Abstract

Three of central challenges in solar cells are high light coupling into solar cell, high light trapping and absorption in a sub-absorption-length-thick active layer, and replacement of the indium-tin-oxide (ITO) transparent electrode used in thin-film devices. Here, we report a proposal and the first experimental study and demonstration of a new ultra-thin high-efficiency organic solar cell (SC), termed “plasmonic cavity with subwavelength hole-array (PlaCSH) solar cell”, that offers a solution to all three issues with unprecedented performances. The ultrathin PlaCSH-SC is a thin plasmonic cavity that consists of a 30 nm thick front metal-mesh electrode with subwavelength hole-array (MESH) which replaces ITO, a thin (100 nm thick) back metal electrode, and in-between a polymer photovoltaic active layer (P3HT/PCBM) of 85 nm thick (1/3 average absorption-length). Experimentally, the PlaCSH-SCs have achieved (1) light coupling-efficiency/absorptance as high as 96% (average 90%), broad-band, and Omni acceptance (light coupling nearly independent of both light incident angle and polarization); (2) an external quantum efficiency of 69% for only 27% single-pass active layer absorptance; leading to (3) a 4.4% power conversion efficiency (PCE) at standard-solar-irradiation, which is 52% higher than the reference ITO-SC (identical structure and fabrication to PlaCSH-SC except MESH replaced by ITO), and also is among the highest PCE for the material system that was achievable previously only by using thick active materials and/or optimized polymer compositions and treatments. In harvesting scattered light, the Omni acceptance can increase PCE by additional 81% over ITO-SC, leading to a total 175% increase (i.e. 8% PCE). Furthermore, we found that (a) after formation of PlaCSH the light reflection and absorption by MESH are reduced by 2 to 6 fold from the values when it is alone; and (b) the sheet resistance of a 30 nm thick MESH is 2.2 ohm/sq or less–4.5 fold or more lower than the best reported value for a 100 nm thick ITO film, giving a lowest reflectance-sheet-resistance product. Finally, fabrication of PlaCSH has used nanoimprint on 4” wafer and is scalable to roll-to-roll manufacturing. The designs, fabrications, and findings are applicable to thin solar cells in other materials.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, G. D. Cody, “Intensity enhancement in textured optical sheets for solar-cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
    [CrossRef]
  2. H. Kiess, W. Rehwald, “On the ultimate efficiency of solar-cells,” Sol. Energy Mater. Sol. Cells 38(1-4), 45–55 (1995).
    [CrossRef]
  3. A. V. Shah, R. Platz, H. Keppner, “Thin-film silicon solar-cells—a review and selected trends,” Sol. Energy Mater. Sol. Cells 38(1-4), 501–520 (1995).
    [CrossRef]
  4. C. Heine, R. H. Morf, “Submicrometer gratings for solar-energy applications,” Appl. Opt. 34(14), 2476–2482 (1995).
    [CrossRef] [PubMed]
  5. J. Zhao, M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar-cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991).
    [CrossRef]
  6. J. H. Zhao, A. H. Wang, M. A. Green, F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
    [CrossRef]
  7. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
    [CrossRef]
  8. S. Y. Chou, Y. Liu, P. B. Fischer, “Terahertz Gaas metal-semiconductor-metal photodetectors with 25 nm finger spacing and finger width,” Appl. Phys. Lett. 61(4), 477–479 (1992).
    [CrossRef]
  9. M. G. Kang, L. J. Guo, “Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 19(10), 1391–1396 (2007).
    [CrossRef]
  10. J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
    [CrossRef] [PubMed]
  11. N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. (Deerfield Beach Fla.) 24(6), 728–732 (2012).
    [CrossRef] [PubMed]
  12. H. R. Stuart, D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
    [CrossRef]
  13. M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
    [CrossRef]
  14. B. P. Rand, P. Peumans, S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
    [CrossRef]
  15. H. Mertens, J. Verhoeven, A. Polman, F. D. Tichelaar, “Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon,” Appl. Phys. Lett. 85(8), 1317–1319 (2004).
    [CrossRef]
  16. D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
    [CrossRef]
  17. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
    [CrossRef]
  18. E. P. Kartalov, A. Scherer, S. R. Quake, C. R. Taylor, W. F. Anderson, “Experimentally validated quantitative linear model for the device physics of elastomeric microfluidic valves,” J. Appl. Phys. 101(6), 64505 (2007).
    [CrossRef] [PubMed]
  19. R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A. K. Pradhan, U. N. Roy, Y. Cui, A. Burger, “Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes,” Appl. Phys. Lett. 91(19), 191111 (2007).
    [CrossRef]
  20. J. K. Mapel, M. Singh, M. A. Baldo, K. Celebi, “Plasmonic excitation of organic double heterostructure solar cells,” Appl. Phys. Lett. 90(12), 121102 (2007).
    [CrossRef]
  21. M. Kirkengen, J. Bergli, Y. M. Galperin, “Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles,” J. Appl. Phys. 102(9), 093713 (2007).
    [CrossRef] [PubMed]
  22. K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
    [CrossRef]
  23. C. Hägglund, M. Zach, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
    [CrossRef]
  24. P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
    [CrossRef]
  25. K. Nakayama, K. Tanabe, H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
    [CrossRef]
  26. S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
  27. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, J. Van De Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
  28. N. C. Lindquist, W. A. Luhman, S.-H. Oh, R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
    [CrossRef]
  29. C. Hägglund, M. Zach, B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
    [CrossRef]
  30. F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 064509 (2008).
    [CrossRef]
  31. R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009).
    [CrossRef]
  32. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  33. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [CrossRef] [PubMed]
  34. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34(5), 686–688 (2009).
    [CrossRef] [PubMed]
  35. Y. Avitzour, Y. A. Urzhumov, G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
    [CrossRef]
  36. E. E. Narimanov, A. V. Kildishev, “Optical black hole: broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
    [CrossRef]
  37. X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [CrossRef] [PubMed]
  38. D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
  39. K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
  40. D. M. Callahan, J. N. Munday, H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
    [CrossRef] [PubMed]
  41. W. D. Li, F. Ding, J. Hu, S. Y. Chou, “Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area,” Opt. Express 19(5), 3925–3936 (2011).
    [CrossRef] [PubMed]
  42. S. Y. Chou, Unpublished (2010).
  43. S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
    [CrossRef]
  44. W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
    [CrossRef]
  45. G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
    [CrossRef]
  46. W. L. Ma, C. Y. Yang, X. Gong, K. Lee, A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
    [CrossRef]
  47. Z. N. Yu, H. Gao, W. Wu, H. X. Ge, S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
    [CrossRef]
  48. P. Lalanne, G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997).
    [CrossRef]
  49. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  50. W. D. Li, J. Hu, S. Y. Chou, “Extraordinary light transmission through opaque thin metal film with subwavelength holes blocked by metal disks,” Opt. Express 19(21), 21098–21108 (2011).
    [CrossRef] [PubMed]

