Abstract

A novel scheme of direct electrical contact on vertically aligned silicon nanowire (SiNW) axial p-n junction is demonstrated by means of oblique-angle deposition of slanted indium-tin-oxide (ITO) film for photovoltaic applications. The slanted ITO film exhibits an acceptable resistivity of 1.07x10−3Ω-cm underwent RTA treatment of T = 450°C, and the doping concentration and carrier mobility by Hall measurement amount to 3.7x1020cm−3 and 15.8cm2/V-s, respectively, with an n-type doping polarity. Because of the shadowing effect provided by the SiNWs, the incident ITO vapor-flow is deposited preferentially on the top of SiNWs, which coalesces and eventually forms a nearly continuous film for the subsequent fabrication of grid electrode. Under AM 1.5G normal illumination, our axial p-n junction SiNW solar cell exhibits an open circuit voltage of VOC = 0.56V, and a short circuit current of JSC = 1.54 mA/cm2 with a fill factor of FF = 30%, resulting in a total power conversion efficiency of PEC = 0.26%.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Tsakalakos, “Nanostructures for photovoltaics,” Mater. Sci. Eng. 62(6), 175–189 (2008).
    [CrossRef]
  2. C. A. Wolden, J. Kurtin, J. B. Baxter, I. Repins, S. E. Shaheen, J. T. Torvik, A. A. Rockett, V. M. Fthenakis, E. S. Aydil, “Photovoltaic manufacturing: Present status, future prospects, and research needs,” J. Vac. Sci. Technol. A 29(3), 030801 (2011).
    [CrossRef]
  3. A. Fujisaka, S. Kang, L. Tian, Y. L. Chow, and A. Belyaev, “Implant-cleave process enables ultra-thin wafers without kerf loss,” Photovoltaics World, pp. 21–24, Issue: May/Jun (2011).
  4. J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
    [CrossRef] [PubMed]
  5. O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, S. Guha, “High performance wire-array silicon solar cells,” Prog. Photovolt. Res. Appl. 19(3), 307–312 (2011).
    [CrossRef]
  6. K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
    [CrossRef]
  7. K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
    [CrossRef] [PubMed]
  8. V. V. Iyengar, B. K. Nayak, M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energy Mater. Sol. Cells 94(12), 2251–2257 (2010).
    [CrossRef]
  9. J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, D.-L. Kwong, “S nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
    [CrossRef]
  10. V. V. Kislyuk, O. P. Dimitriev, “Nanorods and nanotubes for solar cells,” J. Nanosci. Nanotechnol. 8(1), 131–148 (2008).
    [CrossRef] [PubMed]
  11. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
    [CrossRef] [PubMed]
  12. S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
    [CrossRef] [PubMed]
  13. B. M. Kayes, H. A. Atwater, N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
    [CrossRef]
  14. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
    [CrossRef]
  15. E. C. Garnett, P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
    [CrossRef] [PubMed]
  16. S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells 93(9), 1568–1571 (2009).
    [CrossRef]
  17. Th. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
    [CrossRef] [PubMed]
  18. M. A. Green, “The path to 25% silicon solar cell efficiency: history of silicon cell evolution,” Prog. Photovolt. Res. Appl. 17(3), 183–189 (2009).
    [CrossRef]
  19. S. M. Wong, H. Y. Yu, J. S. Li, G. Zhang, G. Q. Lo, D. L. Kwong, “Design high-efficiency Si nanopillar-array-textured thin-film solar cell,” IEEE Electron Device Lett. 31(4), 335–337 (2010).
    [CrossRef]
  20. K. Rasool, M. A. Rafiq, C. B. Li, E. Krali, Z. A. K. Durrani, M. M. Hasan, “Enhanced electrical and dielectric properties of polymer covered silicon nanowire arrays,” Appl. Phys. Lett. 101(2), 023114 (2012).
    [CrossRef]
  21. A. I. Hochbaum, D. Gargas, Y. J. Hwang, P. D. Yang, “Single crystalline mesoporous silicon nanowires,” Nano Lett. 9(10), 3550–3554 (2009).
    [CrossRef] [PubMed]
  22. X. Li, P. W. Bohn, “Metal-assisted chemical etching in HF/H2 O2 produces porous silicon,” Appl. Phys. Lett. 77(16), 2572 (2000).
    [CrossRef]
  23. K. Peng, X. Wang, S. T. Lee, “Silicon nanowire array photoelectrochemical solar cells,” Appl. Phys. Lett. 92(16), 163103 (2008).
    [CrossRef]
  24. K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16(3), 1115–1122 (1998).
    [CrossRef]
  25. Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009).
    [CrossRef]
  26. M. I. Mendelson, “Average grain size in polycrystalline ceramics,” J. Am. Ceram. Soc. 52(8), 443–446 (1969).
    [CrossRef]
  27. X. Xiao, G. Dong, J. Shao, H. He, Z. Fan, “Optical and electrical properties of SnO2:Sb thin films deposited by oblique angle deposition,” Appl. Surf. Sci. 256(6), 1636–1640 (2010).
    [CrossRef]
  28. Y.-C. Yao, M.-T. Tsai, H.-C. Hsu, L.-W. She, C.-M. Cheng, Y.-C. Chen, C.-J. Wu, Y.-J. Lee, “Use of two-dimensional nanorod arrays with slanted ITO film to enhance optical absorption for photovoltaic applications,” Opt. Express 20(4), 3479–3489 (2012).
    [CrossRef] [PubMed]
  29. D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, A. Leo, “Texturing industrial multicrystalline silicon solar cells,” Sol. Energy 76(1-3), 277–283 (2004).
    [CrossRef]
  30. M. Born and E. Wolf, Principles of optics 7th edition. Cambridge University Press, Cambridge, U.K., 46 (1999).
  31. I. Tobı’as, C. del Can˜izo, J. Alonso, Handbook of Photovoltaic Science and Engineering (Wiley, New York, 2004).
  32. M. A. Green, Solar Cells: Operating Principles, Technology and System Applications (Prentice-Hall, Englewood Cliffs, New Jersey, 1982).

