Abstract

The performance enhancement of polycrystalline Si solar cells by using an optimized discrete multilayer anti-reflection (AR) coating with broadband and omni-directional characteristics is presented. Discrete multilayer AR coatings are optimized by a genetic algorithm, and experimentally demonstrated by refractive-index tunable SiO2 nano-helix arrays and co-sputtered (SiO2)x(TiO2)1-x thin film layers. The optimized multilayer AR coating shows a reduced total reflection, leading to the high incident-photon-to-electron conversion efficiency over a correspondingly wide range of wavelengths and incident angles, offering a very promising way to harvest more solar energy by virtually any type of solar cells for a longer time of a day.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zhao, M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991).
    [CrossRef]
  2. L. Schirone, G. Sotgiu, F. P. Califano, “Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells,” Thin Solid Films 297(1-2), 296–298 (1997).
    [CrossRef]
  3. J. S. Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. Lond. Math. Soc. S11(1), 51–56 (1879).
    [CrossRef]
  4. Y.-A. Dai, H.-C. Chang, K.-Y. Lai, C.-A. Lin, R.-J. Chung, G.-R. Lin, J.-H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem. 20(48), 10924–10930 (2010).
    [CrossRef]
  5. C. C. Striemer, P. M. Fauchet, “Dynamic etching of silicon for broadband antireflection applications,” Appl. Phys. Lett. 81(16), 2980–2982 (2002).
    [CrossRef]
  6. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
    [CrossRef] [PubMed]
  7. C. Lee, S. Y. Bae, S. Mobasser, H. Manohara, “A Novel Silicon Nanotips Antireflection Surface for the Micro Sun Sensor,” Nano Lett. 5(12), 2438–2442 (2005).
    [CrossRef] [PubMed]
  8. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
    [CrossRef] [PubMed]
  9. K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
    [CrossRef]
  10. Y. Kanamori, M. Sasaki, K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999).
    [CrossRef] [PubMed]
  11. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
    [CrossRef] [PubMed]
  12. S. Hyun Lee, G. Earle Jellison, C. E. Duty, J. Xu, “Light confinement-induced antireflection of ZnO nanocones,” Appl. Phys. Lett. 99(15), 153113 (2011).
    [CrossRef]
  13. Y.-C. Chao, C.-Y. Chen, C.-A. Lin, J.-H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy and Environ. Sci. 4(9), 3436–3441 (2011).
    [CrossRef]
  14. M. F. Schubert, D. J. Poxson, F. W. Mont, J. K. Kim, E. F. Schubert, “Performance of antireflection coatings consisting of multiple discrete layers and comparison with continuously graded antireflection coatings,” Appl. Phys. Express 3(8), 082502 (2010).
    [CrossRef]
  15. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  16. J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.) 20(4), 801–804 (2008).
    [CrossRef]
  17. P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.) 21(16), 1618–1621 (2009).
    [CrossRef]
  18. S. Chhajed, M. F. Schubert, J. K. Kim, E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
    [CrossRef]
  19. D. J. Poxson, M. F. Schubert, F. W. Mont, E. F. Schubert, J. K. Kim, “Broadband omnidirectional antireflection coatings optimized by genetic algorithm,” Opt. Lett. 34(6), 728–730 (2009).
    [CrossRef] [PubMed]
  20. D. J. Poxson, M.-L. Kuo, F. W. Mont, Y.-S. Kim, X. Yan, R. E. Welser, A. K. Sood, J. Cho, S.-Y. Lin, E. F. Schubert, “High-performance antireflection coatings utilizing nanoporous layers,” MRS Bull. 36(06), 434–438 (2011).
    [CrossRef]
  21. M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express 16(8), 5290–5298 (2008).
    [CrossRef] [PubMed]
  22. S. Chhajed, D. J. Poxson, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, J. K. Kim, “Nanostructured multilayer tailored-refractive-index antireflection coating for glass with broadband and omnidirectional characteristics,” Appl. Phys. Express 4(5), 052503 (2011).
    [CrossRef]
  23. S. V. Nitta, V. Pisupatti, A. Jain, P. C. Wayner, W. N. Gill, J. L. Plawsky, “Surface modified spin on xerogel films as interlayer dielectrics,” J. Vac. Sci. Technol. B 17(1), 205–212 (1999).
    [CrossRef]
  24. J. Q. Xi, M. Ojha, J. L. Plawsky, W. N. Gill, J. K. Kim, E. F. Schubert, “Internal high-reflectivity omni-directional reflectors,” Appl. Phys. Lett. 87(3), 031111 (2005).
    [CrossRef]
  25. L. Abelmann, C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305(1-2), 1–21 (1997).
    [CrossRef]
  26. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Annalen der Physik 416(7), 636–664 (1935).
    [CrossRef]
  27. A. M. Goodman, “Optical interference method for the approximate determination of refractive index and thickness of a transparent layer,” Appl. Opt. 17(17), 2779–2787 (1978).
    [CrossRef] [PubMed]
  28. M. Khardani, M. Bouaïcha, B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 4(6), 1986–1990 (2007).

