Abstract

A capillary microresonator platform for refractometric sensing is demonstrated by coating the interior of thick-walled silica capillaries with a sub-wavelength layer of high refractive index, dye-doped polymer. No intermediate processing, such as etching or tapering, of the capillary is required. Side illumination and detection of the polymer layer reveals a fluorescence spectrum that is periodically modulated by whispering gallery mode resonances within the layer. Using a Fourier technique to calculate the spectral resonance shifts, the fabricated capillary resonators exhibited refractometric sensitivities up to approximately 30 nm/RIU upon flowing aqueous glucose through them. These sensors could be readily integrated with existing biological and chemical separation platforms such as capillary electrophoresis and gas chromatography where such thick walled capillaries are routinely used with polymer coatings. A review of the modelling required to calculate whispering gallery eigenmodes of such inverted cylindrical resonators is also presented.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett.31,1319–1312 (2006).
    [CrossRef] [PubMed]
  2. H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79,930–937 (2007).
    [CrossRef] [PubMed]
  3. S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S. Ja, “On-column micro gas chromatography detection with capillary-based optical ring resonators,” Anal. Chem.80,2232–2238 (2008).
    [CrossRef] [PubMed]
  4. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nature Phot.5,591–597 (2011).
    [CrossRef]
  5. H. Zhu, I .M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express15,9139–9146 (2007).
    [CrossRef] [PubMed]
  6. G. Yang, I. M. White, and X. Fan, “An opto-fluidic ring resonator biosensor for the detection of organophosphorus pesticides,” Sens. Actuators B Chem.133,105–112 (2008).
    [CrossRef]
  7. L. Ren, X. Wu, M. Li, X. Zhang, L. Liu, and L. Xu, “Ultrasensitive label-free coupled optofluidic ring laser sensor,” Opt. Lett.37,3873–3875 (2012).
    [CrossRef] [PubMed]
  8. G. Kemp, “Capillary electrophoresis: a versatile family of analytical techniques,” Biotech. Appl. Biochem., 27,9–17 (1998).
    [CrossRef]
  9. G . Vicente and L. A. Colon, “Separation of bioconjugated quantum dots using capillary electrophoresis,” Anal. Chem.80,1988–1994 (2008).
    [CrossRef] [PubMed]
  10. J. Horvath and V. Dolník, “Polymer wall coatings for capillary electrophoresis,” Electrophoresis22,644–655 (2001).
    [CrossRef] [PubMed]
  11. Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D39,5133 (2006).
    [CrossRef]
  12. C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcapillaries,” Opt. Express19,21540–21551 (2011).
    [CrossRef] [PubMed]
  13. A. J. Campillo, J. D. Eversole, and H-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett.67,437–440 (1991).
    [CrossRef] [PubMed]
  14. A. François and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett.94,141107 (2009).
    [CrossRef]
  15. A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovic, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature434,876–879 (2005).
    [CrossRef] [PubMed]
  16. N. Yamasaki, K. Masuyama, A. Fujii, and M. Ozaki, “Spectral modulation of microcapillary laser based on emissive π-conjugated polymers by poor solvent injection,” Thin Solid Films519,995–997 (2010).
    [CrossRef]
  17. J. R. Rodrguez, J. G. C. Veinot, P. Bianucci, and A. Meldrum, “Whispering gallery modes in hollow cylindrical microcavities containing silicon nanocrystals,” Appl. Phys. Lett.92,131119-1–3 (2008).
  18. L. Prkna, J. Čtyroký, and M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quant. Electron.36,259–269 (2004).
    [CrossRef]
  19. E. Franchimon, Modelling Circular Optical Microresonators Using Whispering Gallery Modes, Thesis (2010).
  20. V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Cylindrical optical microcavities: basic properties and sensor applications,” Phot. Nano.9,149–158 (2010).
    [CrossRef]
  21. K. R. Hiremath, M. Hammer, S. Stoffer, L. Prkna, and Čtyroký, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quant. Electron.37,37–61 (2005).
    [CrossRef]
  22. A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).
  23. D. R. Rowland and J. D. Love, “Evanescent wave coupling of whispering gallery modes of a dielectric cylinder,” Optoelec., IEE Proc. J.140,177–188 (1993).
    [CrossRef]
  24. M. Sumetsky, “Mode localization and the Q-factor of a cylindrical microresonator,” Opt. Lett.35,2385–2387 (2010).
    [CrossRef] [PubMed]
  25. J. W. Silverstone, S. McFarlane, C. P. K. Manchee, and A. Meldrum, “Ultimate resolution for refractometric sensing with whispering gallery mode microcavities,” Opt. Express20,8284–8295 (2012).
    [CrossRef] [PubMed]
  26. T. Beck, S. Schloer, T. Grossmann, T. Mappes, and H. Kalt, “Flexible coupling of high-Q goblet resonators for formation of tunable photonic molecules,” Opt. Express20,22012–22017 (2012).
    [CrossRef] [PubMed]
  27. M. Wang, J. Hiltunen, C. Liedert, S. Pearce, M. Charlton, L. Hakalahti, P. Karioja, and R. Myllyl, “Highly sensitive biosensor based on UV imprinted layered polymericinorganic composite waveguides,” Opt. Express20,20309–20317 (2012).
    [CrossRef] [PubMed]
  28. T. Kobayashi and N. Byrne, “Plastic evanescent microlaser,” Appl. Phys. Lett.99,153307-1–3 (2011).
    [CrossRef]
  29. J. Huang, V. Bekiari, P. Lianos, and S. Couris, “Study of poly(methyl methacrylate) thin films doped with laser dyes,” J Lumin.81,285–291 (1999).
    [CrossRef]
  30. S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of Extremely Porous Polymer Fibers,” IEEE Photon. J.1,286–292 (2009).
    [CrossRef]
  31. D. R. Lide, (ed.), CRC Handbook of Chemistry and Physics, 84th edition Chap. 8–66 (CRC Press, 2003).
  32. J. Wang and K. Y. Wong, “Polarization characteristics of a light-emitting polymer microring laser,” Appl. Phys. B87,685–691 (2007).
    [CrossRef]

