Abstract

Continuous variable entanglement is a fundamental resource for many quantum information tasks. Important protocols like superactivation of zero-capacity channels and finite-size quantum cryptography that provides security against most general attacks, require about 10 dB two-mode squeezing. Additionally, stable phase control mechanisms are necessary but are difficult to achieve because the total amount of optical loss to the entangled beams needs to be small. Here, we experimentally demonstrate a control scheme for two-mode squeezed vacuum states at the telecommunication wavelength of 1550 nm. Our states exhibited an Einstein-Podolsky-Rosen covariance product of 0.0309 ± 0.0002, where 1 is the critical value, and a Duan inseparability value of 0.360±0.001, where 4 is the critical value. The latter corresponds to 10.45 ± 0.01dB which reflects the average non-classical noise suppression of the two squeezed vacuum states used to generate the entanglement. With the results of this work demanding quantum information protocols will become feasible.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys.81, 865–942 (2009).
    [CrossRef]
  2. D. Bouwmeester, J. Pan, K. Mattle, and M. Eibl, “Experimental quantum teleportation,” Nature390, 575–579 (1997).
    [CrossRef]
  3. A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional Quantum Teleportation,” Science282, 706–709 (1998).
    [CrossRef] [PubMed]
  4. C. H. Bennett and S. J. Wiesner, “Communication via One- and Two-Particle Operators on Einstein-Podolsky-Rosen States,” Phys. Rev. Lett.69, 2881 (1992).
    [CrossRef] [PubMed]
  5. S. Braunstein and H. Kimble, “Dense coding for continuous variables,” Phys. Rev. A61, 042302 (2000).
    [CrossRef]
  6. R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun.1, 121 (2010).
    [CrossRef] [PubMed]
  7. W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V. Balabas, and E. S. Polzik, “Quantum Noise Limited and Entanglement-Assisted Magnetometry,” Phys. Rev. Lett.104, 133601 (2010).
    [CrossRef] [PubMed]
  8. S. Steinlechner, J. Bauchrowitz, M. Meinders, H. Müller-Ebhardt, K. Danzmann, and R. Schnabel, “Quantum-Dense Metrology,” arXiv 1211.3570 (2012).
  9. C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian Quantum Information,” Rev. Mod. Phys.84, 621 (2012).
    [CrossRef]
  10. H. Briegel, W. Dür, J. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932 (1998).
    [CrossRef]
  11. D. P. DiVincenzo, “Quantum Computation,” Science270, 255 (1995).
    [CrossRef]
  12. J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. Cerf, R. Tualle-Brouri, S. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
    [CrossRef]
  13. F. Furrer, T. Franz, M. Berta, A. Leverrier, V. Scholz, M. Tomamichel, and R. Werner, “Continuous Variable Quantum Key Distribution: Finite-Key Analysis of Composable Security against Coherent Attacks,” Phys. Rev. Lett.109, 100502 (2012).
    [CrossRef] [PubMed]
  14. G. Smith and J. Yard, “Quantum communication with zero-capacity channels,” Science321, 1812–5 (2008).
    [CrossRef] [PubMed]
  15. G. Smith, J. A. Smolin, and J. Yard, “Quantum communication with Gaussian channels of zero quantum capacity,” Nat. Phot.5, 624–627 (2011).
    [CrossRef]
  16. Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett.68, 3663–3666 (1992).
    [CrossRef] [PubMed]
  17. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection,” Phys. Rev. Lett.104, 251102 (2010).
    [CrossRef] [PubMed]
  18. M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Exp.19, 25763–72 (2011).
    [CrossRef]
  19. W. P. Bowen, R. Schnabel, and P. K. Lam, “Experimental Investigation of Criteria for Continuous Variable Entanglement,” Phys. Rev. Lett.90, 043601 (2003).
    [CrossRef] [PubMed]
  20. N. Takei, N. Lee, D. Moriyama, J. S. Neergaard-Nielsen, and A. Furusawa, “Time-gated Einstein-Podolsky-Rosen correlation,” Phys. Rev. A74, 060101(R) (2006).
    [CrossRef]
  21. B. Hage, J. Janousek, S. Armstrong, T. Symul, J. Bernu, H. M. Chrzanowski, P. K. Lam, and H.-A. Bachor, “Demonstrating various quantum effects with two entangled laser beams,” Eur. Phys. J. D63, 457–461 (2011).
    [CrossRef]
  22. S. Steinlechner, J. Bauchrowitz, T. Eberle, and R. Schnabel, “Strong Einstein-Podolsky-Rosen steering with unconditional entangled states,” Phys. Rev. A87, 022104 (2013).
    [CrossRef]
  23. S. Ast, R. M. Nia, A. Schönbeck, N. Lastzka, J. Steinlechner, T. Eberle, M. Mehmet, S. Steinlechner, and R. Schnabel, “High-efficiency frequency doubling of continuous-wave laser light,” Opt. Lett.36, 3467–9 (2011).
    [CrossRef] [PubMed]
  24. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys.69, 79–87 (2001).
    [CrossRef]
  25. B. Hage, A. Franzen, J. DiGuglielmo, P. Marek, J. Fiurasek, and R. Schnabel, “On the distillation and purification of phase-diffused squeezed states,” N. J. Phys.9, 227 (2007).
    [CrossRef]
  26. J. DiGuglielmo, A. Samblowski, B. Hage, C. Pineda, J. Eisert, and R. Schnabel, “Experimental Unconditional Preparation and Detection of a Continuous Bound Entangled State of Light,” Phys. Rev. Lett.107, 240503 (2011).
    [CrossRef]
  27. J. DiGuglielmo, B. Hage, A. Franzen, J. Fiurasek, and R. Schnabel, “Experimental characterization of Gaussian quantum-communication channels,” Phys. Rev. A76, 012323 (2007).
    [CrossRef]
  28. L. Duan, G. Giedke, J. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett.84, 2722–2725 (2000).
    [CrossRef] [PubMed]
  29. M. D. Reid, “Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification,” Phys. Rev. A40, 913 (1989).
    [CrossRef] [PubMed]
  30. M. Mehmet, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Demonstration of a quantum-enhanced fiber Sagnac interferometer,” Opt. Lett.35, 1665–1667 (2010).
    [CrossRef] [PubMed]