2012 (2)

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. (Deerfield Beach Fla.) 24(6), 728–732 (2012).
[CrossRef] [PubMed]

D. M. Callahan, J. N. Munday, H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[CrossRef] [PubMed]

2011 (4)

W. D. Li, F. Ding, J. Hu, S. Y. Chou, “Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area,” Opt. Express 19(5), 3925–3936 (2011).
[CrossRef] [PubMed]

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).

W. D. Li, J. Hu, S. Y. Chou, “Extraordinary light transmission through opaque thin metal film with subwavelength holes blocked by metal disks,” Opt. Express 19(21), 21098–21108 (2011).
[CrossRef] [PubMed]

2010 (2)

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

2009 (4)

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009).
[CrossRef]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34(5), 686–688 (2009).
[CrossRef] [PubMed]

Y. Avitzour, Y. A. Urzhumov, G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[CrossRef]

E. E. Narimanov, A. V. Kildishev, “Optical black hole: broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
[CrossRef]

2008 (10)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

C. Hägglund, M. Zach, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

K. Nakayama, K. Tanabe, H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, J. Van De Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).

N. C. Lindquist, W. A. Luhman, S.-H. Oh, R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

C. Hägglund, M. Zach, B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 064509 (2008).
[CrossRef]

J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

2007 (6)

M. G. Kang, L. J. Guo, “Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 19(10), 1391–1396 (2007).
[CrossRef]

E. P. Kartalov, A. Scherer, S. R. Quake, C. R. Taylor, W. F. Anderson, “Experimentally validated quantitative linear model for the device physics of elastomeric microfluidic valves,” J. Appl. Phys. 101(6), 64505 (2007).
[CrossRef] [PubMed]

R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A. K. Pradhan, U. N. Roy, Y. Cui, A. Burger, “Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes,” Appl. Phys. Lett. 91(19), 191111 (2007).
[CrossRef]

J. K. Mapel, M. Singh, M. A. Baldo, K. Celebi, “Plasmonic excitation of organic double heterostructure solar cells,” Appl. Phys. Lett. 90(12), 121102 (2007).
[CrossRef]

M. Kirkengen, J. Bergli, Y. M. Galperin, “Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles,” J. Appl. Phys. 102(9), 093713 (2007).
[CrossRef] [PubMed]

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

2006 (1)