2012 (2)

K. Rasool, M. A. Rafiq, C. B. Li, E. Krali, Z. A. K. Durrani, M. M. Hasan, “Enhanced electrical and dielectric properties of polymer covered silicon nanowire arrays,” Appl. Phys. Lett. 101(2), 023114 (2012).
[CrossRef]

Y.-C. Yao, M.-T. Tsai, H.-C. Hsu, L.-W. She, C.-M. Cheng, Y.-C. Chen, C.-J. Wu, Y.-J. Lee, “Use of two-dimensional nanorod arrays with slanted ITO film to enhance optical absorption for photovoltaic applications,” Opt. Express 20(4), 3479–3489 (2012).
[CrossRef] [PubMed]

2011 (2)

C. A. Wolden, J. Kurtin, J. B. Baxter, I. Repins, S. E. Shaheen, J. T. Torvik, A. A. Rockett, V. M. Fthenakis, E. S. Aydil, “Photovoltaic manufacturing: Present status, future prospects, and research needs,” J. Vac. Sci. Technol. A 29(3), 030801 (2011).
[CrossRef]

O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, S. Guha, “High performance wire-array silicon solar cells,” Prog. Photovolt. Res. Appl. 19(3), 307–312 (2011).
[CrossRef]

2010 (5)

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

V. V. Iyengar, B. K. Nayak, M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energy Mater. Sol. Cells 94(12), 2251–2257 (2010).
[CrossRef]

S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[CrossRef] [PubMed]

X. Xiao, G. Dong, J. Shao, H. He, Z. Fan, “Optical and electrical properties of SnO2:Sb thin films deposited by oblique angle deposition,” Appl. Surf. Sci. 256(6), 1636–1640 (2010).
[CrossRef]

S. M. Wong, H. Y. Yu, J. S. Li, G. Zhang, G. Q. Lo, D. L. Kwong, “Design high-efficiency Si nanopillar-array-textured thin-film solar cell,” IEEE Electron Device Lett. 31(4), 335–337 (2010).
[CrossRef]

2009 (5)

M. A. Green, “The path to 25% silicon solar cell efficiency: history of silicon cell evolution,” Prog. Photovolt. Res. Appl. 17(3), 183–189 (2009).
[CrossRef]

A. I. Hochbaum, D. Gargas, Y. J. Hwang, P. D. Yang, “Single crystalline mesoporous silicon nanowires,” Nano Lett. 9(10), 3550–3554 (2009).
[CrossRef] [PubMed]

Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009).
[CrossRef]

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells 93(9), 1568–1571 (2009).
[CrossRef]

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, D.-L. Kwong, “S nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[CrossRef]

2008 (5)

V. V. Kislyuk, O. P. Dimitriev, “Nanorods and nanotubes for solar cells,” J. Nanosci. Nanotechnol. 8(1), 131–148 (2008).
[CrossRef] [PubMed]

Th. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
[CrossRef] [PubMed]