2013 (1)

S. Steinlechner, J. Bauchrowitz, T. Eberle, and R. Schnabel, “Strong Einstein-Podolsky-Rosen steering with unconditional entangled states,” Phys. Rev. A87, 022104 (2013).
[CrossRef]

2012 (3)

S. Steinlechner, J. Bauchrowitz, M. Meinders, H. Müller-Ebhardt, K. Danzmann, and R. Schnabel, “Quantum-Dense Metrology,” arXiv 1211.3570 (2012).

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian Quantum Information,” Rev. Mod. Phys.84, 621 (2012).
[CrossRef]

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. Scholz, M. Tomamichel, and R. Werner, “Continuous Variable Quantum Key Distribution: Finite-Key Analysis of Composable Security against Coherent Attacks,” Phys. Rev. Lett.109, 100502 (2012).
[CrossRef] [PubMed]

2011 (5)

G. Smith, J. A. Smolin, and J. Yard, “Quantum communication with Gaussian channels of zero quantum capacity,” Nat. Phot.5, 624–627 (2011).
[CrossRef]

B. Hage, J. Janousek, S. Armstrong, T. Symul, J. Bernu, H. M. Chrzanowski, P. K. Lam, and H.-A. Bachor, “Demonstrating various quantum effects with two entangled laser beams,” Eur. Phys. J. D63, 457–461 (2011).
[CrossRef]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Exp.19, 25763–72 (2011).
[CrossRef]

J. DiGuglielmo, A. Samblowski, B. Hage, C. Pineda, J. Eisert, and R. Schnabel, “Experimental Unconditional Preparation and Detection of a Continuous Bound Entangled State of Light,” Phys. Rev. Lett.107, 240503 (2011).
[CrossRef]

S. Ast, R. M. Nia, A. Schönbeck, N. Lastzka, J. Steinlechner, T. Eberle, M. Mehmet, S. Steinlechner, and R. Schnabel, “High-efficiency frequency doubling of continuous-wave laser light,” Opt. Lett.36, 3467–9 (2011).
[CrossRef] [PubMed]

2010 (4)

M. Mehmet, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Demonstration of a quantum-enhanced fiber Sagnac interferometer,” Opt. Lett.35, 1665–1667 (2010).
[CrossRef] [PubMed]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection,” Phys. Rev. Lett.104, 251102 (2010).
[CrossRef] [PubMed]

R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun.1, 121 (2010).
[CrossRef] [PubMed]

W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V. Balabas, and E. S. Polzik, “Quantum Noise Limited and Entanglement-Assisted Magnetometry,” Phys. Rev. Lett.104, 133601 (2010).
[CrossRef] [PubMed]

2009 (1)

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys.81, 865–942 (2009).
[CrossRef]

2008 (1)

G. Smith and J. Yard, “Quantum communication with zero-capacity channels,” Science321, 1812–5 (2008).
[CrossRef] [PubMed]

2007 (3)

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. Cerf, R. Tualle-Brouri, S. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

B. Hage, A. Franzen, J. DiGuglielmo, P. Marek, J. Fiurasek, and R. Schnabel, “On the distillation and purification of phase-diffused squeezed states,” N. J. Phys.9, 227 (2007).
[CrossRef]

J. DiGuglielmo, B. Hage, A. Franzen, J. Fiurasek, and R. Schnabel, “Experimental characterization of Gaussian quantum-communication channels,” Phys. Rev. A76, 012323 (2007).
[CrossRef]

2006 (1)

N. Takei, N. Lee, D. Moriyama, J. S. Neergaard-Nielsen, and A. Furusawa, “Time-gated Einstein-Podolsky-Rosen correlation,” Phys. Rev. A74, 060101(R) (2006).
[CrossRef]

2003 (1)

W. P. Bowen, R. Schnabel, and P. K. Lam, “Experimental Investigation of Criteria for Continuous Variable Entanglement,” Phys. Rev. Lett.90, 043601 (2003).
[CrossRef] [PubMed]

2001 (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys.69, 79–87 (2001).
[CrossRef]

2000 (2)

L. Duan, G. Giedke, J. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett.84, 2722–2725 (2000).
[CrossRef] [PubMed]

S. Braunstein and H. Kimble, “Dense coding for continuous variables,” Phys. Rev. A61, 042302 (2000).
[CrossRef]

1998 (2)

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional Quantum Teleportation,” Science282, 706–709 (1998).
[CrossRef] [PubMed]

H. Briegel, W. Dür, J. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932 (1998).
[CrossRef]

1997 (1)

D. Bouwmeester, J. Pan, K. Mattle, and M. Eibl, “Experimental quantum teleportation,” Nature390, 575–579 (1997).
[CrossRef]

1995 (1)

D. P. DiVincenzo, “Quantum Computation,” Science270, 255 (1995).
[CrossRef]

1992 (2)

C. H. Bennett and S. J. Wiesner, “Communication via One- and Two-Particle Operators on Einstein-Podolsky-Rosen States,” Phys. Rev. Lett.69, 2881 (1992).
[CrossRef] [PubMed]

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett.68, 3663–3666 (1992).
[CrossRef] [PubMed]

1989 (1)

M. D. Reid, “Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification,” Phys. Rev. A40, 913 (1989).
[CrossRef] [PubMed]

Armstrong, S.