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

2005 (3)

D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

W. L. Ma, C. Y. Yang, X. Gong, K. Lee, A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[CrossRef]

2004 (2)

B. P. Rand, P. Peumans, S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

H. Mertens, J. Verhoeven, A. Polman, F. D. Tichelaar, “Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon,” Appl. Phys. Lett. 85(8), 1317–1319 (2004).
[CrossRef]

2003 (1)

Z. N. Yu, H. Gao, W. Wu, H. X. Ge, S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

2000 (1)

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

1998 (4)

H. R. Stuart, D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[CrossRef]

J. H. Zhao, A. H. Wang, M. A. Green, F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

1997 (1)

P. Lalanne, G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997).
[CrossRef]

1995 (4)

S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

H. Kiess, W. Rehwald, “On the ultimate efficiency of solar-cells,” Sol. Energy Mater. Sol. Cells 38(1-4), 45–55 (1995).
[CrossRef]

A. V. Shah, R. Platz, H. Keppner, “Thin-film silicon solar-cells—a review and selected trends,” Sol. Energy Mater. Sol. Cells 38(1-4), 501–520 (1995).
[CrossRef]

C. Heine, R. H. Morf, “Submicrometer gratings for solar-energy applications,” Appl. Opt. 34(14), 2476–2482 (1995).
[CrossRef] [PubMed]

1992 (1)

S. Y. Chou, Y. Liu, P. B. Fischer, “Terahertz Gaas metal-semiconductor-metal photodetectors with 25 nm finger spacing and finger width,” Appl. Phys. Lett. 61(4), 477–479 (1992).
[CrossRef]

1991 (1)

J. Zhao, M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar-cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991).
[CrossRef]

1982 (2)

E. Yablonovitch, G. D. Cody, “Intensity enhancement in textured optical sheets for solar-cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[CrossRef]

E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
[CrossRef]

Anderson, W. F.

E. P. Kartalov, A. Scherer, S. R. Quake, C. R. Taylor, W. F. Anderson, “Experimentally validated quantitative linear model for the device physics of elastomeric microfluidic valves,” J. Appl. Phys. 101(6), 64505 (2007).
[CrossRef] [PubMed]

Atwater, H. A.

D. M. Callahan, J. N. Munday, H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[CrossRef] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

K. Nakayama, K. Tanabe, H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

Avitzour, Y.

Y. Avitzour, Y. A. Urzhumov, G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[CrossRef]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).

Baldo, M. A.

J. K. Mapel, M. Singh, M. A. Baldo, K. Celebi, “Plasmonic excitation of organic double heterostructure solar cells,” Appl. Phys. Lett. 90(12), 121102 (2007).
[CrossRef]

Ballif, C.

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 064509 (2008).
[CrossRef]

Bamiduro, O.

R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A. K. Pradhan, U. N. Roy, Y. Cui, A. Burger, “Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes,” Appl. Phys. Lett. 91(19), 191111 (2007).
[CrossRef]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009).
[CrossRef]

Barnard, E. S.

Bergli, J.

M. Kirkengen, J. Bergli, Y. M. Galperin, “Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles,” J. Appl. Phys. 102(9), 093713 (2007).
[CrossRef] [PubMed]

Bhargava, R.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).

Braun, P. V.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009).
[CrossRef]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34(5), 686–688 (2009).
[CrossRef] [PubMed]

Burger, A.

R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A. K. Pradhan, U. N. Roy, Y. Cui, A. Burger, “Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes,” Appl. Phys. Lett. 91(19), 191111 (2007).
[CrossRef]

Callahan, D. M.

D. M. Callahan, J. N. Munday, H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[CrossRef] [PubMed]

Celebi, K.

J. K. Mapel, M. Singh, M. A. Baldo, K. Celebi, “Plasmonic excitation of organic double heterostructure solar cells,” Appl. Phys. Lett. 90(12), 121102 (2007).
[CrossRef]

Chanda, D.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).

Chandran, A.

Cheyns, D.

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. (Deerfield Beach Fla.) 24(6), 728–732 (2012).
[CrossRef] [PubMed]

Chou, S. Y.

W. D. Li, J. Hu, S. Y. Chou, “Extraordinary light transmission through opaque thin metal film with subwavelength holes blocked by metal disks,” Opt. Express 19(21), 21098–21108 (2011).
[CrossRef] [PubMed]

W. D. Li, F. Ding, J. Hu, S. Y. Chou, “Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area,” Opt. Express 19(5), 3925–3936 (2011).
[CrossRef] [PubMed]

Z. N. Yu, H. Gao, W. Wu, H. X. Ge, S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

S. Y. Chou, Y. Liu, P. B. Fischer, “Terahertz Gaas metal-semiconductor-metal photodetectors with 25 nm finger spacing and finger width,” Appl. Phys. Lett. 61(4), 477–479 (1992).
[CrossRef]

Cody, G. D.

