Abstract

We generate over half a watt of tunable near-IR (1380-1830 nm) and several hundred milliwatts in the mid-IR (2.4-4.2 µm) as well as milliwatt level mid-IR (4.85-9.33 µm) femtosecond radiation by pumping an optical parametric amplifier directly with a 7.4 W Yb:KGW oscillator at 41.7 MHz repetition rate. We use 5 mm PPLN and 2 mm GaSe as downconversion crystals and seed this process by a supercontinuum from a tapered fiber. The system is extremely simple and very stable and could replace more complex OPOs as tunable light sources.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum.74(1), 1–18 (2003).
    [CrossRef]
  2. T. Südmeyer, J. Aus der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Femtosecond fiber-feedback optical parametric oscillator,” Opt. Lett.26(5), 304–306 (2001).
    [CrossRef] [PubMed]
  3. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm,” Opt. Lett.34(9), 1330–1332 (2009).
    [CrossRef] [PubMed]
  4. R. Hegenbarth, A. Steinmann, G. Tóth, J. Hebling, and H. Giessen, “Two-color femtosecond optical parametric oscillator with 1.7 W output pumped by a 7.4 W Yb:KGW laser,” J. Opt. Soc. Am. B28(5), 1344–1352 (2011).
    [CrossRef]
  5. D. Brida, M. Marangoni, C. Manzoni, S. D. Silvestri, and G. Cerullo, “Two-optical-cycle pulses in the mid-infrared from an optical parametric amplifier,” Opt. Lett.33(24), 2901–2903 (2008).
    [CrossRef] [PubMed]
  6. O. D. Mücke, D. Sidorov, P. Dombi, A. Pugžlys, A. Baltuška, S. Ališauskas, V. Smilgevičius, J. Pocius, L. Giniūnas, R. Danielius, and N. Forget, “Scalable Yb-MOPA-driven carrier-envelope phase-stable few-cycle parametric amplifier at 1.5 microm,” Opt. Lett.34(2), 118–120 (2009).
    [CrossRef] [PubMed]
  7. F. Silva, P. K. Bates, A. Esteban-Martin, M. Ebrahim-Zadeh, and J. Biegert, “High-average-power, carrier-envelope phase-stable, few-cycle pulses at 2.1 μm from a collinear BiB3O6 optical parametric amplifier,” Opt. Lett.37(5), 933–935 (2012).
    [CrossRef] [PubMed]
  8. A. Killi, A. Steinmann, G. Palmer, U. Morgner, H. Bartelt, and J. Kobelke, “Megahertz optical parametric amplifier pumped by a femtosecond oscillator,” Opt. Lett.31(1), 125–127 (2006).
    [CrossRef] [PubMed]
  9. A. Steinmann, A. Killi, G. Palmer, T. Binhammer, and U. Morgner, “Generation of few-cycle pulses directly from a MHz-NOPA,” Opt. Express14(22), 10627–10630 (2006).
    [CrossRef] [PubMed]
  10. M. Marangoni, R. Osellame, R. Ramponi, G. Cerullo, A. Steinmann, and U. Morgner, “Near-infrared optical parametric amplifier at 1 MHz directly pumped by a femtosecond oscillator,” Opt. Lett.32(11), 1489–1491 (2007).
    [CrossRef] [PubMed]
  11. T. V. Andersen, O. Schmidt, C. Bruchmann, J. Limpert, C. Aguergaray, E. Cormier, and A. Tünnermann, “High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier,” Opt. Express14(11), 4765–4773 (2006).
    [CrossRef] [PubMed]
  12. C. Schriever, S. Lochbrunner, P. Krok, and E. Riedle, “Tunable pulses from below 300 to 970 nm with durations down to 14 fs based on a 2 MHz ytterbium-doped fiber system,” Opt. Lett.33(2), 192–194 (2008).
    [CrossRef] [PubMed]
  13. Y.-W. Tzeng, Y.-Y. Lin, C.-H. Huang, J.-M. Liu, H.-C. Chui, H.-L. Liu, J. M. Stone, J. C. Knight, and S.-W. Chu, “Broadband tunable optical parametric amplification from a single 50 MHz ultrafast fiber laser,” Opt. Express17(9), 7304–7309 (2009).
    [CrossRef] [PubMed]
  14. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics6(7), 440–449 (2012).
    [CrossRef]
  15. F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356 (2011).
    [CrossRef] [PubMed]
  16. S. Marzenell, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 µm to 8 µm,” Appl. Phys. B69(5-6), 423–428 (1999).
    [CrossRef]
  17. R. Hegenbarth, A. Steinmann, S. Sarkisov, and H. Giessen, “Milliwatt-level mid-infrared (10.5-16.5 μm) difference frequency generation with a femtosecond dual-signal-wavelength optical parametric oscillator,” Opt. Lett.37(17), 3513–3515 (2012).
    [CrossRef] [PubMed]
  18. C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 microm from a compact fiber source,” Opt. Lett.32(9), 1138–1140 (2007).
    [CrossRef] [PubMed]
  19. T. W. Neely, T. A. Johnson, and S. A. Diddams, “High-power broadband laser source tunable from 3.0 μm to 4.4 μm based on a femtosecond Yb:fiber oscillator,” Opt. Lett.36(20), 4020–4022 (2011).
    [CrossRef] [PubMed]
  20. A. Ruehl, A. Gambetta, I. Hartl, M. E. Fermann, K. S. E. Eikema, and M. Marangoni, “Widely-tunable mid-infrared frequency comb source based on difference frequency generation,” Opt. Lett.37(12), 2232–2234 (2012).
    [CrossRef] [PubMed]
  21. C. R. Phillips, J. Jiang, C. Mohr, A. C. Lin, C. Langrock, M. Snure, D. Bliss, M. Zhu, I. Hartl, J. S. Harris, M. E. Fermann, and M. M. Fejer, “Widely tunable midinfrared difference frequency generation in orientation-patterned GaAs pumped with a femtosecond Tm-fiber system,” Opt. Lett.37(14), 2928–2930 (2012).
    [CrossRef] [PubMed]
  22. A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, “Compact 7.4 W femtosecond oscillator for white-light generation and nonlinear microscopy,” Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThAA5.
  23. B. Metzger, A. Steinmann, F. Hoos, S. Pricking, and H. Giessen, “Compact laser source for high-power white-light and widely tunable sub 65 fs laser pulses,” Opt. Lett.35(23), 3961–3963 (2010).
    [CrossRef] [PubMed]
  24. M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A81(5), 053841 (2010).
    [CrossRef]
  25. M. Conforti, F. Baronio, and C. De Angelis, “Modelling of ultrabroadband and single-cycle phenomena in anisotropic quadratic crystal,” J. Opt. Soc. Am. B28(5), 1231–1237 (2011).
    [CrossRef]