2011 (4)

S. Hyun Lee, G. Earle Jellison, C. E. Duty, J. Xu, “Light confinement-induced antireflection of ZnO nanocones,” Appl. Phys. Lett. 99(15), 153113 (2011).
[CrossRef]

Y.-C. Chao, C.-Y. Chen, C.-A. Lin, J.-H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy and Environ. Sci. 4(9), 3436–3441 (2011).
[CrossRef]

D. J. Poxson, M.-L. Kuo, F. W. Mont, Y.-S. Kim, X. Yan, R. E. Welser, A. K. Sood, J. Cho, S.-Y. Lin, E. F. Schubert, “High-performance antireflection coatings utilizing nanoporous layers,” MRS Bull. 36(06), 434–438 (2011).
[CrossRef]

S. Chhajed, D. J. Poxson, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, J. K. Kim, “Nanostructured multilayer tailored-refractive-index antireflection coating for glass with broadband and omnidirectional characteristics,” Appl. Phys. Express 4(5), 052503 (2011).
[CrossRef]

2010 (2)

M. F. Schubert, D. J. Poxson, F. W. Mont, J. K. Kim, E. F. Schubert, “Performance of antireflection coatings consisting of multiple discrete layers and comparison with continuously graded antireflection coatings,” Appl. Phys. Express 3(8), 082502 (2010).
[CrossRef]

Y.-A. Dai, H.-C. Chang, K.-Y. Lai, C.-A. Lin, R.-J. Chung, G.-R. Lin, J.-H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem. 20(48), 10924–10930 (2010).
[CrossRef]

2009 (3)

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.) 21(16), 1618–1621 (2009).
[CrossRef]

D. J. Poxson, M. F. Schubert, F. W. Mont, E. F. Schubert, J. K. Kim, “Broadband omnidirectional antireflection coatings optimized by genetic algorithm,” Opt. Lett. 34(6), 728–730 (2009).
[CrossRef] [PubMed]

2008 (4)

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.) 20(4), 801–804 (2008).
[CrossRef]

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express 16(8), 5290–5298 (2008).
[CrossRef] [PubMed]

S. Chhajed, M. F. Schubert, J. K. Kim, E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

2007 (3)

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

M. Khardani, M. Bouaïcha, B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 4(6), 1986–1990 (2007).

2005 (2)

J. Q. Xi, M. Ojha, J. L. Plawsky, W. N. Gill, J. K. Kim, E. F. Schubert, “Internal high-reflectivity omni-directional reflectors,” Appl. Phys. Lett. 87(3), 031111 (2005).
[CrossRef]

C. Lee, S. Y. Bae, S. Mobasser, H. Manohara, “A Novel Silicon Nanotips Antireflection Surface for the Micro Sun Sensor,” Nano Lett. 5(12), 2438–2442 (2005).
[CrossRef] [PubMed]

2002 (1)

C. C. Striemer, P. M. Fauchet, “Dynamic etching of silicon for broadband antireflection applications,” Appl. Phys. Lett. 81(16), 2980–2982 (2002).
[CrossRef]

2000 (1)

K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

1999 (2)

Y. Kanamori, M. Sasaki, K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999).
[CrossRef] [PubMed]

S. V. Nitta, V. Pisupatti, A. Jain, P. C. Wayner, W. N. Gill, J. L. Plawsky, “Surface modified spin on xerogel films as interlayer dielectrics,” J. Vac. Sci. Technol. B 17(1), 205–212 (1999).
[CrossRef]

1997 (2)

L. Abelmann, C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305(1-2), 1–21 (1997).
[CrossRef]

L. Schirone, G. Sotgiu, F. P. Califano, “Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells,” Thin Solid Films 297(1-2), 296–298 (1997).
[CrossRef]

1991 (1)

J. Zhao, M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991).
[CrossRef]

1978 (1)

1935 (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Annalen der Physik 416(7), 636–664 (1935).
[CrossRef]

1879 (1)

J. S. Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. Lond. Math. Soc. S11(1), 51–56 (1879).
[CrossRef]

Abelmann, L.

L. Abelmann, C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305(1-2), 1–21 (1997).
[CrossRef]

Acet, M.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

Bae, S. Y.

C. Lee, S. Y. Bae, S. Mobasser, H. Manohara, “A Novel Silicon Nanotips Antireflection Surface for the Micro Sun Sensor,” Nano Lett. 5(12), 2438–2442 (2005).
[CrossRef] [PubMed]

Bessaïs, B.