E. Yablonovitch, G. D. Cody, “Intensity enhancement in textured optical sheets for solar-cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[CrossRef]

Connor, S. T.

J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

Cubero, O.

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 064509 (2008).
[CrossRef]

Cui, B.

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

Cui, Y.

J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A. K. Pradhan, U. N. Roy, Y. Cui, A. Burger, “Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes,” Appl. Phys. Lett. 91(19), 191111 (2007).
[CrossRef]

Derkacs, D.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Ding, F.

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Emery, K.

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Fan, S.

Feng, B.

D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Ferrazza, F.

J. H. Zhao, A. H. Wang, M. A. Green, F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[CrossRef]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).

Fischer, P. B.

S. Y. Chou, Y. Liu, P. B. Fischer, “Terahertz Gaas metal-semiconductor-metal photodetectors with 25 nm finger spacing and finger width,” Appl. Phys. Lett. 61(4), 477–479 (1992).
[CrossRef]

Forrest, S. R.

B. P. Rand, P. Peumans, S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Galperin, Y. M.

M. Kirkengen, J. Bergli, Y. M. Galperin, “Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles,” J. Appl. Phys. 102(9), 093713 (2007).
[CrossRef] [PubMed]

Gao, H.

Z. N. Yu, H. Gao, W. Wu, H. X. Ge, S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Ge, H. X.

Z. N. Yu, H. Gao, W. Wu, H. X. Ge, S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Gong, X.

W. L. Ma, C. Y. Yang, X. Gong, K. Lee, A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[CrossRef]

Green, M. A.

J. H. Zhao, A. H. Wang, M. A. Green, F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[CrossRef]

J. Zhao, M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar-cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991).
[CrossRef]

Guo, L. J.

M. G. Kang, L. J. Guo, “Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 19(10), 1391–1396 (2007).
[CrossRef]

Hadipour, A.

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. (Deerfield Beach Fla.) 24(6), 728–732 (2012).
[CrossRef] [PubMed]

Hägglund, C.

C. Hägglund, M. Zach, B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

C. Hägglund, M. Zach, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

Hall, D. G.

H. R. Stuart, D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[CrossRef]

Haug, F.-J.

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 064509 (2008).
[CrossRef]

Heeger, A. J.

W. L. Ma, C. Y. Yang, X. Gong, K. Lee, A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[CrossRef]

Heine, C.

Heremans, P.

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. (Deerfield Beach Fla.) 24(6), 728–732 (2012).
[CrossRef] [PubMed]

Holmes, R. J.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

Hu, J.

Huang, J. S.

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Inganas, O.

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

Jo, J.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).

Kang, M. G.

M. G. Kang, L. J. Guo, “Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 19(10), 1391–1396 (2007).
[CrossRef]

Kartalov, E. P.

E. P. Kartalov, A. Scherer, S. R. Quake, C. R. Taylor, W. F. Anderson, “Experimentally validated quantitative linear model for the device physics of elastomeric microfluidic valves,” J. Appl. Phys. 101(6), 64505 (2007).
[CrossRef] [PubMed]

Kasemo, B.

C. Hägglund, M. Zach, B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

C. Hägglund, M. Zach, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

Keppner, H.

A. V. Shah, R. Platz, H. Keppner, “Thin-film silicon solar-cells—a review and selected trends,” Sol. Energy Mater. Sol. Cells 38(1-4), 501–520 (1995).
[CrossRef]

Kiess, H.

H. Kiess, W. Rehwald, “On the ultimate efficiency of solar-cells,” Sol. Energy Mater. Sol. Cells 38(1-4), 45–55 (1995).
[CrossRef]

Kildishev, A. V.

E. E. Narimanov, A. V. Kildishev, “Optical black hole: broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
[CrossRef]

Kim, D. Y.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).

Kim, S. S.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).

Kirkengen, M.

M. Kirkengen, J. Bergli, Y. M. Galperin, “Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles,” J. Appl. Phys. 102(9), 093713 (2007).
[CrossRef] [PubMed]

Konda, R. B.

R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A. K. Pradhan, U. N. Roy, Y. Cui, A. Burger, “Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes,” Appl. Phys. Lett. 91(19), 191111 (2007).
[CrossRef]

Kong, L. S.

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

Kreibig, U.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

Lalanne, P.

P. Lalanne, G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997).
[CrossRef]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Lee, J. Y.

J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

Lee, K.