E. C. Garnett, P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

L. Tsakalakos, “Nanostructures for photovoltaics,” Mater. Sci. Eng. 62(6), 175–189 (2008).
[CrossRef]

K. Peng, X. Wang, S. T. Lee, “Silicon nanowire array photoelectrochemical solar cells,” Appl. Phys. Lett. 92(16), 163103 (2008).
[CrossRef]

2007 (2)

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

2005 (2)

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

B. M. Kayes, H. A. Atwater, N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[CrossRef]

2004 (1)

D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, A. Leo, “Texturing industrial multicrystalline silicon solar cells,” Sol. Energy 76(1-3), 277–283 (2004).
[CrossRef]

2000 (2)

X. Li, P. W. Bohn, “Metal-assisted chemical etching in HF/H2 O2 produces porous silicon,” Appl. Phys. Lett. 77(16), 2572 (2000).
[CrossRef]

K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

1998 (1)

K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16(3), 1115–1122 (1998).
[CrossRef]

1969 (1)

M. I. Mendelson, “Average grain size in polycrystalline ceramics,” J. Am. Ceram. Soc. 52(8), 443–446 (1969).
[CrossRef]

Acet, M.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

Andrä, G.

Th. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
[CrossRef] [PubMed]

Atwater, H. A.

S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[CrossRef] [PubMed]

B. M. Kayes, H. A. Atwater, N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[CrossRef]

Aydil, E. S.

C. A. Wolden, J. Kurtin, J. B. Baxter, I. Repins, S. E. Shaheen, J. T. Torvik, A. A. Rockett, V. M. Fthenakis, E. S. Aydil, “Photovoltaic manufacturing: Present status, future prospects, and research needs,” J. Vac. Sci. Technol. A 29(3), 030801 (2011).
[CrossRef]

Balch, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

Baxter, J. B.

C. A. Wolden, J. Kurtin, J. B. Baxter, I. Repins, S. E. Shaheen, J. T. Torvik, A. A. Rockett, V. M. Fthenakis, E. S. Aydil, “Photovoltaic manufacturing: Present status, future prospects, and research needs,” J. Vac. Sci. Technol. A 29(3), 030801 (2011).
[CrossRef]

Boettcher, S. W.

S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[CrossRef] [PubMed]

Bohn, P. W.

X. Li, P. W. Bohn, “Metal-assisted chemical etching in HF/H2 O2 produces porous silicon,” Appl. Phys. Lett. 77(16), 2572 (2000).
[CrossRef]

Brett, M. J.

K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16(3), 1115–1122 (1998).
[CrossRef]

Carl, A.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

Chen, Y.-C.

Cheng, C.-M.

Chhajed, S.

Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009).
[CrossRef]

Chiu, C.-H.

Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009).
[CrossRef]

Christiansen, S.

Th. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
[CrossRef] [PubMed]

Cuevas, A.

D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, A. Leo, “Texturing industrial multicrystalline silicon solar cells,” Sol. Energy 76(1-3), 277–283 (2004).
[CrossRef]

Cui, Y.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Delsol, R.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells 93(9), 1568–1571 (2009).
[CrossRef]

Dimitriev, O. P.

V. V. Kislyuk, O. P. Dimitriev, “Nanorods and nanotubes for solar cells,” J. Nanosci. Nanotechnol. 8(1), 131–148 (2008).
[CrossRef] [PubMed]

Dong, G.

X. Xiao, G. Dong, J. Shao, H. He, Z. Fan, “Optical and electrical properties of SnO2:Sb thin films deposited by oblique angle deposition,” Appl. Surf. Sci. 256(6), 1636–1640 (2010).
[CrossRef]

Durrani, Z. A. K.

K. Rasool, M. A. Rafiq, C. B. Li, E. Krali, Z. A. K. Durrani, M. M. Hasan, “Enhanced electrical and dielectric properties of polymer covered silicon nanowire arrays,” Appl. Phys. Lett. 101(2), 023114 (2012).
[CrossRef]

Falk, F.

Th. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
[CrossRef] [PubMed]

Fallahazad, B.

O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, S. Guha, “High performance wire-array silicon solar cells,” Prog. Photovolt. Res. Appl. 19(3), 307–312 (2011).
[CrossRef]

Fan, S.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Fan, Z.

X. Xiao, G. Dong, J. Shao, H. He, Z. Fan, “Optical and electrical properties of SnO2:Sb thin films deposited by oblique angle deposition,” Appl. Surf. Sci. 256(6), 1636–1640 (2010).
[CrossRef]

Fang, Y.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Faucherand, P.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells 93(9), 1568–1571 (2009).
[CrossRef]

Fronheiser, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

Fthenakis, V. M.