M. Khardani, M. Bouaïcha, B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 4(6), 1986–1990 (2007).

Bouaïcha, M.

M. Khardani, M. Bouaïcha, B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 4(6), 1986–1990 (2007).

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Annalen der Physik 416(7), 636–664 (1935).
[CrossRef]

Burkhard, G. F.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Califano, F. P.

L. Schirone, G. Sotgiu, F. P. Califano, “Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells,” Thin Solid Films 297(1-2), 296–298 (1997).
[CrossRef]

Carl, A.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

Chang, C.-H.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.) 21(16), 1618–1621 (2009).
[CrossRef]

Chang, H.-C.

Y.-A. Dai, H.-C. Chang, K.-Y. Lai, C.-A. Lin, R.-J. Chung, G.-R. Lin, J.-H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem. 20(48), 10924–10930 (2010).
[CrossRef]

Chang, Y. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chang, Y.-C.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.) 21(16), 1618–1621 (2009).
[CrossRef]

Chao, Y.-C.

Y.-C. Chao, C.-Y. Chen, C.-A. Lin, J.-H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy and Environ. Sci. 4(9), 3436–3441 (2011).
[CrossRef]

Chattopadhyay, S.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chen, C.-Y.

Y.-C. Chao, C.-Y. Chen, C.-A. Lin, J.-H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy and Environ. Sci. 4(9), 3436–3441 (2011).
[CrossRef]

Chen, K. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chen, L. C.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chen, M.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Chhajed, S.

S. Chhajed, D. J. Poxson, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, J. K. Kim, “Nanostructured multilayer tailored-refractive-index antireflection coating for glass with broadband and omnidirectional characteristics,” Appl. Phys. Express 4(5), 052503 (2011).
[CrossRef]

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express 16(8), 5290–5298 (2008).
[CrossRef] [PubMed]

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.) 20(4), 801–804 (2008).
[CrossRef]

S. Chhajed, M. F. Schubert, J. K. Kim, E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

Chiu, C.-H.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.) 21(16), 1618–1621 (2009).
[CrossRef]

Cho, J.

D. J. Poxson, M.-L. Kuo, F. W. Mont, Y.-S. Kim, X. Yan, R. E. Welser, A. K. Sood, J. Cho, S.-Y. Lin, E. F. Schubert, “High-performance antireflection coatings utilizing nanoporous layers,” MRS Bull. 36(06), 434–438 (2011).
[CrossRef]

S. Chhajed, D. J. Poxson, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, J. K. Kim, “Nanostructured multilayer tailored-refractive-index antireflection coating for glass with broadband and omnidirectional characteristics,” Appl. Phys. Express 4(5), 052503 (2011).
[CrossRef]

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.) 20(4), 801–804 (2008).
[CrossRef]

Chung, R.-J.

Y.-A. Dai, H.-C. Chang, K.-Y. Lai, C.-A. Lin, R.-J. Chung, G.-R. Lin, J.-H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem. 20(48), 10924–10930 (2010).
[CrossRef]

Connor, S. T.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Crawford, M. H.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.) 20(4), 801–804 (2008).
[CrossRef]

Cui, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Dai, Y.-A.

Y.-A. Dai, H.-C. Chang, K.-Y. Lai, C.-A. Lin, R.-J. Chung, G.-R. Lin, J.-H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem. 20(48), 10924–10930 (2010).
[CrossRef]

Duty, C. E.

S. Hyun Lee, G. Earle Jellison, C. E. Duty, J. Xu, “Light confinement-induced antireflection of ZnO nanocones,” Appl. Phys. Lett. 99(15), 153113 (2011).
[CrossRef]

Earle Jellison, G.

S. Hyun Lee, G. Earle Jellison, C. E. Duty, J. Xu, “Light confinement-induced antireflection of ZnO nanocones,” Appl. Phys. Lett. 99(15), 153113 (2011).
[CrossRef]

Fan, S.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Fauchet, P. M.

C. C. Striemer, P. M. Fauchet, “Dynamic etching of silicon for broadband antireflection applications,” Appl. Phys. Lett. 81(16), 2980–2982 (2002).
[CrossRef]

Fischer, A. J.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.) 20(4), 801–804 (2008).
[CrossRef]

Gill, W. N.

J. Q. Xi, M. Ojha, J. L. Plawsky, W. N. Gill, J. K. Kim, E. F. Schubert, “Internal high-reflectivity omni-directional reflectors,” Appl. Phys. Lett. 87(3), 031111 (2005).
[CrossRef]

S. V. Nitta, V. Pisupatti, A. Jain, P. C. Wayner, W. N. Gill, J. L. Plawsky, “Surface modified spin on xerogel films as interlayer dielectrics,” J. Vac. Sci. Technol. B 17(1), 205–212 (1999).
[CrossRef]

Goodman, A. M.