B. Hage, J. Janousek, S. Armstrong, T. Symul, J. Bernu, H. M. Chrzanowski, P. K. Lam, and H.-A. Bachor, “Demonstrating various quantum effects with two entangled laser beams,” Eur. Phys. J. D63, 457–461 (2011).
[CrossRef]

Ast, S.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Exp.19, 25763–72 (2011).
[CrossRef]

S. Ast, R. M. Nia, A. Schönbeck, N. Lastzka, J. Steinlechner, T. Eberle, M. Mehmet, S. Steinlechner, and R. Schnabel, “High-efficiency frequency doubling of continuous-wave laser light,” Opt. Lett.36, 3467–9 (2011).
[CrossRef] [PubMed]

Bachor, H.-A.

B. Hage, J. Janousek, S. Armstrong, T. Symul, J. Bernu, H. M. Chrzanowski, P. K. Lam, and H.-A. Bachor, “Demonstrating various quantum effects with two entangled laser beams,” Eur. Phys. J. D63, 457–461 (2011).
[CrossRef]

Balabas, M. V.

W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V. Balabas, and E. S. Polzik, “Quantum Noise Limited and Entanglement-Assisted Magnetometry,” Phys. Rev. Lett.104, 133601 (2010).
[CrossRef] [PubMed]

Bauchrowitz, J.

S. Steinlechner, J. Bauchrowitz, T. Eberle, and R. Schnabel, “Strong Einstein-Podolsky-Rosen steering with unconditional entangled states,” Phys. Rev. A87, 022104 (2013).
[CrossRef]

S. Steinlechner, J. Bauchrowitz, M. Meinders, H. Müller-Ebhardt, K. Danzmann, and R. Schnabel, “Quantum-Dense Metrology,” arXiv 1211.3570 (2012).

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection,” Phys. Rev. Lett.104, 251102 (2010).
[CrossRef] [PubMed]

Bennett, C. H.

C. H. Bennett and S. J. Wiesner, “Communication via One- and Two-Particle Operators on Einstein-Podolsky-Rosen States,” Phys. Rev. Lett.69, 2881 (1992).
[CrossRef] [PubMed]

Bernu, J.

B. Hage, J. Janousek, S. Armstrong, T. Symul, J. Bernu, H. M. Chrzanowski, P. K. Lam, and H.-A. Bachor, “Demonstrating various quantum effects with two entangled laser beams,” Eur. Phys. J. D63, 457–461 (2011).
[CrossRef]

Berta, M.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. Scholz, M. Tomamichel, and R. Werner, “Continuous Variable Quantum Key Distribution: Finite-Key Analysis of Composable Security against Coherent Attacks,” Phys. Rev. Lett.109, 100502 (2012).
[CrossRef] [PubMed]

Black, E. D.

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys.69, 79–87 (2001).
[CrossRef]

Bloch, M.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. Cerf, R. Tualle-Brouri, S. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

Bouwmeester, D.

D. Bouwmeester, J. Pan, K. Mattle, and M. Eibl, “Experimental quantum teleportation,” Nature390, 575–579 (1997).
[CrossRef]

Bowen, W. P.

W. P. Bowen, R. Schnabel, and P. K. Lam, “Experimental Investigation of Criteria for Continuous Variable Entanglement,” Phys. Rev. Lett.90, 043601 (2003).
[CrossRef] [PubMed]

Braunstein, S.

S. Braunstein and H. Kimble, “Dense coding for continuous variables,” Phys. Rev. A61, 042302 (2000).
[CrossRef]

Braunstein, S. L.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional Quantum Teleportation,” Science282, 706–709 (1998).
[CrossRef] [PubMed]

Briegel, H.

H. Briegel, W. Dür, J. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932 (1998).
[CrossRef]

Cerf, N.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. Cerf, R. Tualle-Brouri, S. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

Cerf, N. J.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian Quantum Information,” Rev. Mod. Phys.84, 621 (2012).
[CrossRef]

Chrzanowski, H. M.

B. Hage, J. Janousek, S. Armstrong, T. Symul, J. Bernu, H. M. Chrzanowski, P. K. Lam, and H.-A. Bachor, “Demonstrating various quantum effects with two entangled laser beams,” Eur. Phys. J. D63, 457–461 (2011).
[CrossRef]

Cirac, J.

L. Duan, G. Giedke, J. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett.84, 2722–2725 (2000).
[CrossRef] [PubMed]

H. Briegel, W. Dür, J. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932 (1998).
[CrossRef]

Danzmann, K.

S. Steinlechner, J. Bauchrowitz, M. Meinders, H. Müller-Ebhardt, K. Danzmann, and R. Schnabel, “Quantum-Dense Metrology,” arXiv 1211.3570 (2012).

Debuisschert, T.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. Cerf, R. Tualle-Brouri, S. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

Diamanti, E.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. Cerf, R. Tualle-Brouri, S. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

DiGuglielmo, J.