2012

2011

T. Kobayashi and N. Byrne, “Plastic evanescent microlaser,” Appl. Phys. Lett.99,153307-1–3 (2011).
[CrossRef]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nature Phot.5,591–597 (2011).
[CrossRef]

C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcapillaries,” Opt. Express19,21540–21551 (2011).
[CrossRef] [PubMed]

2010

N. Yamasaki, K. Masuyama, A. Fujii, and M. Ozaki, “Spectral modulation of microcapillary laser based on emissive π-conjugated polymers by poor solvent injection,” Thin Solid Films519,995–997 (2010).
[CrossRef]

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Cylindrical optical microcavities: basic properties and sensor applications,” Phot. Nano.9,149–158 (2010).
[CrossRef]

M. Sumetsky, “Mode localization and the Q-factor of a cylindrical microresonator,” Opt. Lett.35,2385–2387 (2010).
[CrossRef] [PubMed]

2009

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of Extremely Porous Polymer Fibers,” IEEE Photon. J.1,286–292 (2009).
[CrossRef]

A. François and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett.94,141107 (2009).
[CrossRef]

2008

J. R. Rodrguez, J. G. C. Veinot, P. Bianucci, and A. Meldrum, “Whispering gallery modes in hollow cylindrical microcavities containing silicon nanocrystals,” Appl. Phys. Lett.92,131119-1–3 (2008).

G . Vicente and L. A. Colon, “Separation of bioconjugated quantum dots using capillary electrophoresis,” Anal. Chem.80,1988–1994 (2008).
[CrossRef] [PubMed]

S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S. Ja, “On-column micro gas chromatography detection with capillary-based optical ring resonators,” Anal. Chem.80,2232–2238 (2008).
[CrossRef] [PubMed]

G. Yang, I. M. White, and X. Fan, “An opto-fluidic ring resonator biosensor for the detection of organophosphorus pesticides,” Sens. Actuators B Chem.133,105–112 (2008).
[CrossRef]

2007

H. Zhu, I .M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express15,9139–9146 (2007).
[CrossRef] [PubMed]

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79,930–937 (2007).
[CrossRef] [PubMed]

J. Wang and K. Y. Wong, “Polarization characteristics of a light-emitting polymer microring laser,” Appl. Phys. B87,685–691 (2007).
[CrossRef]

2006

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D39,5133 (2006).
[CrossRef]

I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett.31,1319–1312 (2006).
[CrossRef] [PubMed]

2005

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovic, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature434,876–879 (2005).
[CrossRef] [PubMed]

K. R. Hiremath, M. Hammer, S. Stoffer, L. Prkna, and Čtyroký, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quant. Electron.37,37–61 (2005).
[CrossRef]

2004

L. Prkna, J. Čtyroký, and M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quant. Electron.36,259–269 (2004).
[CrossRef]

2001

J. Horvath and V. Dolník, “Polymer wall coatings for capillary electrophoresis,” Electrophoresis22,644–655 (2001).
[CrossRef] [PubMed]

1999

J. Huang, V. Bekiari, P. Lianos, and S. Couris, “Study of poly(methyl methacrylate) thin films doped with laser dyes,” J Lumin.81,285–291 (1999).
[CrossRef]

1998

G. Kemp, “Capillary electrophoresis: a versatile family of analytical techniques,” Biotech. Appl. Biochem., 27,9–17 (1998).
[CrossRef]

1993

D. R. Rowland and J. D. Love, “Evanescent wave coupling of whispering gallery modes of a dielectric cylinder,” Optoelec., IEE Proc. J.140,177–188 (1993).
[CrossRef]

1991

A. J. Campillo, J. D. Eversole, and H-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett.67,437–440 (1991).
[CrossRef] [PubMed]

Abbott, D.