Green, M. A.

J. Zhao, M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991).
[CrossRef]

Hadobás, K.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

Hane, K.

He, J.-H.

Y.-C. Chao, C.-Y. Chen, C.-A. Lin, J.-H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy and Environ. Sci. 4(9), 3436–3441 (2011).
[CrossRef]

Y.-A. Dai, H.-C. Chang, K.-Y. Lai, C.-A. Lin, R.-J. Chung, G.-R. Lin, J.-H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem. 20(48), 10924–10930 (2010).
[CrossRef]

Hsu, C. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Hsu, C.-M.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Hsu, J. W. P.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Hsu, S.-H.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.) 21(16), 1618–1621 (2009).
[CrossRef]

Hsu, Y. K.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Huang, Y. F.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Hyun Lee, S.

S. Hyun Lee, G. Earle Jellison, C. E. Duty, J. Xu, “Light confinement-induced antireflection of ZnO nanocones,” Appl. Phys. Lett. 99(15), 153113 (2011).
[CrossRef]

Jain, A.

S. V. Nitta, V. Pisupatti, A. Jain, P. C. Wayner, W. N. Gill, J. L. Plawsky, “Surface modified spin on xerogel films as interlayer dielectrics,” J. Vac. Sci. Technol. B 17(1), 205–212 (1999).
[CrossRef]

Jen, Y. J.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Kanamori, Y.

Khardani, M.

M. Khardani, M. Bouaïcha, B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 4(6), 1986–1990 (2007).

Kim, H.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.) 20(4), 801–804 (2008).
[CrossRef]

Kim, J. K.

S. Chhajed, D. J. Poxson, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, J. K. Kim, “Nanostructured multilayer tailored-refractive-index antireflection coating for glass with broadband and omnidirectional characteristics,” Appl. Phys. Express 4(5), 052503 (2011).
[CrossRef]

M. F. Schubert, D. J. Poxson, F. W. Mont, J. K. Kim, E. F. Schubert, “Performance of antireflection coatings consisting of multiple discrete layers and comparison with continuously graded antireflection coatings,” Appl. Phys. Express 3(8), 082502 (2010).
[CrossRef]

D. J. Poxson, M. F. Schubert, F. W. Mont, E. F. Schubert, J. K. Kim, “Broadband omnidirectional antireflection coatings optimized by genetic algorithm,” Opt. Lett. 34(6), 728–730 (2009).
[CrossRef] [PubMed]

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express 16(8), 5290–5298 (2008).
[CrossRef] [PubMed]

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.) 20(4), 801–804 (2008).
[CrossRef]

S. Chhajed, M. F. Schubert, J. K. Kim, E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

J. Q. Xi, M. Ojha, J. L. Plawsky, W. N. Gill, J. K. Kim, E. F. Schubert, “Internal high-reflectivity omni-directional reflectors,” Appl. Phys. Lett. 87(3), 031111 (2005).
[CrossRef]

Kim, Y.-S.

D. J. Poxson, M.-L. Kuo, F. W. Mont, Y.-S. Kim, X. Yan, R. E. Welser, A. K. Sood, J. Cho, S.-Y. Lin, E. F. Schubert, “High-performance antireflection coatings utilizing nanoporous layers,” MRS Bull. 36(06), 434–438 (2011).
[CrossRef]

Kirsch, S.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

Kuo, H.-C.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.) 21(16), 1618–1621 (2009).
[CrossRef]

Kuo, M.-L.

D. J. Poxson, M.-L. Kuo, F. W. Mont, Y.-S. Kim, X. Yan, R. E. Welser, A. K. Sood, J. Cho, S.-Y. Lin, E. F. Schubert, “High-performance antireflection coatings utilizing nanoporous layers,” MRS Bull. 36(06), 434–438 (2011).
[CrossRef]

Lai, K.-Y.

Y.-A. Dai, H.-C. Chang, K.-Y. Lai, C.-A. Lin, R.-J. Chung, G.-R. Lin, J.-H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem. 20(48), 10924–10930 (2010).
[CrossRef]

Lee, C.

C. Lee, S. Y. Bae, S. Mobasser, H. Manohara, “A Novel Silicon Nanotips Antireflection Surface for the Micro Sun Sensor,” Nano Lett. 5(12), 2438–2442 (2005).
[CrossRef] [PubMed]

Lee, C. S.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Lee, Y. J.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Lin, C.-A.

Y.-C. Chao, C.-Y. Chen, C.-A. Lin, J.-H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy and Environ. Sci. 4(9), 3436–3441 (2011).
[CrossRef]

Y.-A. Dai, H.-C. Chang, K.-Y. Lai, C.-A. Lin, R.-J. Chung, G.-R. Lin, J.-H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem. 20(48), 10924–10930 (2010).
[CrossRef]

Lin, G.-R.

