Abstract

We generate a 105.7-Gb/s signal by directly modulating a 1.5-µm VCSEL with a 33.35-Gbaud 3-level signal and polarization multiplexing. By using digital coherent detection, we successfully transmit the 105.7-Gb/s line rate (88.10 Gb/s net bit rate) signal over 960-km standard single-mode-fiber (SSMF) at a 20% hard-decision forward-error correction (FEC) threshold, which is at bit-error ratio (BER) of 1.5x10−2.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer, “High-spectral-efficiency optical modulation formats,” J. Lightwave Technol.30(24), 3824–3835 (2012).
    [CrossRef]
  2. P. Evans, M. Fisher, R. Malendevich, A. James, P. Studenkov, G. Goldfarb, T. Vallaitis, M. Kato, P. Samra, S. Corzine, E. Strzelecka, R. Salvatore, F. Sedgwick, M. Kuntz, V. Lal, D. Lambert, A. Dentai, D. Pavinski, B. Behnia, J. Bostak, V. Dominic, A. Nilsson, B. Taylor, J. Rahn, S. Sanders, H. Sun, K.-T. Wu, J. Pleumeekers, R. Muthiah, M. Missey, R. Schneider, J. Stewart, M. Reffle, T. Butrie, R. Nagarajan, C. Joyner, M. Ziari, F. Kish, and D. Welch, “Multi-channel coherent PM-QPSK InP transmitter photonic integrated circuit (PIC) operating At 112 Gb/s per wavelength,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2011), paper PDPC7 (2011).
  3. P. Dong, C. Xie, L. Chen, L. L. Buhl, and Y.-K. Chen, “112-Gb/s monolithic PDM-QPSK modulator in silicon,” Opt. Express20(26), B624–B629 (2012).
    [CrossRef] [PubMed]
  4. M. C. Amann, E. Wong, and M. Müller, “Energy-efficient high-speed short-cavity VCSELs,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2012), paper OTh4F.1 (2012).
  5. D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “ A 55Gb/s directly modulated 850nm VCSEL-based optical link” in Proc. IEEE Photonics Conference (San Francisco, CA, USA, 2012), paper PD 1.5 (2012).
    [CrossRef]
  6. J. S. Gustavsson, A. Larsson, Å. Haglund, J. Bengtsson, P. Westbergh, R. Safaisini, and E. Haglund, “High speed 850nm VCSELs for > 40Gb/s transmission,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2013), paper OTh4H.4 (2013).
    [CrossRef]
  7. W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M.-C. Amann, “40 Gbit/s modulation of 1550 nm VCSEL,” Electron. Lett.47(4), 270–271 (2011).
    [CrossRef]
  8. R. Rodes, J. B. Jensen, D. Zibar, C. Neumeyr, E. Roenneberg, J. Rosskopf, M. Ortsiefer, and I. T. Monroy, “All-VCSEL based digital coherent detection link for multi Gbit/s WDM passive optical networks,” Opt. Express18(24), 24969–24974 (2010).
    [CrossRef] [PubMed]
  9. Y. Rao, C. Chase, M. C. Y. Huang, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, D. P. Worland, A. E. Willner, and C. J. Chang-Hasnain, “Continuous tunable 1550-nm high contrast grating VCSEL,” in CLEO Technical Digest 2012, paper CTh5C.3 (2012).
  10. R. Rodes, J. Estaran, B. Li, M. Müller, J. B. Jensen, T. Gründl, M. Ortsiefer, C. Neumeyr, J. Rosskopf, K. J. Larsen, M.-C. Amann, and I. T. Monroy, “100 Gb/s single VCSEL data transmission link,” Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2012), paper PDP5D.10 (2012).
    [CrossRef]
  11. M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.17(5), 1158–1166 (2011).
    [CrossRef]
  12. F. Yu, C. Xie, and L. Zeng, “Application aspects of enhanced FEC for 40/100G systems,” in Proc. European Conference on Optical Communication (Torino, Italy, 2010), workshop 11, (2011).

2012 (2)

2011 (2)

W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M.-C. Amann, “40 Gbit/s modulation of 1550 nm VCSEL,” Electron. Lett.47(4), 270–271 (2011).
[CrossRef]

M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.17(5), 1158–1166 (2011).
[CrossRef]

2010 (1)

Amann, M.-C.

W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M.-C. Amann, “40 Gbit/s modulation of 1550 nm VCSEL,” Electron. Lett.47(4), 270–271 (2011).
[CrossRef]

M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.17(5), 1158–1166 (2011).
[CrossRef]

Bimberg, D.

W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M.-C. Amann, “40 Gbit/s modulation of 1550 nm VCSEL,” Electron. Lett.47(4), 270–271 (2011).
[CrossRef]

M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.17(5), 1158–1166 (2011).
[CrossRef]

Böhm, G.

W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M.-C. Amann, “40 Gbit/s modulation of 1550 nm VCSEL,” Electron. Lett.47(4), 270–271 (2011).
[CrossRef]

M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.17(5), 1158–1166 (2011).
[CrossRef]

Buhl, L. L.

Chen, L.

Chen, Y.-K.