C. A. Wolden, J. Kurtin, J. B. Baxter, I. Repins, S. E. Shaheen, J. T. Torvik, A. A. Rockett, V. M. Fthenakis, E. S. Aydil, “Photovoltaic manufacturing: Present status, future prospects, and research needs,” J. Vac. Sci. Technol. A 29(3), 030801 (2011).
[CrossRef]

Gargas, D.

A. I. Hochbaum, D. Gargas, Y. J. Hwang, P. D. Yang, “Single crystalline mesoporous silicon nanowires,” Nano Lett. 9(10), 3550–3554 (2009).
[CrossRef] [PubMed]

Garnett, E. C.

E. C. Garnett, P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

Green, M. A.

M. A. Green, “The path to 25% silicon solar cell efficiency: history of silicon cell evolution,” Prog. Photovolt. Res. Appl. 17(3), 183–189 (2009).
[CrossRef]

Guha, S.

O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, S. Guha, “High performance wire-array silicon solar cells,” Prog. Photovolt. Res. Appl. 19(3), 307–312 (2011).
[CrossRef]

Gunawan, O.

O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, S. Guha, “High performance wire-array silicon solar cells,” Prog. Photovolt. Res. Appl. 19(3), 307–312 (2011).
[CrossRef]

Gupta, M. C.

V. V. Iyengar, B. K. Nayak, M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energy Mater. Sol. Cells 94(12), 2251–2257 (2010).
[CrossRef]

Hadobás, K.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

Hasan, M. M.

K. Rasool, M. A. Rafiq, C. B. Li, E. Krali, Z. A. K. Durrani, M. M. Hasan, “Enhanced electrical and dielectric properties of polymer covered silicon nanowire arrays,” Appl. Phys. Lett. 101(2), 023114 (2012).
[CrossRef]

He, H.

X. Xiao, G. Dong, J. Shao, H. He, Z. Fan, “Optical and electrical properties of SnO2:Sb thin films deposited by oblique angle deposition,” Appl. Surf. Sci. 256(6), 1636–1640 (2010).
[CrossRef]

Hochbaum, A. I.

A. I. Hochbaum, D. Gargas, Y. J. Hwang, P. D. Yang, “Single crystalline mesoporous silicon nanowires,” Nano Lett. 9(10), 3550–3554 (2009).
[CrossRef] [PubMed]

Hsu, C.-M.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Hsu, H.-C.

Huang, J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Hwang, Y. J.

A. I. Hochbaum, D. Gargas, Y. J. Hwang, P. D. Yang, “Single crystalline mesoporous silicon nanowires,” Nano Lett. 9(10), 3550–3554 (2009).
[CrossRef] [PubMed]

Iyengar, V. V.

V. V. Iyengar, B. K. Nayak, M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energy Mater. Sol. Cells 94(12), 2251–2257 (2010).
[CrossRef]

Jaussaud, C.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells 93(9), 1568–1571 (2009).
[CrossRef]

Kayes, B. M.

B. M. Kayes, H. A. Atwater, N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[CrossRef]

Kelzenberg, M. D.

S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[CrossRef] [PubMed]

Kempa, T. J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Kerr, M. J.

D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, A. Leo, “Texturing industrial multicrystalline silicon solar cells,” Sol. Energy 76(1-3), 277–283 (2004).
[CrossRef]

Kim, J. K.

Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009).
[CrossRef]

Kirsch, S.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

Kislyuk, V. V.

V. V. Kislyuk, O. P. Dimitriev, “Nanorods and nanotubes for solar cells,” J. Nanosci. Nanotechnol. 8(1), 131–148 (2008).
[CrossRef] [PubMed]

Korevaar, B. A.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

Krali, E.

K. Rasool, M. A. Rafiq, C. B. Li, E. Krali, Z. A. K. Durrani, M. M. Hasan, “Enhanced electrical and dielectric properties of polymer covered silicon nanowire arrays,” Appl. Phys. Lett. 101(2), 023114 (2012).
[CrossRef]

Kuo, H.-C.

Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009).
[CrossRef]

Kurtin, J.

C. A. Wolden, J. Kurtin, J. B. Baxter, I. Repins, S. E. Shaheen, J. T. Torvik, A. A. Rockett, V. M. Fthenakis, E. S. Aydil, “Photovoltaic manufacturing: Present status, future prospects, and research needs,” J. Vac. Sci. Technol. A 29(3), 030801 (2011).
[CrossRef]

Kwong, D. L.