2012 (5)

2011 (4)

2010 (2)

B. Metzger, A. Steinmann, F. Hoos, S. Pricking, and H. Giessen, “Compact laser source for high-power white-light and widely tunable sub 65 fs laser pulses,” Opt. Lett.35(23), 3961–3963 (2010).
[CrossRef] [PubMed]

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A81(5), 053841 (2010).
[CrossRef]

2009 (3)

2008 (2)

2007 (2)

2006 (3)

2003 (1)

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum.74(1), 1–18 (2003).
[CrossRef]

2001 (1)

1999 (1)

S. Marzenell, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 µm to 8 µm,” Appl. Phys. B69(5-6), 423–428 (1999).
[CrossRef]

Adler, F.

Aguergaray, C.

Ališauskas, S.

Andersen, T. V.

Aus der Au, J.

Baltuška, A.

Baronio, F.

M. Conforti, F. Baronio, and C. De Angelis, “Modelling of ultrabroadband and single-cycle phenomena in anisotropic quadratic crystal,” J. Opt. Soc. Am. B28(5), 1231–1237 (2011).
[CrossRef]

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A81(5), 053841 (2010).
[CrossRef]

Bartelt, H.

Bates, P. K.

Beigang, R.

S. Marzenell, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 µm to 8 µm,” Appl. Phys. B69(5-6), 423–428 (1999).
[CrossRef]

Biegert, J.

Binhammer, T.

Bliss, D.

Brida, D.

Bruchmann, C.

Cerullo, G.

Chu, S.-W.

Chui, H.-C.

Conforti, M.

M. Conforti, F. Baronio, and C. De Angelis, “Modelling of ultrabroadband and single-cycle phenomena in anisotropic quadratic crystal,” J. Opt. Soc. Am. B28(5), 1231–1237 (2011).
[CrossRef]

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A81(5), 053841 (2010).
[CrossRef]

Cormier, E.

Cossel, K. C.

Danielius, R.

De Angelis, C.

M. Conforti, F. Baronio, and C. De Angelis, “Modelling of ultrabroadband and single-cycle phenomena in anisotropic quadratic crystal,” J. Opt. Soc. Am. B28(5), 1231–1237 (2011).
[CrossRef]

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A81(5), 053841 (2010).
[CrossRef]

De Silvestri, S.