J. DiGuglielmo, A. Samblowski, B. Hage, C. Pineda, J. Eisert, and R. Schnabel, “Experimental Unconditional Preparation and Detection of a Continuous Bound Entangled State of Light,” Phys. Rev. Lett.107, 240503 (2011).
[CrossRef]

J. DiGuglielmo, B. Hage, A. Franzen, J. Fiurasek, and R. Schnabel, “Experimental characterization of Gaussian quantum-communication channels,” Phys. Rev. A76, 012323 (2007).
[CrossRef]

B. Hage, A. Franzen, J. DiGuglielmo, P. Marek, J. Fiurasek, and R. Schnabel, “On the distillation and purification of phase-diffused squeezed states,” N. J. Phys.9, 227 (2007).
[CrossRef]

DiVincenzo, D. P.

D. P. DiVincenzo, “Quantum Computation,” Science270, 255 (1995).
[CrossRef]

Duan, L.

L. Duan, G. Giedke, J. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett.84, 2722–2725 (2000).
[CrossRef] [PubMed]

Dür, W.

H. Briegel, W. Dür, J. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932 (1998).
[CrossRef]

Eberle, T.

S. Steinlechner, J. Bauchrowitz, T. Eberle, and R. Schnabel, “Strong Einstein-Podolsky-Rosen steering with unconditional entangled states,” Phys. Rev. A87, 022104 (2013).
[CrossRef]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Exp.19, 25763–72 (2011).
[CrossRef]

S. Ast, R. M. Nia, A. Schönbeck, N. Lastzka, J. Steinlechner, T. Eberle, M. Mehmet, S. Steinlechner, and R. Schnabel, “High-efficiency frequency doubling of continuous-wave laser light,” Opt. Lett.36, 3467–9 (2011).
[CrossRef] [PubMed]

M. Mehmet, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Demonstration of a quantum-enhanced fiber Sagnac interferometer,” Opt. Lett.35, 1665–1667 (2010).
[CrossRef] [PubMed]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection,” Phys. Rev. Lett.104, 251102 (2010).
[CrossRef] [PubMed]

Eibl, M.

D. Bouwmeester, J. Pan, K. Mattle, and M. Eibl, “Experimental quantum teleportation,” Nature390, 575–579 (1997).
[CrossRef]

Eisert, J.

J. DiGuglielmo, A. Samblowski, B. Hage, C. Pineda, J. Eisert, and R. Schnabel, “Experimental Unconditional Preparation and Detection of a Continuous Bound Entangled State of Light,” Phys. Rev. Lett.107, 240503 (2011).
[CrossRef]

Fiurasek, J.

B. Hage, A. Franzen, J. DiGuglielmo, P. Marek, J. Fiurasek, and R. Schnabel, “On the distillation and purification of phase-diffused squeezed states,” N. J. Phys.9, 227 (2007).
[CrossRef]

J. DiGuglielmo, B. Hage, A. Franzen, J. Fiurasek, and R. Schnabel, “Experimental characterization of Gaussian quantum-communication channels,” Phys. Rev. A76, 012323 (2007).
[CrossRef]

Fossier, S.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. Cerf, R. Tualle-Brouri, S. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

Franz, T.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. Scholz, M. Tomamichel, and R. Werner, “Continuous Variable Quantum Key Distribution: Finite-Key Analysis of Composable Security against Coherent Attacks,” Phys. Rev. Lett.109, 100502 (2012).
[CrossRef] [PubMed]

Franzen, A.

B. Hage, A. Franzen, J. DiGuglielmo, P. Marek, J. Fiurasek, and R. Schnabel, “On the distillation and purification of phase-diffused squeezed states,” N. J. Phys.9, 227 (2007).
[CrossRef]

J. DiGuglielmo, B. Hage, A. Franzen, J. Fiurasek, and R. Schnabel, “Experimental characterization of Gaussian quantum-communication channels,” Phys. Rev. A76, 012323 (2007).
[CrossRef]

Fuchs, C. A.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional Quantum Teleportation,” Science282, 706–709 (1998).
[CrossRef] [PubMed]

Furrer, F.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. Scholz, M. Tomamichel, and R. Werner, “Continuous Variable Quantum Key Distribution: Finite-Key Analysis of Composable Security against Coherent Attacks,” Phys. Rev. Lett.109, 100502 (2012).
[CrossRef] [PubMed]

Furusawa, A.

N. Takei, N. Lee, D. Moriyama, J. S. Neergaard-Nielsen, and A. Furusawa, “Time-gated Einstein-Podolsky-Rosen correlation,” Phys. Rev. A74, 060101(R) (2006).
[CrossRef]

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional Quantum Teleportation,” Science282, 706–709 (1998).
[CrossRef] [PubMed]

Garcia-Patron, R.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian Quantum Information,” Rev. Mod. Phys.84, 621 (2012).
[CrossRef]

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. Cerf, R. Tualle-Brouri, S. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

Giedke, G.

L. Duan, G. Giedke, J. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett.84, 2722–2725 (2000).
[CrossRef] [PubMed]

Grangier, P.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. Cerf, R. Tualle-Brouri, S. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

Hage, B.