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of Extremely Porous Polymer Fibers,” IEEE Photon. J.1,286–292 (2009).
[CrossRef]

Afshar V., S.

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of Extremely Porous Polymer Fibers,” IEEE Photon. J.1,286–292 (2009).
[CrossRef]

Andrés, M. V.

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Cylindrical optical microcavities: basic properties and sensor applications,” Phot. Nano.9,149–158 (2010).
[CrossRef]

Atakaramians, S.

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of Extremely Porous Polymer Fibers,” IEEE Photon. J.1,286–292 (2009).
[CrossRef]

Beck, T.

Bekiari, V.

J. Huang, V. Bekiari, P. Lianos, and S. Couris, “Study of poly(methyl methacrylate) thin films doped with laser dyes,” J Lumin.81,285–291 (1999).
[CrossRef]

Bianucci, P.

J. R. Rodrguez, J. G. C. Veinot, P. Bianucci, and A. Meldrum, “Whispering gallery modes in hollow cylindrical microcavities containing silicon nanocrystals,” Appl. Phys. Lett.92,131119-1–3 (2008).

Bulovic, V.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovic, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature434,876–879 (2005).
[CrossRef] [PubMed]

Byrne, N.

T. Kobayashi and N. Byrne, “Plastic evanescent microlaser,” Appl. Phys. Lett.99,153307-1–3 (2011).
[CrossRef]

Campillo, A. J.

A. J. Campillo, J. D. Eversole, and H-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett.67,437–440 (1991).
[CrossRef] [PubMed]

Canning, J.

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of Extremely Porous Polymer Fibers,” IEEE Photon. J.1,286–292 (2009).
[CrossRef]

Charlton, M.

Colon, L. A.

G . Vicente and L. A. Colon, “Separation of bioconjugated quantum dots using capillary electrophoresis,” Anal. Chem.80,1988–1994 (2008).
[CrossRef] [PubMed]

Cook, K.

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of Extremely Porous Polymer Fibers,” IEEE Photon. J.1,286–292 (2009).
[CrossRef]

Couris, S.

J. Huang, V. Bekiari, P. Lianos, and S. Couris, “Study of poly(methyl methacrylate) thin films doped with laser dyes,” J Lumin.81,285–291 (1999).
[CrossRef]

Ctyroký,

K. R. Hiremath, M. Hammer, S. Stoffer, L. Prkna, and Čtyroký, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quant. Electron.37,37–61 (2005).
[CrossRef]

Ctyroký, J.

L. Prkna, J. Čtyroký, and M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quant. Electron.36,259–269 (2004).
[CrossRef]

Dale, P. S.

Díez, A.

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Cylindrical optical microcavities: basic properties and sensor applications,” Phot. Nano.9,149–158 (2010).
[CrossRef]

Dolník, V.

J. Horvath and V. Dolník, “Polymer wall coatings for capillary electrophoresis,” Electrophoresis22,644–655 (2001).
[CrossRef] [PubMed]

Ebendorff-Heidepriem, H.

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of Extremely Porous Polymer Fibers,” IEEE Photon. J.1,286–292 (2009).
[CrossRef]

Eversole, J. D.

A. J. Campillo, J. D. Eversole, and H-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett.67,437–440 (1991).
[CrossRef] [PubMed]

Fan, X.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nature Phot.5,591–597 (2011).
[CrossRef]

S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S. Ja, “On-column micro gas chromatography detection with capillary-based optical ring resonators,” Anal. Chem.80,2232–2238 (2008).
[CrossRef] [PubMed]

G. Yang, I. M. White, and X. Fan, “An opto-fluidic ring resonator biosensor for the detection of organophosphorus pesticides,” Sens. Actuators B Chem.133,105–112 (2008).
[CrossRef]

H. Zhu, I .M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express15,9139–9146 (2007).
[CrossRef] [PubMed]

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79,930–937 (2007).
[CrossRef] [PubMed]

I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett.31,1319–1312 (2006).
[CrossRef] [PubMed]

Franchimon, E.

