visible Light,” J. Phys. Chem. C 111(2), 1042–1048 (2007).
[CrossRef]

Lin, C. Y.

C. Y. Lin, Y. H. Lai, D. Mersch, E. Reisner, “Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting,” Chem. Sci. 3(12), 3482–3487 (2012).
[CrossRef]

Lin, H. N.

H. A. Chen, J. L. Long, Y. H. Lin, C. J. Weng, H. N. Lin, “Plasmonic properties of a nanoporous gold film investigated by far-field and near-field optical techniques,” J. Appl. Phys. 110(5), 054302 (2011).
[CrossRef]

Lin, Y. H.

H. A. Chen, J. L. Long, Y. H. Lin, C. J. Weng, H. N. Lin, “Plasmonic properties of a nanoporous gold film investigated by far-field and near-field optical techniques,” J. Appl. Phys. 110(5), 054302 (2011).
[CrossRef]

Long, J. L.

H. A. Chen, J. L. Long, Y. H. Lin, C. J. Weng, H. N. Lin, “Plasmonic properties of a nanoporous gold film investigated by far-field and near-field optical techniques,” J. Appl. Phys. 110(5), 054302 (2011).
[CrossRef]

Lu, D. L.

K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, “Photocatalyst releasing hydrogen from water,” Nature 440(7082), 295–295 (2006).
[CrossRef] [PubMed]

K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, “Characterization of Rh-Cr Mixed-Oxide Nanoparticles Dispersed on (Ga(1-x)Zn(x))(N(1-x)Ox) as a Cocatalyst for Visible-Light-Driven Overall Water Splitting,” J. Phys. Chem. B 110(28), 13753–13758 (2006).
[CrossRef] [PubMed]

Maeda, K.

K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, “Photocatalyst releasing hydrogen from water,” Nature 440(7082), 295–295 (2006).
[CrossRef] [PubMed]

K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, “Characterization of Rh-Cr Mixed-Oxide Nanoparticles Dispersed on (Ga(1-x)Zn(x))(N(1-x)Ox) as a Cocatalyst for Visible-Light-Driven Overall Water Splitting,” J. Phys. Chem. B 110(28), 13753–13758 (2006).
[CrossRef] [PubMed]

Mersch, D.

C. Y. Lin, Y. H. Lai, D. Mersch, E. Reisner, “Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting,” Chem. Sci. 3(12), 3482–3487 (2012).
[CrossRef]

Mukasa, K.

K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, “A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis,” J. Photochem. Photobiol. A 148(1–3), 71–77 (2002).
[CrossRef]

Mulvaney, P.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, U. Bach, “A Solid-State Plasmonic Solar Cell via Metal Nanoparticle Self-Assembly,” Adv. Mater. (Deerfield Beach Fla.) 24(35), 4750–4755 (2012).
[CrossRef]

Nagasubramanian, G.

G. Nagasubramanian, A. S. Gioda, A. J. Bard, “Photoelectrochemical Behavior of p-type Cu2O in Acetonitrile Solutions,” J. Electrochem. Soc. 128, 2158–2164 (1981).
[CrossRef]

Park, S. J.

C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver nanoparticles and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett. 99(4), 041107 (2011).
[CrossRef]

Qian, L. H.

L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007).
[CrossRef]

Reineck, P.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, U. Bach, “A Solid-State Plasmonic Solar Cell via Metal Nanoparticle Self-Assembly,” Adv. Mater. (Deerfield Beach Fla.) 24(35), 4750–4755 (2012).
[CrossRef]

Reisner, E.

C. Y. Lin, Y. H. Lai, D. Mersch, E. Reisner, “Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting,” Chem. Sci. 3(12), 3482–3487 (2012).
[CrossRef]

Saito, N.

K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, “Characterization of Rh-Cr Mixed-Oxide Nanoparticles Dispersed on (Ga(1-x)Zn(x))(N(1-x)Ox) as a Cocatalyst for Visible-Light-Driven Overall Water Splitting,” J. Phys. Chem. B 110(28), 13753–13758 (2006).
[CrossRef] [PubMed]

K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, “Photocatalyst releasing hydrogen from water,” Nature 440(7082), 295–295 (2006).
[CrossRef] [PubMed]

Sayama, K.