J. DiGuglielmo, A. Samblowski, B. Hage, C. Pineda, J. Eisert, and R. Schnabel, “Experimental Unconditional Preparation and Detection of a Continuous Bound Entangled State of Light,” Phys. Rev. Lett.107, 240503 (2011).
[CrossRef]

B. Hage, J. Janousek, S. Armstrong, T. Symul, J. Bernu, H. M. Chrzanowski, P. K. Lam, and H.-A. Bachor, “Demonstrating various quantum effects with two entangled laser beams,” Eur. Phys. J. D63, 457–461 (2011).
[CrossRef]

B. Hage, A. Franzen, J. DiGuglielmo, P. Marek, J. Fiurasek, and R. Schnabel, “On the distillation and purification of phase-diffused squeezed states,” N. J. Phys.9, 227 (2007).
[CrossRef]

J. DiGuglielmo, B. Hage, A. Franzen, J. Fiurasek, and R. Schnabel, “Experimental characterization of Gaussian quantum-communication channels,” Phys. Rev. A76, 012323 (2007).
[CrossRef]

Händchen, V.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection,” Phys. Rev. Lett.104, 251102 (2010).
[CrossRef] [PubMed]

Horodecki, K.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys.81, 865–942 (2009).
[CrossRef]

Horodecki, M.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys.81, 865–942 (2009).
[CrossRef]

Horodecki, P.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys.81, 865–942 (2009).
[CrossRef]

Horodecki, R.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys.81, 865–942 (2009).
[CrossRef]

Janousek, J.

B. Hage, J. Janousek, S. Armstrong, T. Symul, J. Bernu, H. M. Chrzanowski, P. K. Lam, and H.-A. Bachor, “Demonstrating various quantum effects with two entangled laser beams,” Eur. Phys. J. D63, 457–461 (2011).
[CrossRef]

Jensen, K.

W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V. Balabas, and E. S. Polzik, “Quantum Noise Limited and Entanglement-Assisted Magnetometry,” Phys. Rev. Lett.104, 133601 (2010).
[CrossRef] [PubMed]

Karpov, E.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. Cerf, R. Tualle-Brouri, S. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

Kimble, H.

S. Braunstein and H. Kimble, “Dense coding for continuous variables,” Phys. Rev. A61, 042302 (2000).
[CrossRef]

Kimble, H. J.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional Quantum Teleportation,” Science282, 706–709 (1998).
[CrossRef] [PubMed]

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett.68, 3663–3666 (1992).
[CrossRef] [PubMed]

Krauter, H.

W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V. Balabas, and E. S. Polzik, “Quantum Noise Limited and Entanglement-Assisted Magnetometry,” Phys. Rev. Lett.104, 133601 (2010).
[CrossRef] [PubMed]

Lam, P. K.

B. Hage, J. Janousek, S. Armstrong, T. Symul, J. Bernu, H. M. Chrzanowski, P. K. Lam, and H.-A. Bachor, “Demonstrating various quantum effects with two entangled laser beams,” Eur. Phys. J. D63, 457–461 (2011).
[CrossRef]

R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun.1, 121 (2010).
[CrossRef] [PubMed]

W. P. Bowen, R. Schnabel, and P. K. Lam, “Experimental Investigation of Criteria for Continuous Variable Entanglement,” Phys. Rev. Lett.90, 043601 (2003).
[CrossRef] [PubMed]

Lastzka, N.

Lee, N.

N. Takei, N. Lee, D. Moriyama, J. S. Neergaard-Nielsen, and A. Furusawa, “Time-gated Einstein-Podolsky-Rosen correlation,” Phys. Rev. A74, 060101(R) (2006).
[CrossRef]

Leverrier, A.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. Scholz, M. Tomamichel, and R. Werner, “Continuous Variable Quantum Key Distribution: Finite-Key Analysis of Composable Security against Coherent Attacks,” Phys. Rev. Lett.109, 100502 (2012).
[CrossRef] [PubMed]

Lloyd, S.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian Quantum Information,” Rev. Mod. Phys.84, 621 (2012).
[CrossRef]

Lodewyck, J.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. Cerf, R. Tualle-Brouri, S. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

Marek, P.

B. Hage, A. Franzen, J. DiGuglielmo, P. Marek, J. Fiurasek, and R. Schnabel, “On the distillation and purification of phase-diffused squeezed states,” N. J. Phys.9, 227 (2007).
[CrossRef]

Mattle, K.

D. Bouwmeester, J. Pan, K. Mattle, and M. Eibl, “Experimental quantum teleportation,” Nature390, 575–579 (1997).
[CrossRef]

Mavalvala, N.

R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun.1, 121 (2010).
[CrossRef] [PubMed]

McClelland, D. E.

R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun.1, 121 (2010).
[CrossRef] [PubMed]

McLaughlin, S.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. Cerf, R. Tualle-Brouri, S. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

Mehmet, M.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Exp.19, 25763–72 (2011).
[CrossRef]

S. Ast, R. M. Nia, A. Schönbeck, N. Lastzka, J. Steinlechner, T. Eberle, M. Mehmet, S. Steinlechner, and R. Schnabel, “High-efficiency frequency doubling of continuous-wave laser light,” Opt. Lett.36, 3467–9 (2011).
[CrossRef] [PubMed]

M. Mehmet, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Demonstration of a quantum-enhanced fiber Sagnac interferometer,” Opt. Lett.35, 1665–1667 (2010).
[CrossRef] [PubMed]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection,” Phys. Rev. Lett.104, 251102 (2010).
[CrossRef] [PubMed]

Meinders, M.

S. Steinlechner, J. Bauchrowitz, M. Meinders, H. Müller-Ebhardt, K. Danzmann, and R. Schnabel, “Quantum-Dense Metrology,” arXiv 1211.3570 (2012).

Moriyama, D.

N. Takei, N. Lee, D. Moriyama, J. S. Neergaard-Nielsen, and A. Furusawa, “Time-gated Einstein-Podolsky-Rosen correlation,” Phys. Rev. A74, 060101(R) (2006).
[CrossRef]

Müller-Ebhardt, H.

S. Steinlechner, J. Bauchrowitz, M. Meinders, H. Müller-Ebhardt, K. Danzmann, and R. Schnabel, “Quantum-Dense Metrology,” arXiv 1211.3570 (2012).