Y.-A. Dai, H.-C. Chang, K.-Y. Lai, C.-A. Lin, R.-J. Chung, G.-R. Lin, J.-H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem. 20(48), 10924–10930 (2010).
[CrossRef]

Lin, S. Y.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Lin, S.-Y.

D. J. Poxson, M.-L. Kuo, F. W. Mont, Y.-S. Kim, X. Yan, R. E. Welser, A. K. Sood, J. Cho, S.-Y. Lin, E. F. Schubert, “High-performance antireflection coatings utilizing nanoporous layers,” MRS Bull. 36(06), 434–438 (2011).
[CrossRef]

Liu, T. A.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Liu, W.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Lo, H. C.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Lodder, C.

L. Abelmann, C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305(1-2), 1–21 (1997).
[CrossRef]

Manohara, H.

C. Lee, S. Y. Bae, S. Mobasser, H. Manohara, “A Novel Silicon Nanotips Antireflection Surface for the Micro Sun Sensor,” Nano Lett. 5(12), 2438–2442 (2005).
[CrossRef] [PubMed]

McGehee, M.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

McKenzie, B. B.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Mobasser, S.

C. Lee, S. Y. Bae, S. Mobasser, H. Manohara, “A Novel Silicon Nanotips Antireflection Surface for the Micro Sun Sensor,” Nano Lett. 5(12), 2438–2442 (2005).
[CrossRef] [PubMed]

Mont, F. W.

D. J. Poxson, M.-L. Kuo, F. W. Mont, Y.-S. Kim, X. Yan, R. E. Welser, A. K. Sood, J. Cho, S.-Y. Lin, E. F. Schubert, “High-performance antireflection coatings utilizing nanoporous layers,” MRS Bull. 36(06), 434–438 (2011).
[CrossRef]

M. F. Schubert, D. J. Poxson, F. W. Mont, J. K. Kim, E. F. Schubert, “Performance of antireflection coatings consisting of multiple discrete layers and comparison with continuously graded antireflection coatings,” Appl. Phys. Express 3(8), 082502 (2010).
[CrossRef]

D. J. Poxson, M. F. Schubert, F. W. Mont, E. F. Schubert, J. K. Kim, “Broadband omnidirectional antireflection coatings optimized by genetic algorithm,” Opt. Lett. 34(6), 728–730 (2009).
[CrossRef] [PubMed]

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express 16(8), 5290–5298 (2008).
[CrossRef] [PubMed]

Nitta, S. V.

S. V. Nitta, V. Pisupatti, A. Jain, P. C. Wayner, W. N. Gill, J. L. Plawsky, “Surface modified spin on xerogel films as interlayer dielectrics,” J. Vac. Sci. Technol. B 17(1), 205–212 (1999).
[CrossRef]

Ojha, M.

J. Q. Xi, M. Ojha, J. L. Plawsky, W. N. Gill, J. K. Kim, E. F. Schubert, “Internal high-reflectivity omni-directional reflectors,” Appl. Phys. Lett. 87(3), 031111 (2005).
[CrossRef]

Pan, C. L.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Peng, C. Y.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Peters, D. W.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Pisupatti, V.

S. V. Nitta, V. Pisupatti, A. Jain, P. C. Wayner, W. N. Gill, J. L. Plawsky, “Surface modified spin on xerogel films as interlayer dielectrics,” J. Vac. Sci. Technol. B 17(1), 205–212 (1999).
[CrossRef]

Plawsky, J. L.

J. Q. Xi, M. Ojha, J. L. Plawsky, W. N. Gill, J. K. Kim, E. F. Schubert, “Internal high-reflectivity omni-directional reflectors,” Appl. Phys. Lett. 87(3), 031111 (2005).
[CrossRef]

S. V. Nitta, V. Pisupatti, A. Jain, P. C. Wayner, W. N. Gill, J. L. Plawsky, “Surface modified spin on xerogel films as interlayer dielectrics,” J. Vac. Sci. Technol. B 17(1), 205–212 (1999).
[CrossRef]

Poxson, D. J.