W. L. Ma, C. Y. Yang, X. Gong, K. Lee, A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, G.

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Li, W. D.

Lim, S. H.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Lindquist, N. C.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009).
[CrossRef]

Liu, X.

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

Liu, Y.

S. Y. Chou, Y. Liu, P. B. Fischer, “Terahertz Gaas metal-semiconductor-metal photodetectors with 25 nm finger spacing and finger width,” Appl. Phys. Lett. 61(4), 477–479 (1992).
[CrossRef]

Luhman, W. A.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

Lui, E.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).

Luth, H.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

Ma, W. L.

W. L. Ma, C. Y. Yang, X. Gong, K. Lee, A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[CrossRef]

Mapel, J. K.

J. K. Mapel, M. Singh, M. A. Baldo, K. Celebi, “Plasmonic excitation of organic double heterostructure solar cells,” Appl. Phys. Lett. 90(12), 121102 (2007).
[CrossRef]

Mar, W.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Matheu, P.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

McPheeters, C.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

Meissner, D.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

Mertens, H.

H. Mertens, J. Verhoeven, A. Polman, F. D. Tichelaar, “Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon,” Appl. Phys. Lett. 85(8), 1317–1319 (2004).
[CrossRef]

Mihi, A.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Morf, R. H.

Morfa, A. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, J. Van De Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).

Moriarty, T.

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Morris, G. M.

P. Lalanne, G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997).
[CrossRef]

Munday, J. N.

D. M. Callahan, J. N. Munday, H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[CrossRef] [PubMed]

Mundle, R.

R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A. K. Pradhan, U. N. Roy, Y. Cui, A. Burger, “Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes,” Appl. Phys. Lett. 91(19), 191111 (2007).
[CrossRef]

Mustafa, H.

R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A. K. Pradhan, U. N. Roy, Y. Cui, A. Burger, “Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes,” Appl. Phys. Lett. 91(19), 191111 (2007).
[CrossRef]

Na, S. I.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).

Nah, Y. C.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).

Nakayama, K.

K. Nakayama, K. Tanabe, H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

Narimanov, E. E.

E. E. Narimanov, A. V. Kildishev, “Optical black hole: broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
[CrossRef]

Niesen, B.

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. (Deerfield Beach Fla.) 24(6), 728–732 (2012).
[CrossRef] [PubMed]

Oh, S.-H.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

Padilla, W. J.

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009).
[CrossRef]

Persson, N.-K.

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

Petersson, G.

C. Hägglund, M. Zach, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

Peumans, P.

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. (Deerfield Beach Fla.) 24(6), 728–732 (2012).
[CrossRef] [PubMed]

J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

B. P. Rand, P. Peumans, S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Platz, R.

A. V. Shah, R. Platz, H. Keppner, “Thin-film silicon solar-cells—a review and selected trends,” Sol. Energy Mater. Sol. Cells 38(1-4), 501–520 (1995).
[CrossRef]

Polman, A.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

H. Mertens, J. Verhoeven, A. Polman, F. D. Tichelaar, “Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon,” Appl. Phys. Lett. 85(8), 1317–1319 (2004).
[CrossRef]

Pradhan, A. K.

R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A. K. Pradhan, U. N. Roy, Y. Cui, A. Burger, “Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes,” Appl. Phys. Lett. 91(19), 191111 (2007).
[CrossRef]

Quake, S. R.

E. P. Kartalov, A. Scherer, S. R. Quake, C. R. Taylor, W. F. Anderson, “Experimentally validated quantitative linear model for the device physics of elastomeric microfluidic valves,” J. Appl. Phys. 101(6), 64505 (2007).
[CrossRef] [PubMed]

Rahachou, A.

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

Rand, B. P.

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. (Deerfield Beach Fla.) 24(6), 728–732 (2012).
[CrossRef] [PubMed]

B. P. Rand, P. Peumans, S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Rehwald, W.

H. Kiess, W. Rehwald, “On the ultimate efficiency of solar-cells,” Sol. Energy Mater. Sol. Cells 38(1-4), 45–55 (1995).
[CrossRef]

Reilly, T. H.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, J. Van De Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

Rogers, J. A.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).

Romero, M. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, J. Van De Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).

Rostalski, J.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

Rowlen, K. L.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, J. Van De Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).

Roy, U. N.

R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A. K. Pradhan, U. N. Roy, Y. Cui, A. Burger, “Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes,” Appl. Phys. Lett. 91(19), 191111 (2007).
[CrossRef]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Schaadt, D. M.

D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Scherer, A.

E. P. Kartalov, A. Scherer, S. R. Quake, C. R. Taylor, W. F. Anderson, “Experimentally validated quantitative linear model for the device physics of elastomeric microfluidic valves,” J. Appl. Phys. 101(6), 64505 (2007).
[CrossRef] [PubMed]

Schulmerich, M.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).