S. M. Wong, H. Y. Yu, J. S. Li, G. Zhang, G. Q. Lo, D. L. Kwong, “Design high-efficiency Si nanopillar-array-textured thin-film solar cell,” IEEE Electron Device Lett. 31(4), 335–337 (2010).
[CrossRef]

Kwong, D.-L.

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, D.-L. Kwong, “S nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[CrossRef]

Lee, S. T.

K. Peng, X. Wang, S. T. Lee, “Silicon nanowire array photoelectrochemical solar cells,” Appl. Phys. Lett. 92(16), 163103 (2008).
[CrossRef]

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Lee, Y. J.

Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009).
[CrossRef]

Lee, Y.-J.

Leo, A.

D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, A. Leo, “Texturing industrial multicrystalline silicon solar cells,” Sol. Energy 76(1-3), 277–283 (2004).
[CrossRef]

Levis, M.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells 93(9), 1568–1571 (2009).
[CrossRef]

Lewis, N. S.

S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[CrossRef] [PubMed]

B. M. Kayes, H. A. Atwater, N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[CrossRef]

Li, C. B.

K. Rasool, M. A. Rafiq, C. B. Li, E. Krali, Z. A. K. Durrani, M. M. Hasan, “Enhanced electrical and dielectric properties of polymer covered silicon nanowire arrays,” Appl. Phys. Lett. 101(2), 023114 (2012).
[CrossRef]

Li, J.

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, D.-L. Kwong, “S nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[CrossRef]

Li, J. S.

S. M. Wong, H. Y. Yu, J. S. Li, G. Zhang, G. Q. Lo, D. L. Kwong, “Design high-efficiency Si nanopillar-array-textured thin-film solar cell,” IEEE Electron Device Lett. 31(4), 335–337 (2010).
[CrossRef]

Li, X.

X. Li, P. W. Bohn, “Metal-assisted chemical etching in HF/H2 O2 produces porous silicon,” Appl. Phys. Lett. 77(16), 2572 (2000).
[CrossRef]

Lieber, C. M.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Lin, S.-Y.

Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009).
[CrossRef]

Lo, G. Q.

S. M. Wong, H. Y. Yu, J. S. Li, G. Zhang, G. Q. Lo, D. L. Kwong, “Design high-efficiency Si nanopillar-array-textured thin-film solar cell,” IEEE Electron Device Lett. 31(4), 335–337 (2010).
[CrossRef]

Lo, P. G.-Q.

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, D.-L. Kwong, “S nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[CrossRef]

Lu, T.-C.

Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009).
[CrossRef]

Macdonald, D. H.

D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, A. Leo, “Texturing industrial multicrystalline silicon solar cells,” Sol. Energy 76(1-3), 277–283 (2004).
[CrossRef]

Maiolo, J. R.

S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[CrossRef] [PubMed]

Mendelson, M. I.

M. I. Mendelson, “Average grain size in polycrystalline ceramics,” J. Am. Ceram. Soc. 52(8), 443–446 (1969).
[CrossRef]

Nayak, B. K.

V. V. Iyengar, B. K. Nayak, M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energy Mater. Sol. Cells 94(12), 2251–2257 (2010).
[CrossRef]

Noël, S.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells 93(9), 1568–1571 (2009).
[CrossRef]

Ose, E.

Th. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
[CrossRef] [PubMed]

Peng, K.

K. Peng, X. Wang, S. T. Lee, “Silicon nanowire array photoelectrochemical solar cells,” Appl. Phys. Lett. 92(16), 163103 (2008).
[CrossRef]

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Perraud, S.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells 93(9), 1568–1571 (2009).
[CrossRef]

Pietsch, M.

Th. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
[CrossRef] [PubMed]

Poncet, S.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells 93(9), 1568–1571 (2009).
[CrossRef]

Putnam, M. C.

S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[CrossRef] [PubMed]

Rafiq, M. A.

K. Rasool, M. A. Rafiq, C. B. Li, E. Krali, Z. A. K. Durrani, M. M. Hasan, “Enhanced electrical and dielectric properties of polymer covered silicon nanowire arrays,” Appl. Phys. Lett. 101(2), 023114 (2012).
[CrossRef]

Rand, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

Rasool, K.

K. Rasool, M. A. Rafiq, C. B. Li, E. Krali, Z. A. K. Durrani, M. M. Hasan, “Enhanced electrical and dielectric properties of polymer covered silicon nanowire arrays,” Appl. Phys. Lett. 101(2), 023114 (2012).
[CrossRef]

Repins, I.