S. Chhajed, D. J. Poxson, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, J. K. Kim, “Nanostructured multilayer tailored-refractive-index antireflection coating for glass with broadband and omnidirectional characteristics,” Appl. Phys. Express 4(5), 052503 (2011).
[CrossRef]

D. J. Poxson, M.-L. Kuo, F. W. Mont, Y.-S. Kim, X. Yan, R. E. Welser, A. K. Sood, J. Cho, S.-Y. Lin, E. F. Schubert, “High-performance antireflection coatings utilizing nanoporous layers,” MRS Bull. 36(06), 434–438 (2011).
[CrossRef]

M. F. Schubert, D. J. Poxson, F. W. Mont, J. K. Kim, E. F. Schubert, “Performance of antireflection coatings consisting of multiple discrete layers and comparison with continuously graded antireflection coatings,” Appl. Phys. Express 3(8), 082502 (2010).
[CrossRef]

D. J. Poxson, M. F. Schubert, F. W. Mont, E. F. Schubert, J. K. Kim, “Broadband omnidirectional antireflection coatings optimized by genetic algorithm,” Opt. Lett. 34(6), 728–730 (2009).
[CrossRef] [PubMed]

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express 16(8), 5290–5298 (2008).
[CrossRef] [PubMed]

Rayleigh, J. S.

J. S. Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. Lond. Math. Soc. S11(1), 51–56 (1879).
[CrossRef]

Ruby, D. S.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Sasaki, M.

Schirone, L.

L. Schirone, G. Sotgiu, F. P. Califano, “Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells,” Thin Solid Films 297(1-2), 296–298 (1997).
[CrossRef]

Schubert, E. F.

S. Chhajed, D. J. Poxson, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, J. K. Kim, “Nanostructured multilayer tailored-refractive-index antireflection coating for glass with broadband and omnidirectional characteristics,” Appl. Phys. Express 4(5), 052503 (2011).
[CrossRef]

D. J. Poxson, M.-L. Kuo, F. W. Mont, Y.-S. Kim, X. Yan, R. E. Welser, A. K. Sood, J. Cho, S.-Y. Lin, E. F. Schubert, “High-performance antireflection coatings utilizing nanoporous layers,” MRS Bull. 36(06), 434–438 (2011).
[CrossRef]

M. F. Schubert, D. J. Poxson, F. W. Mont, J. K. Kim, E. F. Schubert, “Performance of antireflection coatings consisting of multiple discrete layers and comparison with continuously graded antireflection coatings,” Appl. Phys. Express 3(8), 082502 (2010).
[CrossRef]

D. J. Poxson, M. F. Schubert, F. W. Mont, E. F. Schubert, J. K. Kim, “Broadband omnidirectional antireflection coatings optimized by genetic algorithm,” Opt. Lett. 34(6), 728–730 (2009).
[CrossRef] [PubMed]

S. Chhajed, M. F. Schubert, J. K. Kim, E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.) 20(4), 801–804 (2008).
[CrossRef]

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express 16(8), 5290–5298 (2008).
[CrossRef] [PubMed]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

J. Q. Xi, M. Ojha, J. L. Plawsky, W. N. Gill, J. K. Kim, E. F. Schubert, “Internal high-reflectivity omni-directional reflectors,” Appl. Phys. Lett. 87(3), 031111 (2005).
[CrossRef]

Schubert, M. F.

M. F. Schubert, D. J. Poxson, F. W. Mont, J. K. Kim, E. F. Schubert, “Performance of antireflection coatings consisting of multiple discrete layers and comparison with continuously graded antireflection coatings,” Appl. Phys. Express 3(8), 082502 (2010).
[CrossRef]

D. J. Poxson, M. F. Schubert, F. W. Mont, E. F. Schubert, J. K. Kim, “Broadband omnidirectional antireflection coatings optimized by genetic algorithm,” Opt. Lett. 34(6), 728–730 (2009).
[CrossRef] [PubMed]

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express 16(8), 5290–5298 (2008).
[CrossRef] [PubMed]

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.) 20(4), 801–804 (2008).
[CrossRef]

S. Chhajed, M. F. Schubert, J. K. Kim, E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Smart, J. A.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Sone, C.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.) 20(4), 801–804 (2008).
[CrossRef]

Sood, A. K.

D. J. Poxson, M.-L. Kuo, F. W. Mont, Y.-S. Kim, X. Yan, R. E. Welser, A. K. Sood, J. Cho, S.-Y. Lin, E. F. Schubert, “High-performance antireflection coatings utilizing nanoporous layers,” MRS Bull. 36(06), 434–438 (2011).
[CrossRef]

S. Chhajed, D. J. Poxson, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, J. K. Kim, “Nanostructured multilayer tailored-refractive-index antireflection coating for glass with broadband and omnidirectional characteristics,” Appl. Phys. Express 4(5), 052503 (2011).
[CrossRef]

Sotgiu, G.

L. Schirone, G. Sotgiu, F. P. Califano, “Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells,” Thin Solid Films 297(1-2), 296–298 (1997).
[CrossRef]

Striemer, C. C.

C. C. Striemer, P. M. Fauchet, “Dynamic etching of silicon for broadband antireflection applications,” Appl. Phys. Lett. 81(16), 2980–2982 (2002).
[CrossRef]

Wang, Q.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Wassermann, E. F.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

Wayner, P. C.