Dong, P.

Gründl, T.

M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.17(5), 1158–1166 (2011).
[CrossRef]

W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M.-C. Amann, “40 Gbit/s modulation of 1550 nm VCSEL,” Electron. Lett.47(4), 270–271 (2011).
[CrossRef]

Hofmann, W.

W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M.-C. Amann, “40 Gbit/s modulation of 1550 nm VCSEL,” Electron. Lett.47(4), 270–271 (2011).
[CrossRef]

M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.17(5), 1158–1166 (2011).
[CrossRef]

Horn, M.

M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.17(5), 1158–1166 (2011).
[CrossRef]

Jensen, J. B.

Monroy, I. T.

Müller, M.

W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M.-C. Amann, “40 Gbit/s modulation of 1550 nm VCSEL,” Electron. Lett.47(4), 270–271 (2011).
[CrossRef]

M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.17(5), 1158–1166 (2011).
[CrossRef]

Mutig, A.

W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M.-C. Amann, “40 Gbit/s modulation of 1550 nm VCSEL,” Electron. Lett.47(4), 270–271 (2011).
[CrossRef]

Nagel, R. D.

M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.17(5), 1158–1166 (2011).
[CrossRef]

Neumeyr, C.

Ortsiefer, M.

Rodes, R.

Roenneberg, E.

Rönneberg, E.

M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.17(5), 1158–1166 (2011).
[CrossRef]

Rosskopf, J.

Winzer, P. J.

Wolf, P.

M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.17(5), 1158–1166 (2011).
[CrossRef]

W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M.-C. Amann, “40 Gbit/s modulation of 1550 nm VCSEL,” Electron. Lett.47(4), 270–271 (2011).
[CrossRef]

Xie, C.

Zibar, D.

Electron. Lett. (1)

W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M.-C. Amann, “40 Gbit/s modulation of 1550 nm VCSEL,” Electron. Lett.47(4), 270–271 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.17(5), 1158–1166 (2011).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (2)

Other (7)

F. Yu, C. Xie, and L. Zeng, “Application aspects of enhanced FEC for 40/100G systems,” in Proc. European Conference on Optical Communication (Torino, Italy, 2010), workshop 11, (2011).

P. Evans, M. Fisher, R. Malendevich, A. James, P. Studenkov, G. Goldfarb, T. Vallaitis, M. Kato, P. Samra, S. Corzine, E. Strzelecka, R. Salvatore, F. Sedgwick, M. Kuntz, V. Lal, D. Lambert, A. Dentai, D. Pavinski, B. Behnia, J. Bostak, V. Dominic, A. Nilsson, B. Taylor, J. Rahn, S. Sanders, H. Sun, K.-T. Wu, J. Pleumeekers, R. Muthiah, M. Missey, R. Schneider, J. Stewart, M. Reffle, T. Butrie, R. Nagarajan, C. Joyner, M. Ziari, F. Kish, and D. Welch, “Multi-channel coherent PM-QPSK InP transmitter photonic integrated circuit (PIC) operating At 112 Gb/s per wavelength,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2011), paper PDPC7 (2011).

Y. Rao, C. Chase, M. C. Y. Huang, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, D. P. Worland, A. E. Willner, and C. J. Chang-Hasnain, “Continuous tunable 1550-nm high contrast grating VCSEL,” in CLEO Technical Digest 2012, paper CTh5C.3 (2012).

R. Rodes, J. Estaran, B. Li, M. Müller, J. B. Jensen, T. Gründl, M. Ortsiefer, C. Neumeyr, J. Rosskopf, K. J. Larsen, M.-C. Amann, and I. T. Monroy, “100 Gb/s single VCSEL data transmission link,” Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2012), paper PDP5D.10 (2012).
[CrossRef]

M. C. Amann, E. Wong, and M. Müller, “Energy-efficient high-speed short-cavity VCSELs,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2012), paper OTh4F.1 (2012).

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “ A 55Gb/s directly modulated 850nm VCSEL-based optical link” in Proc. IEEE Photonics Conference (San Francisco, CA, USA, 2012), paper PD 1.5 (2012).
[CrossRef]

J. S. Gustavsson, A. Larsson, Å. Haglund, J. Bengtsson, P. Westbergh, R. Safaisini, and E. Haglund, “High speed 850nm VCSELs for > 40Gb/s transmission,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2013), paper OTh4H.4 (2013).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. PolMux: polarization multiplexer, OF: optical filter, LO: local oscillator, DGEF: dynamic gain equalizer filter. The insets are the eye-diagrams of the electrical driving signal, output optical signal from the VCSEL, and the recovered constellations after offline processing.

Fig. 2
Fig. 2

The captured signal cloud without the optical filter (a) and with the optical filter (b).

Fig. 3
Fig. 3

Signal spectra before and after the optical filter and the transfer function of the filter.

Fig. 4
Fig. 4

BER versus OSNR in back-to-back operation. The BERs at 7% and 20% hard-decision FEC are 3.8x10−3 and 1.5x10−2, respectively.

Fig. 5
Fig. 5

BER versus launch power at three different distances.

Metrics