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection,” Phys. Rev. Lett.104, 251102 (2010).
[CrossRef] [PubMed]

Neergaard-Nielsen, J. S.

N. Takei, N. Lee, D. Moriyama, J. S. Neergaard-Nielsen, and A. Furusawa, “Time-gated Einstein-Podolsky-Rosen correlation,” Phys. Rev. A74, 060101(R) (2006).
[CrossRef]

Nia, R. M.

Ou, Z. Y.

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett.68, 3663–3666 (1992).
[CrossRef] [PubMed]

Pan, J.

D. Bouwmeester, J. Pan, K. Mattle, and M. Eibl, “Experimental quantum teleportation,” Nature390, 575–579 (1997).
[CrossRef]

Peng, K. C.

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett.68, 3663–3666 (1992).
[CrossRef] [PubMed]

Pereira, S. F.

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett.68, 3663–3666 (1992).
[CrossRef] [PubMed]

Pineda, C.

J. DiGuglielmo, A. Samblowski, B. Hage, C. Pineda, J. Eisert, and R. Schnabel, “Experimental Unconditional Preparation and Detection of a Continuous Bound Entangled State of Light,” Phys. Rev. Lett.107, 240503 (2011).
[CrossRef]

Pirandola, S.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian Quantum Information,” Rev. Mod. Phys.84, 621 (2012).
[CrossRef]

Polzik, E. S.

W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V. Balabas, and E. S. Polzik, “Quantum Noise Limited and Entanglement-Assisted Magnetometry,” Phys. Rev. Lett.104, 133601 (2010).
[CrossRef] [PubMed]

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional Quantum Teleportation,” Science282, 706–709 (1998).
[CrossRef] [PubMed]

Ralph, T. C.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian Quantum Information,” Rev. Mod. Phys.84, 621 (2012).
[CrossRef]

Reid, M. D.

M. D. Reid, “Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification,” Phys. Rev. A40, 913 (1989).
[CrossRef] [PubMed]

Renema, J. J.

W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V. Balabas, and E. S. Polzik, “Quantum Noise Limited and Entanglement-Assisted Magnetometry,” Phys. Rev. Lett.104, 133601 (2010).
[CrossRef] [PubMed]

Samblowski, A.

J. DiGuglielmo, A. Samblowski, B. Hage, C. Pineda, J. Eisert, and R. Schnabel, “Experimental Unconditional Preparation and Detection of a Continuous Bound Entangled State of Light,” Phys. Rev. Lett.107, 240503 (2011).
[CrossRef]

Schnabel, R.

S. Steinlechner, J. Bauchrowitz, T. Eberle, and R. Schnabel, “Strong Einstein-Podolsky-Rosen steering with unconditional entangled states,” Phys. Rev. A87, 022104 (2013).
[CrossRef]

S. Steinlechner, J. Bauchrowitz, M. Meinders, H. Müller-Ebhardt, K. Danzmann, and R. Schnabel, “Quantum-Dense Metrology,” arXiv 1211.3570 (2012).

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Exp.19, 25763–72 (2011).
[CrossRef]

J. DiGuglielmo, A. Samblowski, B. Hage, C. Pineda, J. Eisert, and R. Schnabel, “Experimental Unconditional Preparation and Detection of a Continuous Bound Entangled State of Light,” Phys. Rev. Lett.107, 240503 (2011).
[CrossRef]

S. Ast, R. M. Nia, A. Schönbeck, N. Lastzka, J. Steinlechner, T. Eberle, M. Mehmet, S. Steinlechner, and R. Schnabel, “High-efficiency frequency doubling of continuous-wave laser light,” Opt. Lett.36, 3467–9 (2011).
[CrossRef] [PubMed]

M. Mehmet, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Demonstration of a quantum-enhanced fiber Sagnac interferometer,” Opt. Lett.35, 1665–1667 (2010).
[CrossRef] [PubMed]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection,” Phys. Rev. Lett.104, 251102 (2010).
[CrossRef] [PubMed]

R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun.1, 121 (2010).
[CrossRef] [PubMed]

B. Hage, A. Franzen, J. DiGuglielmo, P. Marek, J. Fiurasek, and R. Schnabel, “On the distillation and purification of phase-diffused squeezed states,” N. J. Phys.9, 227 (2007).
[CrossRef]

J. DiGuglielmo, B. Hage, A. Franzen, J. Fiurasek, and R. Schnabel, “Experimental characterization of Gaussian quantum-communication channels,” Phys. Rev. A76, 012323 (2007).
[CrossRef]

W. P. Bowen, R. Schnabel, and P. K. Lam, “Experimental Investigation of Criteria for Continuous Variable Entanglement,” Phys. Rev. Lett.90, 043601 (2003).
[CrossRef] [PubMed]

Scholz, V.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. Scholz, M. Tomamichel, and R. Werner, “Continuous Variable Quantum Key Distribution: Finite-Key Analysis of Composable Security against Coherent Attacks,” Phys. Rev. Lett.109, 100502 (2012).
[CrossRef] [PubMed]

Schönbeck, A.

Shapiro, J. H.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian Quantum Information,” Rev. Mod. Phys.84, 621 (2012).
[CrossRef]

Smith, G.

G. Smith, J. A. Smolin, and J. Yard, “Quantum communication with Gaussian channels of zero quantum capacity,” Nat. Phot.5, 624–627 (2011).
[CrossRef]

G. Smith and J. Yard, “Quantum communication with zero-capacity channels,” Science321, 1812–5 (2008).
[CrossRef] [PubMed]

Smolin, J. A.