Sergeant, N. P.

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. (Deerfield Beach Fla.) 24(6), 728–732 (2012).
[CrossRef] [PubMed]

Shah, A. V.

A. V. Shah, R. Platz, H. Keppner, “Thin-film silicon solar-cells—a review and selected trends,” Sol. Energy Mater. Sol. Cells 38(1-4), 501–520 (1995).
[CrossRef]

Shigeta, K.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).

Shrotriya, V.

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Shvets, G.

Y. Avitzour, Y. A. Urzhumov, G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[CrossRef]

Singh, M.

J. K. Mapel, M. Singh, M. A. Baldo, K. Celebi, “Plasmonic excitation of organic double heterostructure solar cells,” Appl. Phys. Lett. 90(12), 121102 (2007).
[CrossRef]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Söderström, T.

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 064509 (2008).
[CrossRef]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

Stuart, H. R.

H. R. Stuart, D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[CrossRef]

Sun, X. Y.

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

Tanabe, K.

K. Nakayama, K. Tanabe, H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

Taylor, C. R.

E. P. Kartalov, A. Scherer, S. R. Quake, C. R. Taylor, W. F. Anderson, “Experimentally validated quantitative linear model for the device physics of elastomeric microfluidic valves,” J. Appl. Phys. 101(6), 64505 (2007).
[CrossRef] [PubMed]

Terrazzoni-Daudrix, V.

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 064509 (2008).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Tichelaar, F. D.

H. Mertens, J. Verhoeven, A. Polman, F. D. Tichelaar, “Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon,” Appl. Phys. Lett. 85(8), 1317–1319 (2004).
[CrossRef]

Truong, T.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).

Tvingstedt, K.

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

Urzhumov, Y. A.

Y. Avitzour, Y. A. Urzhumov, G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[CrossRef]

Van De Lagemaat, J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, J. Van De Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).

Verhoeven, J.

H. Mertens, J. Verhoeven, A. Polman, F. D. Tichelaar, “Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon,” Appl. Phys. Lett. 85(8), 1317–1319 (2004).
[CrossRef]

Veronis, G.

Wang, A. H.

J. H. Zhao, A. H. Wang, M. A. Green, F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[CrossRef]

Westphalen, M.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009).
[CrossRef]

White, J. S.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Wu, W.

Z. N. Yu, H. Gao, W. Wu, H. X. Ge, S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, G. D. Cody, “Intensity enhancement in textured optical sheets for solar-cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[CrossRef]

E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
[CrossRef]

Yang, C. Y.

W. L. Ma, C. Y. Yang, X. Gong, K. Lee, A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[CrossRef]

Yang, Y.

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Yao, Y.

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Yu, E. T.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Yu, Z.

Yu, Z. N.

Z. N. Yu, H. Gao, W. Wu, H. X. Ge, S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Zach, M.

C. Hägglund, M. Zach, B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

C. Hägglund, M. Zach, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

Zhang, W.

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

Zhao, J.

J. Zhao, M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar-cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991).
[CrossRef]

Zhao, J. H.

J. H. Zhao, A. H. Wang, M. A. Green, F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[CrossRef]

Zhuang, L.

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

Zozoulenko, I. V.

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

Adv. Funct. Mater. (1)

W. L. Ma, C. Y. Yang, X. Gong, K. Lee, A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (3)

M. G. Kang, L. J. Guo, “Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 19(10), 1391–1396 (2007).
[CrossRef]

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. (Deerfield Beach Fla.) 24(6), 728–732 (2012).
[CrossRef] [PubMed]

R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (18)

J. H. Zhao, A. H. Wang, M. A. Green, F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[CrossRef]

S. Y. Chou, Y. Liu, P. B. Fischer, “Terahertz Gaas metal-semiconductor-metal photodetectors with 25 nm finger spacing and finger width,” Appl. Phys. Lett. 61(4), 477–479 (1992).
[CrossRef]

R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A. K. Pradhan, U. N. Roy, Y. Cui, A. Burger, “Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes,” Appl. Phys. Lett. 91(19), 191111 (2007).
[CrossRef]

J. K. Mapel, M. Singh, M. A. Baldo, K. Celebi, “Plasmonic excitation of organic double heterostructure solar cells,” Appl. Phys. Lett. 90(12), 121102 (2007).
[CrossRef]

E. E. Narimanov, A. V. Kildishev, “Optical black hole: broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
[CrossRef]

S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

H. R. Stuart, D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[CrossRef]

H. Mertens, J. Verhoeven, A. Polman, F. D. Tichelaar, “Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon,” Appl. Phys. Lett. 85(8), 1317–1319 (2004).
[CrossRef]

D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

C. Hägglund, M. Zach, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[CrossRef]

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

K. Nakayama, K. Tanabe, H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, J. Van De Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).