K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, “A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis,” J. Photochem. Photobiol. A 148(1–3), 71–77 (2002).
[CrossRef]

Z. Zou, J. Ye, K. Sayama, H. Arakawa, “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst,” Nature 414(6864), 625–627 (2001).
[CrossRef] [PubMed]

Schenk, A.

A. Schenk, U. Krumbein, “Coupled defect-level recombination: Theory and application to anomalous diode characteristics,” J. Appl. Phys. 78(5), 3185–3192 (1995).
[CrossRef]

Serrano, C.

A. Kubacka, M. L. Cerrada, C. Serrano, M. Fernández-García, M. Ferrer, M. Fernández-Garcia, “Plasmonic Nanoparticle/Polymer Nanocomposites with Enhanced Photocatalytic Antimicrobial Properties,” J. Phys. Chem. C 113(21), 9182–9190 (2009).
[CrossRef]

Shimodaira, Y.

Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen, M. Yashima, “Zinc Germanium Oxynitride as a Photocatalyst for Overall Water Splitting under Visible Light,” J. Phys. Chem. C 111(2), 1042–1048 (2007).
[CrossRef]

Shinohara, K.

M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo, K. Domen, “Cu2O as a photocatalyst for overall water splitting under visible light irradiation,” Chem. Commun. (Camb.) (3): 357–358 (1998).
[CrossRef]

Takahashi, S.

M. Beresna, P. G. Kazansky, O. Deparis, I. C. S. Carvalho, S. Takahashi, A. V. Zayats, “Poling-Assisted Fabrication of Plasmonic Nanocomposite Devices in Glass,” Adv. Mater. (Deerfield Beach Fla.) 22(39), 4368–4372 (2010).
[CrossRef] [PubMed]

Takata, T.

K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, “Photocatalyst releasing hydrogen from water,” Nature 440(7082), 295–295 (2006).
[CrossRef] [PubMed]

K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, “Characterization of Rh-Cr Mixed-Oxide Nanoparticles Dispersed on (Ga(1-x)Zn(x))(N(1-x)Ox) as a Cocatalyst for Visible-Light-Driven Overall Water Splitting,” J. Phys. Chem. B 110(28), 13753–13758 (2006).
[CrossRef] [PubMed]

Takeuchi, M.

M. Anpo, M. Takeuchi, “The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation,” J. Catal. 216(1-2), 505–516 (2003).
[CrossRef]

Tanaka, A.

M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo, K. Domen, “Cu2O as a photocatalyst for overall water splitting under visible light irradiation,” Chem. Commun. (Camb.) (3): 357–358 (1998).
[CrossRef]

Teramura, K.

Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen, M. Yashima, “Zinc Germanium Oxynitride as a Photocatalyst for Overall Water Splitting under Visible Light,” J. Phys. Chem. C 111(2), 1042–1048 (2007).
[CrossRef]

K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, “Photocatalyst releasing hydrogen from water,” Nature 440(7082), 295–295 (2006).
[CrossRef] [PubMed]

K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, “Characterization of Rh-Cr Mixed-Oxide Nanoparticles Dispersed on (Ga(1-x)Zn(x))(N(1-x)Ox) as a Cocatalyst for Visible-Light-Driven Overall Water Splitting,” J. Phys. Chem. B 110(28), 13753–13758 (2006).
[CrossRef] [PubMed]

Terashima, H.

Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen, M. Yashima, “Zinc Germanium Oxynitride as a Photocatalyst for Overall Water Splitting under Visible Light,” J. Phys. Chem. C 111(2), 1042–1048 (2007).
[CrossRef]

Trivich, D.

J. A. Assimos, D. Trivich, “Photovoltaic properties and barrier heights of single-crystal and polycrystalline Cu2O-Cu contacts,” J. Appl. Phys. 44(4), 1687–1692 (1973).
[CrossRef]

Weng, C. J.

H. A. Chen, J. L. Long, Y. H. Lin, C. J. Weng, H. N. Lin, “Plasmonic properties of a nanoporous gold film investigated by far-field and near-field optical techniques,” J. Appl. Phys. 110(5), 054302 (2011).
[CrossRef]

Yan, X. Q.