C. A. Wolden, J. Kurtin, J. B. Baxter, I. Repins, S. E. Shaheen, J. T. Torvik, A. A. Rockett, V. M. Fthenakis, E. S. Aydil, “Photovoltaic manufacturing: Present status, future prospects, and research needs,” J. Vac. Sci. Technol. A 29(3), 030801 (2011).
[CrossRef]

Robbie, K.

K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16(3), 1115–1122 (1998).
[CrossRef]

Rockett, A. A.

C. A. Wolden, J. Kurtin, J. B. Baxter, I. Repins, S. E. Shaheen, J. T. Torvik, A. A. Rockett, V. M. Fthenakis, E. S. Aydil, “Photovoltaic manufacturing: Present status, future prospects, and research needs,” J. Vac. Sci. Technol. A 29(3), 030801 (2011).
[CrossRef]

Rouvière, E.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells 93(9), 1568–1571 (2009).
[CrossRef]

Ruby, D.

D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, A. Leo, “Texturing industrial multicrystalline silicon solar cells,” Sol. Energy 76(1-3), 277–283 (2004).
[CrossRef]

Samundsett, C.

D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, A. Leo, “Texturing industrial multicrystalline silicon solar cells,” Sol. Energy 76(1-3), 277–283 (2004).
[CrossRef]

Schubert, E. F.

Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009).
[CrossRef]

Shaheen, S. E.

C. A. Wolden, J. Kurtin, J. B. Baxter, I. Repins, S. E. Shaheen, J. T. Torvik, A. A. Rockett, V. M. Fthenakis, E. S. Aydil, “Photovoltaic manufacturing: Present status, future prospects, and research needs,” J. Vac. Sci. Technol. A 29(3), 030801 (2011).
[CrossRef]

Shao, J.

X. Xiao, G. Dong, J. Shao, H. He, Z. Fan, “Optical and electrical properties of SnO2:Sb thin films deposited by oblique angle deposition,” Appl. Surf. Sci. 256(6), 1636–1640 (2010).
[CrossRef]

She, L.-W.

Sit, J. C.

K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16(3), 1115–1122 (1998).
[CrossRef]

Spurgeon, J. M.

S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[CrossRef] [PubMed]

Stelzner, Th.

Th. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
[CrossRef] [PubMed]

Sulima, O.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

Sun, X.

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, D.-L. Kwong, “S nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[CrossRef]

Thony, P.

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells 93(9), 1568–1571 (2009).
[CrossRef]

Tian, B.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Torvik, J. T.

C. A. Wolden, J. Kurtin, J. B. Baxter, I. Repins, S. E. Shaheen, J. T. Torvik, A. A. Rockett, V. M. Fthenakis, E. S. Aydil, “Photovoltaic manufacturing: Present status, future prospects, and research needs,” J. Vac. Sci. Technol. A 29(3), 030801 (2011).
[CrossRef]

Tsai, M.-T.

Tsakalakos, L.

L. Tsakalakos, “Nanostructures for photovoltaics,” Mater. Sci. Eng. 62(6), 175–189 (2008).
[CrossRef]

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

Turner-Evans, D. B.

S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[CrossRef] [PubMed]

Tutuc, E.

O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, S. Guha, “High performance wire-array silicon solar cells,” Prog. Photovolt. Res. Appl. 19(3), 307–312 (2011).
[CrossRef]

Wang, K.

O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, S. Guha, “High performance wire-array silicon solar cells,” Prog. Photovolt. Res. Appl. 19(3), 307–312 (2011).
[CrossRef]

Wang, S.-C.

Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009).
[CrossRef]

Wang, X.

K. Peng, X. Wang, S. T. Lee, “Silicon nanowire array photoelectrochemical solar cells,” Appl. Phys. Lett. 92(16), 163103 (2008).
[CrossRef]

Warren, E. L.

S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[CrossRef] [PubMed]

Wassermann, E. F.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

Winderbaum, S.

D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, A. Leo, “Texturing industrial multicrystalline silicon solar cells,” Sol. Energy 76(1-3), 277–283 (2004).
[CrossRef]

Wolden, C. A.

C. A. Wolden, J. Kurtin, J. B. Baxter, I. Repins, S. E. Shaheen, J. T. Torvik, A. A. Rockett, V. M. Fthenakis, E. S. Aydil, “Photovoltaic manufacturing: Present status, future prospects, and research needs,” J. Vac. Sci. Technol. A 29(3), 030801 (2011).
[CrossRef]

Wong, S. M.