N. C. Lindquist, W. A. Luhman, S.-H. Oh, R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

C. Hägglund, M. Zach, B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

IEEE Trans. Electron. Dev. (2)

E. Yablonovitch, G. D. Cody, “Intensity enhancement in textured optical sheets for solar-cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[CrossRef]

J. Zhao, M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar-cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991).
[CrossRef]

J. Appl. Phys. (4)

M. Kirkengen, J. Bergli, Y. M. Galperin, “Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles,” J. Appl. Phys. 102(9), 093713 (2007).
[CrossRef] [PubMed]

B. P. Rand, P. Peumans, S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104(6), 064509 (2008).
[CrossRef]

E. P. Kartalov, A. Scherer, S. R. Quake, C. R. Taylor, W. F. Anderson, “Experimentally validated quantitative linear model for the device physics of elastomeric microfluidic valves,” J. Appl. Phys. 101(6), 64505 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. B (2)

Z. N. Yu, H. Gao, W. Wu, H. X. Ge, S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

Nano Lett. (2)

D. M. Callahan, J. N. Munday, H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[CrossRef] [PubMed]

J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

Nanotechnology (1)

P. Lalanne, G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997).
[CrossRef]

Nat. Commun. (2)

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).

Nat. Mater. (2)

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

Y. Avitzour, Y. A. Urzhumov, G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (3)

H. Kiess, W. Rehwald, “On the ultimate efficiency of solar-cells,” Sol. Energy Mater. Sol. Cells 38(1-4), 45–55 (1995).
[CrossRef]

A. V. Shah, R. Platz, H. Keppner, “Thin-film silicon solar-cells—a review and selected trends,” Sol. Energy Mater. Sol. Cells 38(1-4), 501–520 (1995).
[CrossRef]

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[CrossRef]

Other (1)

S. Y. Chou, Unpublished (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Plasmonic Cavity with Subwavelength Hole-array (PlaCSH) Solar Cell (SC). (a) Schematic. PlaCSH-SC consists of an Au metallic-mesh electrode with subwavelength hole-array (MESH), a Al backplane electrode, and in between a sandwich of P3HT/PCBM, TiOx, and PEDOT:PSS layers. (b) Energy band diagram. (c) Schematic of PlaCSH-SC fabrication: fabrication of MESH by nanoimprint on a fused silica substrate, spinning of PEDOT:PSS buffer layer and P3HT/PCBM active layer, and thermal deposition of TiOx buffer layer and Al electrode. (d) Tilt-view scanning electron micrograph (SEM) of Au MESH with 175 nm diameter and 200 nm pitch hole array. (e) Cross-sectional SEM of PlaCSH solar cell. (f) Optical image of 4-inch diameter nanoimprint mold used. (g) Optical image under Sun light of PlaCSH-SC (completely black) and reference ITO-SC (dark magenta).

Fig. 2
Fig. 2

Photocurrent of PlaCSH-SC and reference ITO-SC. Typical J-V characteristics measured under 100 mW/cm2 AM 1.5 global solar irradiation (a) and in the dark (b). PlaCSH-SC has an open-circuit voltage (Voc) of 0.62 V, a short-circuit current density (Jsc) of 10.4 mA/cm2, a fill factor (FF) of 67%, and a power conversion efficiency (ηeff) of 4.4%; while ITO-SCs have Voc = 0.62 V, Jsc = 7.4 mA/cm2, FF = 63%, and ηeff = 2.9%. PlaCSH-SCs have enhanced power conversion efficiency by 52%, and Jsc, and FF by 41% and 6% respectively.

Fig. 3
Fig. 3

EQE spectrum of PlaCSH-SC and ITO-SC and Absorption-length in P3HT/PCBM (85 nm thick on glass). Measured external quantum efficiency (EQE) spectrum of PlaCSH-SC and ITO-SC as well as the measured absorptance spectrum of 85 nm thick P3HT/PCBM film on glass (a), and EQE enhancement (EQE ratio of PlaCSH-SC to ITO-SC), and measured absorption-length in P3HT/PCBM (b). PlaCSH-SC achieved a maximum EQE of 69% at 575 nm wavelength where the 85 nm thick active layer’s single pass absorptance is only 27%. And PlaCSH-SC has an EQE enhancement factor always larger than one over the entire measured spectrum range, and can be as high as 2.2 fold (220%) at 650 nm.