L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007).
[CrossRef]

Yashima, M.

Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen, M. Yashima, “Zinc Germanium Oxynitride as a Photocatalyst for Overall Water Splitting under Visible Light,” J. Phys. Chem. C 111(2), 1042–1048 (2007).
[CrossRef]

Ye, J.

Z. Zou, J. Ye, K. Sayama, H. Arakawa, “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst,” Nature 414(6864), 625–627 (2001).
[CrossRef] [PubMed]

Zayats, A. V.

M. Beresna, P. G. Kazansky, O. Deparis, I. C. S. Carvalho, S. Takahashi, A. V. Zayats, “Poling-Assisted Fabrication of Plasmonic Nanocomposite Devices in Glass,” Adv. Mater. (Deerfield Beach Fla.) 22(39), 4368–4372 (2010).
[CrossRef] [PubMed]

Zhang, L.

X. Y. Lang, P. F. Guan, L. Zhang, T. Fujita, M. W. Chen, “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett. 96(7), 073701 (2010).
[CrossRef]

Zou, Z.

Z. Zou, J. Ye, K. Sayama, H. Arakawa, “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst,” Nature 414(6864), 625–627 (2001).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.)

M. Beresna, P. G. Kazansky, O. Deparis, I. C. S. Carvalho, S. Takahashi, A. V. Zayats, “Poling-Assisted Fabrication of Plasmonic Nanocomposite Devices in Glass,” Adv. Mater. (Deerfield Beach Fla.) 22(39), 4368–4372 (2010).
[CrossRef] [PubMed]

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, U. Bach, “A Solid-State Plasmonic Solar Cell via Metal Nanoparticle Self-Assembly,” Adv. Mater. (Deerfield Beach Fla.) 24(35), 4750–4755 (2012).
[CrossRef]

Appl. Phys. Lett.

C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver nanoparticles and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett. 99(4), 041107 (2011).
[CrossRef]

L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007).
[CrossRef]

X. Y. Lang, P. F. Guan, L. Zhang, T. Fujita, M. W. Chen, “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett. 96(7), 073701 (2010).
[CrossRef]

Chem. Commun. (Camb.)

M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo, K. Domen, “Cu2O as a photocatalyst for overall water splitting under visible light irradiation,” Chem. Commun. (Camb.) (3): 357–358 (1998).
[CrossRef]

Chem. Phys. Lett.

A. Kudo, H. Kato, “Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting,” Chem. Phys. Lett. 331(5-6), 373–377 (2000).
[CrossRef]

Chem. Sci.

C. Y. Lin, Y. H. Lai, D. Mersch, E. Reisner, “Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting,” Chem. Sci. 3(12), 3482–3487 (2012).
[CrossRef]

J. Am. Chem. Soc.

H. Kato, K. Asakura, A. Kudo, “Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure,” J. Am. Chem. Soc. 125(10), 3082–3089 (2003).
[CrossRef] [PubMed]

J. Appl. Phys.

H. A. Chen, J. L. Long, Y. H. Lin, C. J. Weng, H. N. Lin, “Plasmonic properties of a nanoporous gold film investigated by far-field and near-field optical techniques,” J. Appl. Phys. 110(5), 054302 (2011).
[CrossRef]

J. A. Assimos, D. Trivich, “Photovoltaic properties and barrier heights of single-crystal and polycrystalline Cu2O-Cu contacts,” J. Appl. Phys. 44(4), 1687–1692 (1973).
[CrossRef]

A. Schenk, U. Krumbein, “Coupled defect-level recombination: Theory and application to anomalous diode characteristics,” J. Appl. Phys. 78(5), 3185–3192 (1995).
[CrossRef]

J. Catal.

M. Anpo, M. Takeuchi, “The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation,” J. Catal. 216(1-2), 505–516 (2003).
[CrossRef]

J. Electrochem. Soc.

G. Nagasubramanian, A. S. Gioda, A. J. Bard, “Photoelectrochemical Behavior of p-type Cu2O in Acetonitrile Solutions,” J. Electrochem. Soc. 128, 2158–2164 (1981).
[CrossRef]