G. Smith, J. A. Smolin, and J. Yard, “Quantum communication with Gaussian channels of zero quantum capacity,” Nat. Phot.5, 624–627 (2011).
[CrossRef]

Sorensen, J. L.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional Quantum Teleportation,” Science282, 706–709 (1998).
[CrossRef] [PubMed]

Steinlechner, J.

Steinlechner, S.

S. Steinlechner, J. Bauchrowitz, T. Eberle, and R. Schnabel, “Strong Einstein-Podolsky-Rosen steering with unconditional entangled states,” Phys. Rev. A87, 022104 (2013).
[CrossRef]

S. Steinlechner, J. Bauchrowitz, M. Meinders, H. Müller-Ebhardt, K. Danzmann, and R. Schnabel, “Quantum-Dense Metrology,” arXiv 1211.3570 (2012).

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Exp.19, 25763–72 (2011).
[CrossRef]

S. Ast, R. M. Nia, A. Schönbeck, N. Lastzka, J. Steinlechner, T. Eberle, M. Mehmet, S. Steinlechner, and R. Schnabel, “High-efficiency frequency doubling of continuous-wave laser light,” Opt. Lett.36, 3467–9 (2011).
[CrossRef] [PubMed]

M. Mehmet, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Demonstration of a quantum-enhanced fiber Sagnac interferometer,” Opt. Lett.35, 1665–1667 (2010).
[CrossRef] [PubMed]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection,” Phys. Rev. Lett.104, 251102 (2010).
[CrossRef] [PubMed]

Symul, T.

B. Hage, J. Janousek, S. Armstrong, T. Symul, J. Bernu, H. M. Chrzanowski, P. K. Lam, and H.-A. Bachor, “Demonstrating various quantum effects with two entangled laser beams,” Eur. Phys. J. D63, 457–461 (2011).
[CrossRef]

Takei, N.

N. Takei, N. Lee, D. Moriyama, J. S. Neergaard-Nielsen, and A. Furusawa, “Time-gated Einstein-Podolsky-Rosen correlation,” Phys. Rev. A74, 060101(R) (2006).
[CrossRef]

Tomamichel, M.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. Scholz, M. Tomamichel, and R. Werner, “Continuous Variable Quantum Key Distribution: Finite-Key Analysis of Composable Security against Coherent Attacks,” Phys. Rev. Lett.109, 100502 (2012).
[CrossRef] [PubMed]

Tualle-Brouri, R.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. Cerf, R. Tualle-Brouri, S. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

Vahlbruch, H.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Exp.19, 25763–72 (2011).
[CrossRef]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection,” Phys. Rev. Lett.104, 251102 (2010).
[CrossRef] [PubMed]

M. Mehmet, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Demonstration of a quantum-enhanced fiber Sagnac interferometer,” Opt. Lett.35, 1665–1667 (2010).
[CrossRef] [PubMed]

Wasilewski, W.

W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V. Balabas, and E. S. Polzik, “Quantum Noise Limited and Entanglement-Assisted Magnetometry,” Phys. Rev. Lett.104, 133601 (2010).
[CrossRef] [PubMed]

Weedbrook, C.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian Quantum Information,” Rev. Mod. Phys.84, 621 (2012).
[CrossRef]

Werner, R.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. Scholz, M. Tomamichel, and R. Werner, “Continuous Variable Quantum Key Distribution: Finite-Key Analysis of Composable Security against Coherent Attacks,” Phys. Rev. Lett.109, 100502 (2012).
[CrossRef] [PubMed]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via One- and Two-Particle Operators on Einstein-Podolsky-Rosen States,” Phys. Rev. Lett.69, 2881 (1992).
[CrossRef] [PubMed]

Yard, J.

G. Smith, J. A. Smolin, and J. Yard, “Quantum communication with Gaussian channels of zero quantum capacity,” Nat. Phot.5, 624–627 (2011).
[CrossRef]

G. Smith and J. Yard, “Quantum communication with zero-capacity channels,” Science321, 1812–5 (2008).
[CrossRef] [PubMed]

Zoller, P.

L. Duan, G. Giedke, J. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett.84, 2722–2725 (2000).
[CrossRef] [PubMed]

H. Briegel, W. Dür, J. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932 (1998).
[CrossRef]

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys.69, 79–87 (2001).
[CrossRef]

Eur. Phys. J. D (1)

B. Hage, J. Janousek, S. Armstrong, T. Symul, J. Bernu, H. M. Chrzanowski, P. K. Lam, and H.-A. Bachor, “Demonstrating various quantum effects with two entangled laser beams,” Eur. Phys. J. D63, 457–461 (2011).
[CrossRef]

N. J. Phys. (1)

B. Hage, A. Franzen, J. DiGuglielmo, P. Marek, J. Fiurasek, and R. Schnabel, “On the distillation and purification of phase-diffused squeezed states,” N. J. Phys.9, 227 (2007).
[CrossRef]

Nat. Commun. (1)

R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, “Quantum metrology for gravitational wave astronomy,” Nat. Commun.1, 121 (2010).
[CrossRef] [PubMed]

Nat. Phot. (1)

G. Smith, J. A. Smolin, and J. Yard, “Quantum communication with Gaussian channels of zero quantum capacity,” Nat. Phot.5, 624–627 (2011).
[CrossRef]

Nature (1)

D. Bouwmeester, J. Pan, K. Mattle, and M. Eibl, “Experimental quantum teleportation,” Nature390, 575–579 (1997).
[CrossRef]

Opt. Exp. (1)