Fig. 4
Fig. 4

Normal Incident Reflectance and Absorptance spectra of PlaCSH-SC, ITO-SC, and P3HT/PCBM (85 nm thick on glass). Measured normal incident optical reflectance spectrum (a) and measured absorptance spectrum (1-reflectance-transmittance). PlaCSH-SC has a normal incident reflectance as low as 5% and 10% average and absorptance as high as 96% and 90% average over a broad band (400 to 900 nm). ITO-SC has normal incident reflectance of minimum 20% and 56% average, and absorptance 80% maximum and 44% average. At 650 and 790 nm wavelength, the absorptance in PlaCSH is 2.9 and 18 fold higher than ITO-SC. The shape of absorptance spectrum in ITO-SC is dominated by that of P3HT/PCBM layer, but not in PlaCSH-SC.

Fig. 5
Fig. 5

Optical and electrical properties of metallic electrode with subwavelength hole-array (MESH). Measurements of sheet-resistance (a), reflectance (b), transmittance (c), and absorptance (d) of 30nm thick Au MESHs on glass (MESH-only) with 75nm, 125nm and 175 nm hole size and 200 nm period as well as the 100 nm thick annealed ITO film on glass (ITO-only). The measured sheet-resistance is 10 ohm/sq for of the ITO, but 2.2 ohm/sq or less for the MESH’s –making them at least 4.5 fold better. The smaller the hole diameter is, the smaller the sheet resistance of MESH, but higher light reflectance and absorptance. Compared with Fig. 4, after PlaCSH-SC formation, both the reflectance and absorptance of MESH drop significantly by 2 to 5 fold in reflectance and as large as 6.7 fold in absorptance at 500nm wavelength. In contrast, for the ITO, the reflectance, after ITO-SC formation, increases drastically by 2 to 5.8 fold.

Fig. 6
Fig. 6

Broad-band Omni acceptance (near angle and polarization independence) in PlaCSH-SC. Measured incident light angle and polarization dependence of photocurrent under a white light (a), reflectance at 500 nm and 750 nm wavelength (b), and reflectance spectra under a white light (c) for PlaCSH-SC and ITO-SC (The photocurrent is scaled to that of PlaCSH at normal light incident). They show that the angle and polarization dependence of photocurrent under white light in PlaCSH is significantly less than ITO-SC by a factor of 3 to 6 fold for s-wave and 4 to 7 fold for p-wave. The photocurrent changes observed are consistent with the measured reflectance changes. The property of PlaSCH-SC, that light coupling into solar cell is nearly independent of light polarization and incident angle over entire possible angle, is termed “Omni acceptance”. The achieved high, board-band, Omni light acceptance of PlaCSH is 2 to 3 fold better than that of Si subwavelength antireflection, yet PlaCSH has a thickness over 10 fold thinner.

Fig. 7
Fig. 7

Measured absorptance spectrum of MIM and Comparison with MAM. The measured absorptance spectrum of PlaCSH-SC (MESH/Absorbing active layer/Metal) and the structures same as PlaCSH-SC and ITO-SC except replacing the absorbing active layer (P3HT/PCBM) by PMMA of the same optical thickness (MESH/Insulating (lossless)/Metal). They show the absorbing layer changes the optical property of a plasmonic cavity significantly. Using of an absorbing layer changes a plasmonic cavity from narrow band to broadband, and increases the absorption substantially.

Fig. 8
Fig. 8

Cavity length effect on efficiency, photocurrent, and absorptance of PlaCSH-SC. Power conversion efficiency (a) and absorptance spectrum (b) for PlaCSH-SC with different P3HT/PCBM layer thickness of 50, 82, 100, and 130 nm, showing that the ~85 nm thickness gives the best performance.

Fig. 9
Fig. 9

Calculated upper-limit of additional enhancement in conversion efficiency of PlaCSH over ITO solar cells due to Omni acceptance for detecting s and p-wave and unpolarized scattered light as a function of material index. For s-polarized light and unpolarized light, the additional enhancement of PlaCSH-SC in power conversion efficiency over ITO-SC due to Omni acceptance (enhancement factor upper-limit) is 81% and 41%, respectively, for the PlaCSH-SC using P3HT/PCBM (index of 2.2); and 142% and 61% for silicon PlaCSH-SC (index of 3.5).

Tables (2)

Tables Icon

Table 1 Properties of PlaCSH Solar Cell and Reference ITO Solar Cell

Tables Icon

Table 2 Electrical and Optical Properties of MESH-only and ITO-only

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ratio(n,p)= A PLH A c = (1 R PLS )I(θ,p)dΩ (1 R c (n,θ,p))I(θ,p)dΩ

Metrics