S. V. Nitta, V. Pisupatti, A. Jain, P. C. Wayner, W. N. Gill, J. L. Plawsky, “Surface modified spin on xerogel films as interlayer dielectrics,” J. Vac. Sci. Technol. B 17(1), 205–212 (1999).
[CrossRef]

Welser, R. E.

S. Chhajed, D. J. Poxson, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, J. K. Kim, “Nanostructured multilayer tailored-refractive-index antireflection coating for glass with broadband and omnidirectional characteristics,” Appl. Phys. Express 4(5), 052503 (2011).
[CrossRef]

D. J. Poxson, M.-L. Kuo, F. W. Mont, Y.-S. Kim, X. Yan, R. E. Welser, A. K. Sood, J. Cho, S.-Y. Lin, E. F. Schubert, “High-performance antireflection coatings utilizing nanoporous layers,” MRS Bull. 36(06), 434–438 (2011).
[CrossRef]

Xi, J. Q.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

J. Q. Xi, M. Ojha, J. L. Plawsky, W. N. Gill, J. K. Kim, E. F. Schubert, “Internal high-reflectivity omni-directional reflectors,” Appl. Phys. Lett. 87(3), 031111 (2005).
[CrossRef]

Xu, J.

S. Hyun Lee, G. Earle Jellison, C. E. Duty, J. Xu, “Light confinement-induced antireflection of ZnO nanocones,” Appl. Phys. Lett. 99(15), 153113 (2011).
[CrossRef]

Xu, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Yan, X.

S. Chhajed, D. J. Poxson, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, J. K. Kim, “Nanostructured multilayer tailored-refractive-index antireflection coating for glass with broadband and omnidirectional characteristics,” Appl. Phys. Express 4(5), 052503 (2011).
[CrossRef]

D. J. Poxson, M.-L. Kuo, F. W. Mont, Y.-S. Kim, X. Yan, R. E. Welser, A. K. Sood, J. Cho, S.-Y. Lin, E. F. Schubert, “High-performance antireflection coatings utilizing nanoporous layers,” MRS Bull. 36(06), 434–438 (2011).
[CrossRef]

Yang, C.-S.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.) 21(16), 1618–1621 (2009).
[CrossRef]

Yu, J.-C.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.) 21(16), 1618–1621 (2009).
[CrossRef]

Yu, P.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.) 21(16), 1618–1621 (2009).
[CrossRef]

Yu, Z.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Zhao, J.

J. Zhao, M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991).
[CrossRef]

Zhu, J.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (2)

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. (Deerfield Beach Fla.) 20(4), 801–804 (2008).
[CrossRef]

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.) 21(16), 1618–1621 (2009).
[CrossRef]

Annalen der Physik (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Annalen der Physik 416(7), 636–664 (1935).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Express (2)

M. F. Schubert, D. J. Poxson, F. W. Mont, J. K. Kim, E. F. Schubert, “Performance of antireflection coatings consisting of multiple discrete layers and comparison with continuously graded antireflection coatings,” Appl. Phys. Express 3(8), 082502 (2010).
[CrossRef]

S. Chhajed, D. J. Poxson, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, J. K. Kim, “Nanostructured multilayer tailored-refractive-index antireflection coating for glass with broadband and omnidirectional characteristics,” Appl. Phys. Express 4(5), 052503 (2011).
[CrossRef]

Appl. Phys. Lett. (4)

J. Q. Xi, M. Ojha, J. L. Plawsky, W. N. Gill, J. K. Kim, E. F. Schubert, “Internal high-reflectivity omni-directional reflectors,” Appl. Phys. Lett. 87(3), 031111 (2005).
[CrossRef]

S. Chhajed, M. F. Schubert, J. K. Kim, E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

S. Hyun Lee, G. Earle Jellison, C. E. Duty, J. Xu, “Light confinement-induced antireflection of ZnO nanocones,” Appl. Phys. Lett. 99(15), 153113 (2011).
[CrossRef]

C. C. Striemer, P. M. Fauchet, “Dynamic etching of silicon for broadband antireflection applications,” Appl. Phys. Lett. 81(16), 2980–2982 (2002).
[CrossRef]

Energy and Environ. Sci. (1)

Y.-C. Chao, C.-Y. Chen, C.-A. Lin, J.-H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy and Environ. Sci. 4(9), 3436–3441 (2011).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

J. Zhao, M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991).
[CrossRef]

J. Mater. Chem. (1)

Y.-A. Dai, H.-C. Chang, K.-Y. Lai, C.-A. Lin, R.-J. Chung, G.-R. Lin, J.-H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem. 20(48), 10924–10930 (2010).
[CrossRef]