S. M. Wong, H. Y. Yu, J. S. Li, G. Zhang, G. Q. Lo, D. L. Kwong, “Design high-efficiency Si nanopillar-array-textured thin-film solar cell,” IEEE Electron Device Lett. 31(4), 335–337 (2010).
[CrossRef]

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, D.-L. Kwong, “S nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[CrossRef]

Wu, C.-J.

Wu, Y.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Xiao, X.

X. Xiao, G. Dong, J. Shao, H. He, Z. Fan, “Optical and electrical properties of SnO2:Sb thin films deposited by oblique angle deposition,” Appl. Surf. Sci. 256(6), 1636–1640 (2010).
[CrossRef]

Xu, Y.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Yan, Y.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Yang, P.

E. C. Garnett, P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

Yang, P. D.

A. I. Hochbaum, D. Gargas, Y. J. Hwang, P. D. Yang, “Single crystalline mesoporous silicon nanowires,” Nano Lett. 9(10), 3550–3554 (2009).
[CrossRef] [PubMed]

Yao, Y.-C.

Yu, G.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Yu, H.

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, D.-L. Kwong, “S nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[CrossRef]

Yu, H. Y.

S. M. Wong, H. Y. Yu, J. S. Li, G. Zhang, G. Q. Lo, D. L. Kwong, “Design high-efficiency Si nanopillar-array-textured thin-film solar cell,” IEEE Electron Device Lett. 31(4), 335–337 (2010).
[CrossRef]

Yu, N.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Yu, Z.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Zhang, G.

S. M. Wong, H. Y. Yu, J. S. Li, G. Zhang, G. Q. Lo, D. L. Kwong, “Design high-efficiency Si nanopillar-array-textured thin-film solar cell,” IEEE Electron Device Lett. 31(4), 335–337 (2010).
[CrossRef]

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, D.-L. Kwong, “S nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[CrossRef]

Zhang, Y.

O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, S. Guha, “High performance wire-array silicon solar cells,” Prog. Photovolt. Res. Appl. 19(3), 307–312 (2011).
[CrossRef]

Zheng, X.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Zhu, J.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (6)

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, D.-L. Kwong, “S nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[CrossRef]

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

K. Rasool, M. A. Rafiq, C. B. Li, E. Krali, Z. A. K. Durrani, M. M. Hasan, “Enhanced electrical and dielectric properties of polymer covered silicon nanowire arrays,” Appl. Phys. Lett. 101(2), 023114 (2012).
[CrossRef]

X. Li, P. W. Bohn, “Metal-assisted chemical etching in HF/H2 O2 produces porous silicon,” Appl. Phys. Lett. 77(16), 2572 (2000).
[CrossRef]

K. Peng, X. Wang, S. T. Lee, “Silicon nanowire array photoelectrochemical solar cells,” Appl. Phys. Lett. 92(16), 163103 (2008).
[CrossRef]

Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009).
[CrossRef]

Appl. Surf. Sci. (1)

X. Xiao, G. Dong, J. Shao, H. He, Z. Fan, “Optical and electrical properties of SnO2:Sb thin films deposited by oblique angle deposition,” Appl. Surf. Sci. 256(6), 1636–1640 (2010).
[CrossRef]

IEEE Electron Device Lett. (1)

S. M. Wong, H. Y. Yu, J. S. Li, G. Zhang, G. Q. Lo, D. L. Kwong, “Design high-efficiency Si nanopillar-array-textured thin-film solar cell,” IEEE Electron Device Lett. 31(4), 335–337 (2010).
[CrossRef]

J. Am. Ceram. Soc. (1)

M. I. Mendelson, “Average grain size in polycrystalline ceramics,” J. Am. Ceram. Soc. 52(8), 443–446 (1969).
[CrossRef]

J. Am. Chem. Soc. (1)

E. C. Garnett, P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

B. M. Kayes, H. A. Atwater, N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

V. V. Kislyuk, O. P. Dimitriev, “Nanorods and nanotubes for solar cells,” J. Nanosci. Nanotechnol. 8(1), 131–148 (2008).
[CrossRef] [PubMed]

J. Vac. Sci. Technol. A (1)

C. A. Wolden, J. Kurtin, J. B. Baxter, I. Repins, S. E. Shaheen, J. T. Torvik, A. A. Rockett, V. M. Fthenakis, E. S. Aydil, “Photovoltaic manufacturing: Present status, future prospects, and research needs,” J. Vac. Sci. Technol. A 29(3), 030801 (2011).
[CrossRef]