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum.74(1), 1–18 (2003).
[CrossRef]

Diddams, S. A.

Dombi, P.

Ebrahim-Zadeh, M.

Eikema, K. S. E.

Erny, C.

Esteban-Martin, A.

Fejer, M. M.

Fermann, M. E.

Forget, N.

Gambetta, A.

Giessen, H.

Giniunas, L.

Hanna, D. C.

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics6(7), 440–449 (2012).
[CrossRef]

Harris, J. S.

Hartl, I.

Hebling, J.

Hegenbarth, R.

Hillenbrand, R.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356 (2011).
[CrossRef] [PubMed]

Hoos, F.

Huang, C.-H.

Huth, F.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356 (2011).
[CrossRef] [PubMed]

Jiang, J.

Johnson, T. A.

Keller, U.

Killi, A.

Knight, J. C.

Kobelke, J.

Krok, P.

Kühlke, D.

Langrock, C.

Leitenstorfer, A.

Limpert, J.

Lin, A. C.

Lin, Y.-Y.

Liu, H.-L.

Liu, J.-M.

Lochbrunner, S.

Manzoni, C.

Marangoni, M.

Marzenell, S.

S. Marzenell, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 µm to 8 µm,” Appl. Phys. B69(5-6), 423–428 (1999).
[CrossRef]

Metzger, B.

Mohr, C.

Morgner, U.

Moutzouris, K.

Mücke, O. D.

Neely, T. W.

Ocelic, N.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356 (2011).
[CrossRef] [PubMed]

Osellame, R.

Palmer, G.

Paschotta, R.

Phillips, C. R.

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics6(7), 440–449 (2012).
[CrossRef]

Pocius, J.

Pricking, S.

Pugžlys, A.

Ramponi, R.

Riedle, E.

Ross, G. W.

Ruehl, A.

Sarkisov, S.

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics6(7), 440–449 (2012).
[CrossRef]

Schmidt, O.

Schnell, M.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356 (2011).
[CrossRef] [PubMed]

Schriever, C.

Sidorov, D.

Silva, F.

Silvestri, S. D.

Smilgevicius, V.

Smith, P. G. R.

Snure, M.

Steinmann, A.

Stone, J. M.

Südmeyer, T.

Thorpe, M. J.

Tóth, G.

Tünnermann, A.

Tzeng, Y.-W.

Wallenstein, R.

S. Marzenell, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 µm to 8 µm,” Appl. Phys. B69(5-6), 423–428 (1999).
[CrossRef]

Wittborn, J.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356 (2011).
[CrossRef] [PubMed]

Ye, J.

Zhu, M.

Appl. Phys. B (1)

S. Marzenell, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 µm to 8 µm,” Appl. Phys. B69(5-6), 423–428 (1999).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Mater. (1)

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics6(7), 440–449 (2012).
[CrossRef]

Opt. Express (3)

Opt. Lett. (14)

C. Schriever, S. Lochbrunner, P. Krok, and E. Riedle, “Tunable pulses from below 300 to 970 nm with durations down to 14 fs based on a 2 MHz ytterbium-doped fiber system,” Opt. Lett.33(2), 192–194 (2008).
[CrossRef] [PubMed]

R. Hegenbarth, A. Steinmann, S. Sarkisov, and H. Giessen, “Milliwatt-level mid-infrared (10.5-16.5 μm) difference frequency generation with a femtosecond dual-signal-wavelength optical parametric oscillator,” Opt. Lett.37(17), 3513–3515 (2012).
[CrossRef] [PubMed]

C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 microm from a compact fiber source,” Opt. Lett.32(9), 1138–1140 (2007).
[CrossRef] [PubMed]

T. W. Neely, T. A. Johnson, and S. A. Diddams, “High-power broadband laser source tunable from 3.0 μm to 4.4 μm based on a femtosecond Yb:fiber oscillator,” Opt. Lett.36(20), 4020–4022 (2011).
[CrossRef] [PubMed]

A. Ruehl, A. Gambetta, I. Hartl, M. E. Fermann, K. S. E. Eikema, and M. Marangoni, “Widely-tunable mid-infrared frequency comb source based on difference frequency generation,” Opt. Lett.37(12), 2232–2234 (2012).
[CrossRef] [PubMed]