J. Photochem. Photobiol. A

K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, “A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis,” J. Photochem. Photobiol. A 148(1–3), 71–77 (2002).
[CrossRef]

J. Phys. Chem. B

K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, “Characterization of Rh-Cr Mixed-Oxide Nanoparticles Dispersed on (Ga(1-x)Zn(x))(N(1-x)Ox) as a Cocatalyst for Visible-Light-Driven Overall Water Splitting,” J. Phys. Chem. B 110(28), 13753–13758 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C

Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen, M. Yashima, “Zinc Germanium Oxynitride as a Photocatalyst for Overall Water Splitting under Visible Light,” J. Phys. Chem. C 111(2), 1042–1048 (2007).
[CrossRef]

A. Kubacka, M. L. Cerrada, C. Serrano, M. Fernández-García, M. Ferrer, M. Fernández-Garcia, “Plasmonic Nanoparticle/Polymer Nanocomposites with Enhanced Photocatalytic Antimicrobial Properties,” J. Phys. Chem. C 113(21), 9182–9190 (2009).
[CrossRef]

Nature

Z. Zou, J. Ye, K. Sayama, H. Arakawa, “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst,” Nature 414(6864), 625–627 (2001).
[CrossRef] [PubMed]

K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, “Photocatalyst releasing hydrogen from water,” Nature 440(7082), 295–295 (2006).
[CrossRef] [PubMed]

A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238(5358), 37–38 (1972).
[CrossRef] [PubMed]

Phys. Rev.

P. W. Baumeister, “Optical Absorption of Cuprous Oxide,” Phys. Rev. 121(2), 359–362 (1961).
[CrossRef]

Other

A. Kaminski, J. J. Marchand, H. E. Omari, A. Laugier, Q. N. Le, and D. Sarti, “Conduction processes in silicon solar cells”, Proc. 25th IEEE PVSC, Washington DC, pp. 573–576. (1996)

K. Sayama, K. Mukasa, R. Abe, Y. Abe and H. Arakawa, “Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3−/I− shuttle redox mediator under visible light irradiation” Chem. Commun. (23), 2416–2417. (2001)

C. Kittel, Introduction to Solid State Physics, 5th ed. (Wiley, 1976), p. 341.(1976)

R. Abe, T. Takata, H. Sugihara and K. Domen, “Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3−/I− shuttle redox mediator” Chem. Commun. (30), 3829–3831. (2005)

K. Maeda, K. Teramura, D. Lu, N. Saito, Y. Inoue, and K. Domen, “Noble-Metal/Cr2O3 core/shell nanoparticles as a cocatalyst for photocatalytic overall water splitting,” Angew. Chem., Int. Ed. 2, 45 (46), 7806–7809. (2006)

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Fabrication processes of the CuxO photocatalyst on plasmonic nanoporous Au film.

Fig. 2
Fig. 2

Optical microscopy pictures of the CuxO film for an annealing temperature of (a) 220°C and (b) 250°C, respectively. SEM pictures of the nanoporous Au film for an annealing temperature of (c) 220°C and (d) 250°C, respectively.

Fig. 3
Fig. 3

(a) Reflectance spectrum of the CuxO photocatalyst layer on plasmonic nanoporous Au film. Black, red, blue and green solid lines indicate the annealing temperature of 200 °C, 220 °C, 230 °C and 240°C, respectively. (b) Black and red solid lines respectively indicates the emission spectrum of the tungsten lamp and the reflection spectrum of the nanoporous Au film(without CuxO photocatalyst layer).

Fig. 4
Fig. 4

Approximate energy-band diagram of the CuxO photocatalyst on plasmonic nanoporous Au-Cu composite film for water splitting.

Fig. 5
Fig. 5

(a) IV characteristic of the Au-Cu/CuxO heterogeneous interface for an annealing temperature of 240°C. (b) Ideality factor, n, as a function of annealing temperatures.

Fig. 6
Fig. 6

Enhancement factor of the H2 evolution rate of the CuxO photocatalyst on plasmonic nanoporous Au film. The H2 evolution rate at each annealing temperature is normalized to CuxO on flat Au film. The H2 evolution rate of CuxO on flat Au film is 31μmolhr−1.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n q kT V ( lnJ )

Metrics