J. Vac. Sci. Technol. B (1)

K. Robbie, J. C. Sit, M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16(3), 1115–1122 (1998).
[CrossRef]

Mater. Sci. Eng. (1)

L. Tsakalakos, “Nanostructures for photovoltaics,” Mater. Sci. Eng. 62(6), 175–189 (2008).
[CrossRef]

Nano Lett. (2)

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

A. I. Hochbaum, D. Gargas, Y. J. Hwang, P. D. Yang, “Single crystalline mesoporous silicon nanowires,” Nano Lett. 9(10), 3550–3554 (2009).
[CrossRef] [PubMed]

Nanotechnology (2)

K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

Th. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
[CrossRef] [PubMed]

Nature (1)

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Opt. Express (1)

Prog. Photovolt. Res. Appl. (2)

O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, S. Guha, “High performance wire-array silicon solar cells,” Prog. Photovolt. Res. Appl. 19(3), 307–312 (2011).
[CrossRef]

M. A. Green, “The path to 25% silicon solar cell efficiency: history of silicon cell evolution,” Prog. Photovolt. Res. Appl. 17(3), 183–189 (2009).
[CrossRef]

Science (1)

S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[CrossRef] [PubMed]

Small (1)

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Sol. Energy (1)

D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, A. Leo, “Texturing industrial multicrystalline silicon solar cells,” Sol. Energy 76(1-3), 277–283 (2004).
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

V. V. Iyengar, B. K. Nayak, M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energy Mater. Sol. Cells 94(12), 2251–2257 (2010).
[CrossRef]

S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells 93(9), 1568–1571 (2009).
[CrossRef]

Other (4)

A. Fujisaka, S. Kang, L. Tian, Y. L. Chow, and A. Belyaev, “Implant-cleave process enables ultra-thin wafers without kerf loss,” Photovoltaics World, pp. 21–24, Issue: May/Jun (2011).

M. Born and E. Wolf, Principles of optics 7th edition. Cambridge University Press, Cambridge, U.K., 46 (1999).

I. Tobı’as, C. del Can˜izo, J. Alonso, Handbook of Photovoltaic Science and Engineering (Wiley, New York, 2004).

M. A. Green, Solar Cells: Operating Principles, Technology and System Applications (Prentice-Hall, Englewood Cliffs, New Jersey, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Primary fabrication scheme of vertically aligned axial p-n junction SiNW SC. The corresponding energy-band diagram of the device (marked by the red square-frame) is also plotted in the figure. (b) Cross-sectional SEM image of the proposed SiNW SC. Inserts: top-view SEM image of slanted ITO film (left-up) and cross-sectional SEM image of metal-induced anisotropic chemically etched SiNWs (left-down). All scale bars are 1μm.

Fig. 2
Fig. 2

(a) XRD patterns of the slanted ITO film for different RTA treatments temperature ranging from T = 250 °C to T = 475°C. (b) FWHM of (222) XRD diffraction peak (red dot) and the measured resistivity (black square) of slanted ITO film versus RTA temperature. The sheet resistance, carrier concentration, and Hall mobility of slanted ITO film that underwent RTA treatment of T = 450°C are also summarized in the figure.

Fig. 3
Fig. 3

(a) Photographs of three representative samples including bare silicon with (center) and without (left) quarter-wavelength ARC, and the porposed SiNW SC (right). The dimension size of all samples is identical to be 1cm × 1cm. (b) (Top) Measured reflectivity as a function of normal-incident wavelength for all samples. ASTM air mass 1.5 direct and circumsolar solar spectrum (λ = 400–700nm) is also plotted in the figure. (Bottom) Angular-dependent reflectivity (θ = 10°–70°) of all samples measured by an incident light of He-Ne laser (λ = 632.8nm) for both TE and TM polarizations. (c) Optical absorption obtained by A(θ, λ) = 1- R(θ, λ) for all samples.

Fig. 4
Fig. 4

Electrical performance of the proposed SiNW SC (a) Semi-log plot of current density vs. voltage (J-V) behavior both in the dark and under AM 1.5G simulated sunlight illumination. Insert: photography of actual device with the dimension of 2cmx2cm (right-hand side). J-V curves of SiNW arrays deposited with standard ITO film (left-hand side). The series (RS) and shunt (RSH) resistances, and the reverse current (JR) and ideality factor (n) extracted from the dark J-V curve are also summarized in the figure. (b) The same J-V current plotted in a linear scale. Insert: the corresponding power-density vs. voltage curve.

Metrics