J. Vac. Sci. Technol. B (1)

S. V. Nitta, V. Pisupatti, A. Jain, P. C. Wayner, W. N. Gill, J. L. Plawsky, “Surface modified spin on xerogel films as interlayer dielectrics,” J. Vac. Sci. Technol. B 17(1), 205–212 (1999).
[CrossRef]

MRS Bull. (1)

D. J. Poxson, M.-L. Kuo, F. W. Mont, Y.-S. Kim, X. Yan, R. E. Welser, A. K. Sood, J. Cho, S.-Y. Lin, E. F. Schubert, “High-performance antireflection coatings utilizing nanoporous layers,” MRS Bull. 36(06), 434–438 (2011).
[CrossRef]

Nano Lett. (3)

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef] [PubMed]

C. Lee, S. Y. Bae, S. Mobasser, H. Manohara, “A Novel Silicon Nanotips Antireflection Surface for the Micro Sun Sensor,” Nano Lett. 5(12), 2438–2442 (2005).
[CrossRef] [PubMed]

Nanotechnology (1)

K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

Nat. Nanotechnol. (1)

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Opt. Express (1)

Opt. Lett. (2)

Phys. Status Solidi., C Curr. Top. Solid State Phys. (1)

M. Khardani, M. Bouaïcha, B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 4(6), 1986–1990 (2007).

Proc. Lond. Math. Soc. (1)

J. S. Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. Lond. Math. Soc. S11(1), 51–56 (1879).
[CrossRef]

Thin Solid Films (2)

L. Schirone, G. Sotgiu, F. P. Califano, “Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells,” Thin Solid Films 297(1-2), 296–298 (1997).
[CrossRef]

L. Abelmann, C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305(1-2), 1–21 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Wavelength- and angle-dependent reflectance of (a) single-layer, (b) double-layer and (c) 4-layer AR coatings. The structure of each AR coating was optimized by the genetic algorithm to minimize average reflectance over 400 to 1100nm wavelength range and 0° to 80° incident angle range. (d) Averaged reflectance of discrete multilayer AR coatings as a function of the number of layers.

Fig. 2
Fig. 2

(a) Measured refractive index of co-sputtered (SiO2)x(TiO2)1-x thin films as a function of relative RF plasma power applied to the TiO2 target. (b) Measured refractive index and calculated porosity of SiO2 thin films deposited by OAD as a function of deposition angle, θ.

Fig. 3
Fig. 3

(a) Cross-section SEM image and refractive index profile of the 4-layer AR coating on Si substrate. (b) Designed and measured values of thickness and refractive index of each layer for the optimized 4-layer AR coating.

Fig. 4
Fig. 4

(a) Measured wavelength- and angle-dependent reflectance of the 4-layer AR coating. (b) The difference between the measured reflectance [Fig. 4(a)] and calculated reflectance [Fig. 1(c)].

Fig. 5
Fig. 5

Measured reflectance of bare silicon, Si3N4, 4-layer AR coating measured at 550nm ((a) ~(c)) and 850nm ((d) ~(f)). Reflectance of each sample is plotted as a function of the difference between the angle of detector (AOD) and the angle of incidence (AOI)on a log scale with varying AOI – 7° ((a), (d)), 30° ((b), (e)), and 60° ((c), (f)).

Fig. 6
Fig. 6

(a) The total reflectance measured from bare and AR coated (Si3N4 and 4-layer AR coatings) polycrystalline Si solar cells as a function of wavelength. (b) Photograph of polycrystalline Si solar cell with the Si3N4(bluish color, left) and the 4-layer AR coatings(black color, right).

Fig. 7
Fig. 7

(a) Measured IPCE of polycrystalline Si solar cells with the Si3N4 and the4-layer AR coatings at normal incidence as a function of wavelength, together with the total reflectance. (b) Measured short circuit current density of polycrystalline Si solar cells with the Si3N4 and the 4-layer AR coatings as a function of incident angle. The short circuit current density is calculated by integrating the IPCE values.

Tables (2)

Tables Icon

Table 1 The thickness, material, and refractive index at λ = 550nm of each layer constituting 1-layer, 2-layer and 4-layer AR coatings optimized by the GA.

Tables Icon

Table 2 Designed and measured thickness and refractive index of the individual layers of the 4-layer AR coating. The first and second layer, and the third and fourth layer were deposited by co-sputtering and OAD, respectively. Deposition conditions of co-sputtering and OAD are chosen to acquire desired refractive index.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R avg = 1 λ 2 λ 1 1 θ 2 θ 1 λ 1 λ 2 θ 1 θ 2 R TE (λ,θ)+ R TM (λ,θ) 2 cosθ d θdλ
J SC = qF(λ)QE(λ) dλ

Metrics