C. R. Phillips, J. Jiang, C. Mohr, A. C. Lin, C. Langrock, M. Snure, D. Bliss, M. Zhu, I. Hartl, J. S. Harris, M. E. Fermann, and M. M. Fejer, “Widely tunable midinfrared difference frequency generation in orientation-patterned GaAs pumped with a femtosecond Tm-fiber system,” Opt. Lett.37(14), 2928–2930 (2012).
[CrossRef] [PubMed]

M. Marangoni, R. Osellame, R. Ramponi, G. Cerullo, A. Steinmann, and U. Morgner, “Near-infrared optical parametric amplifier at 1 MHz directly pumped by a femtosecond oscillator,” Opt. Lett.32(11), 1489–1491 (2007).
[CrossRef] [PubMed]

T. Südmeyer, J. Aus der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Femtosecond fiber-feedback optical parametric oscillator,” Opt. Lett.26(5), 304–306 (2001).
[CrossRef] [PubMed]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm,” Opt. Lett.34(9), 1330–1332 (2009).
[CrossRef] [PubMed]

D. Brida, M. Marangoni, C. Manzoni, S. D. Silvestri, and G. Cerullo, “Two-optical-cycle pulses in the mid-infrared from an optical parametric amplifier,” Opt. Lett.33(24), 2901–2903 (2008).
[CrossRef] [PubMed]

O. D. Mücke, D. Sidorov, P. Dombi, A. Pugžlys, A. Baltuška, S. Ališauskas, V. Smilgevičius, J. Pocius, L. Giniūnas, R. Danielius, and N. Forget, “Scalable Yb-MOPA-driven carrier-envelope phase-stable few-cycle parametric amplifier at 1.5 microm,” Opt. Lett.34(2), 118–120 (2009).
[CrossRef] [PubMed]

F. Silva, P. K. Bates, A. Esteban-Martin, M. Ebrahim-Zadeh, and J. Biegert, “High-average-power, carrier-envelope phase-stable, few-cycle pulses at 2.1 μm from a collinear BiB3O6 optical parametric amplifier,” Opt. Lett.37(5), 933–935 (2012).
[CrossRef] [PubMed]

A. Killi, A. Steinmann, G. Palmer, U. Morgner, H. Bartelt, and J. Kobelke, “Megahertz optical parametric amplifier pumped by a femtosecond oscillator,” Opt. Lett.31(1), 125–127 (2006).
[CrossRef] [PubMed]

B. Metzger, A. Steinmann, F. Hoos, S. Pricking, and H. Giessen, “Compact laser source for high-power white-light and widely tunable sub 65 fs laser pulses,” Opt. Lett.35(23), 3961–3963 (2010).
[CrossRef] [PubMed]

Phys. Rev. A (1)

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A81(5), 053841 (2010).
[CrossRef]

Rev. Sci. Instrum. (1)

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum.74(1), 1–18 (2003).
[CrossRef]

Other (1)

A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, “Compact 7.4 W femtosecond oscillator for white-light generation and nonlinear microscopy,” Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThAA5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup of the OPA. For near-IR amplification we use a PPLN crystal and for mid-IR generation a GaSe crystal.

Fig. 2
Fig. 2

OPA signal power and conversion efficiency (ratio of signal power versus pump power) vs. pump power.

Fig. 3
Fig. 3

Temperature tuning of signal wavelength. We used a 5 mm long PPLN crystal. The signal wavelength is continuously tunable between 1380 and 1830 nm.

Fig. 4
Fig. 4

OPA signal spectra and supercontinuum spectrum of the tapered fiber. The solid lines correspond to the experimental results. The dashed lines depict spectra from a numerical simulation. At room temperature the signal wavelength with PPLN is tunable between 1380 and 1640 nm.

Fig. 5
Fig. 5

OPA idler spectra. The solid lines correspond to the experimental results. The dashed lines depict spectra from a numerical simulation. At room temperature the idler wavelength with PPLN is tunable between 3.04 and 4.16 µm.

Fig. 6
Fig. 6

Autocorrelation and Fourier limit for the signal pulse at 1470 nm (6800 cm−1) wavelength.

Fig. 7
Fig. 7

The mid-IR idler spectra are tunable between 4.85 and 9.33 µm. The solid lines correspond to the experimental results. The dashed lines depict spectra from a numerical simulation. We used a 2 mm long GaSe crystal.

Fig. 8
Fig. 8

Temporal stability of power and spectra (a) in the near-IR region using a 5 mm PPLN crystal and (b) in the mid-IR region using a 1 mm GaSe crystal. All measurements were performed over one hour.

Metrics