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Exp.19, 25763–72 (2011).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. Scholz, M. Tomamichel, and R. Werner, “Continuous Variable Quantum Key Distribution: Finite-Key Analysis of Composable Security against Coherent Attacks,” Phys. Rev. Lett.109, 100502 (2012).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection,” Phys. Rev. Lett.104, 251102 (2010).
[CrossRef] [PubMed]

J. DiGuglielmo, A. Samblowski, B. Hage, C. Pineda, J. Eisert, and R. Schnabel, “Experimental Unconditional Preparation and Detection of a Continuous Bound Entangled State of Light,” Phys. Rev. Lett.107, 240503 (2011).
[CrossRef]

Phys. Rev. A (6)

J. DiGuglielmo, B. Hage, A. Franzen, J. Fiurasek, and R. Schnabel, “Experimental characterization of Gaussian quantum-communication channels,” Phys. Rev. A76, 012323 (2007).
[CrossRef]

S. Steinlechner, J. Bauchrowitz, T. Eberle, and R. Schnabel, “Strong Einstein-Podolsky-Rosen steering with unconditional entangled states,” Phys. Rev. A87, 022104 (2013).
[CrossRef]

N. Takei, N. Lee, D. Moriyama, J. S. Neergaard-Nielsen, and A. Furusawa, “Time-gated Einstein-Podolsky-Rosen correlation,” Phys. Rev. A74, 060101(R) (2006).
[CrossRef]

M. D. Reid, “Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification,” Phys. Rev. A40, 913 (1989).
[CrossRef] [PubMed]

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. Cerf, R. Tualle-Brouri, S. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

S. Braunstein and H. Kimble, “Dense coding for continuous variables,” Phys. Rev. A61, 042302 (2000).
[CrossRef]

Phys. Rev. Lett. (6)

W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V. Balabas, and E. S. Polzik, “Quantum Noise Limited and Entanglement-Assisted Magnetometry,” Phys. Rev. Lett.104, 133601 (2010).
[CrossRef] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via One- and Two-Particle Operators on Einstein-Podolsky-Rosen States,” Phys. Rev. Lett.69, 2881 (1992).
[CrossRef] [PubMed]

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett.68, 3663–3666 (1992).
[CrossRef] [PubMed]

H. Briegel, W. Dür, J. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932 (1998).
[CrossRef]

W. P. Bowen, R. Schnabel, and P. K. Lam, “Experimental Investigation of Criteria for Continuous Variable Entanglement,” Phys. Rev. Lett.90, 043601 (2003).
[CrossRef] [PubMed]

L. Duan, G. Giedke, J. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett.84, 2722–2725 (2000).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys.81, 865–942 (2009).
[CrossRef]

Rev. Mod. Phys. (1)

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian Quantum Information,” Rev. Mod. Phys.84, 621 (2012).
[CrossRef]

Science (3)

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional Quantum Teleportation,” Science282, 706–709 (1998).
[CrossRef] [PubMed]

D. P. DiVincenzo, “Quantum Computation,” Science270, 255 (1995).
[CrossRef]

G. Smith and J. Yard, “Quantum communication with zero-capacity channels,” Science321, 1812–5 (2008).
[CrossRef] [PubMed]

Other (1)

S. Steinlechner, J. Bauchrowitz, M. Meinders, H. Müller-Ebhardt, K. Danzmann, and R. Schnabel, “Quantum-Dense Metrology,” arXiv 1211.3570 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Figure 1
Figure 1

Principle of generating and detecting two-mode squeezing. Two squeezed vacuum modes are superimposed at a 50:50 beam splitter with phase φent = π/2. The two output modes are entangled and measured by homodyne detection. The detected quadratures are determined by the phase φA and φB of the local oscillators.

Figure 2
Figure 2

Schematic of the experiment. The continuous-wave fiber laser output at 1550 nm was frequency doubled to 775 nm which served as the pump beam for two degenerate, type I parametric squeezed-light sources. The cavity lengths of the squeezed-light sources and the phases of the pump beams were locked by means of control beams with phase modulation sidebands at 33.9 MHz and 35.5 MHz, respectively. A single sideband field at 78 MHz and 82 MHz, respectively, was locked to the control beam and served as reference for the squeezed quadratures. After superimposing the squeezed modes at a balanced beam splitter, a small fraction (1 %) of one of the output modes was interfered with a local oscillator to control the phase between the two squeezed modes. The entangled modes, A and B, were measured by balanced homodyne detection. DBS: Dichroic Beam Splitter, PD: Photo Diode, FI: Faraday Isolator, EOM: Electro-Optical Modulator, AOM: Acousto-Optical Modulator, PS: Phase Shifter.

Figure 3
Figure 3

Experimental Results. Histograms of the Duan inseparability and the EPR-Reid criterion with critical values of 4 and 1, respectively. Both histograms were computed by bootstrapping 106 data points into 104 chunks of 2 × 105 length.

Figure 4
Figure 4

Stability of our entanglement source. The noise variances Var(A + B) and Var(AB) normalized to the variance of the sum or difference of the quadratures for a vacuum state are plotted versus time. The noise variances are stable over the shown measurement time.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

γ = ( 21.813 ( 0 ) 21.725 0.010 ( 0 ) 25.750 0.140 26.120 21.725 0.140 21.801 ( 0 ) 0.010 26.120 ( 0 ) 26.685 ) .
Var ( X ^ A + X ^ B ) + Var ( P ^ A P ^ B ) < 4 ,
min g Var ( X ^ { A , B } g X ^ { B , A } ) × min h Var ( P ^ { A , B } h P ^ { B , A } ) < 1 ,

Metrics