E. Franchimon, Modelling Circular Optical Microresonators Using Whispering Gallery Modes, Thesis (2010).

François, A.

A. François and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett.94,141107 (2009).
[CrossRef]

Frye-Mason, G.

S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S. Ja, “On-column micro gas chromatography detection with capillary-based optical ring resonators,” Anal. Chem.80,2232–2238 (2008).
[CrossRef] [PubMed]

Fujii, A.

N. Yamasaki, K. Masuyama, A. Fujii, and M. Ozaki, “Spectral modulation of microcapillary laser based on emissive π-conjugated polymers by poor solvent injection,” Thin Solid Films519,995–997 (2010).
[CrossRef]

Gimeno, B.

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Cylindrical optical microcavities: basic properties and sensor applications,” Phot. Nano.9,149–158 (2010).
[CrossRef]

Grossmann, T.

Guo, Z.

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D39,5133 (2006).
[CrossRef]

Hakalahti, L.

Hammer, M.

K. R. Hiremath, M. Hammer, S. Stoffer, L. Prkna, and Čtyroký, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quant. Electron.37,37–61 (2005).
[CrossRef]

Hiltunen, J.

Himmelhaus, M.

A. François and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett.94,141107 (2009).
[CrossRef]

Hiremath, K. R.

K. R. Hiremath, M. Hammer, S. Stoffer, L. Prkna, and Čtyroký, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quant. Electron.37,37–61 (2005).
[CrossRef]

Horvath, J.

J. Horvath and V. Dolník, “Polymer wall coatings for capillary electrophoresis,” Electrophoresis22,644–655 (2001).
[CrossRef] [PubMed]

Huang, J.

J. Huang, V. Bekiari, P. Lianos, and S. Couris, “Study of poly(methyl methacrylate) thin films doped with laser dyes,” J Lumin.81,285–291 (1999).
[CrossRef]

Hubálek, M.

L. Prkna, J. Čtyroký, and M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quant. Electron.36,259–269 (2004).
[CrossRef]

Ja, S.

S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S. Ja, “On-column micro gas chromatography detection with capillary-based optical ring resonators,” Anal. Chem.80,2232–2238 (2008).
[CrossRef] [PubMed]

Kalt, H.

Karioja, P.

Kemp, G.

G. Kemp, “Capillary electrophoresis: a versatile family of analytical techniques,” Biotech. Appl. Biochem., 27,9–17 (1998).
[CrossRef]

Kobayashi, T.

T. Kobayashi and N. Byrne, “Plastic evanescent microlaser,” Appl. Phys. Lett.99,153307-1–3 (2011).
[CrossRef]

Li, M.

Lianos, P.

J. Huang, V. Bekiari, P. Lianos, and S. Couris, “Study of poly(methyl methacrylate) thin films doped with laser dyes,” J Lumin.81,285–291 (1999).
[CrossRef]

Liedert, C.

Lin, H-B.

A. J. Campillo, J. D. Eversole, and H-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett.67,437–440 (1991).
[CrossRef] [PubMed]

Liu, L.

Love, J.

A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).

Love, J. D.

D. R. Rowland and J. D. Love, “Evanescent wave coupling of whispering gallery modes of a dielectric cylinder,” Optoelec., IEE Proc. J.140,177–188 (1993).
[CrossRef]

Madigan, C. F.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovic, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature434,876–879 (2005).
[CrossRef] [PubMed]

Manchee, C. P. K.

Mappes, T.

Masuyama, K.

N. Yamasaki, K. Masuyama, A. Fujii, and M. Ozaki, “Spectral modulation of microcapillary laser based on emissive π-conjugated polymers by poor solvent injection,” Thin Solid Films519,995–997 (2010).
[CrossRef]

McFarlane, S.

Meldrum, A.

Monro, T. M.

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of Extremely Porous Polymer Fibers,” IEEE Photon. J.1,286–292 (2009).
[CrossRef]

Myllyl, R.

Oveys, H.

Ozaki, M.

N. Yamasaki, K. Masuyama, A. Fujii, and M. Ozaki, “Spectral modulation of microcapillary laser based on emissive π-conjugated polymers by poor solvent injection,” Thin Solid Films519,995–997 (2010).
[CrossRef]

Pau, S.

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D39,5133 (2006).
[CrossRef]

Pearce, S.

Prkna, L.

K. R. Hiremath, M. Hammer, S. Stoffer, L. Prkna, and Čtyroký, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quant. Electron.37,37–61 (2005).
[CrossRef]

L. Prkna, J. Čtyroký, and M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quant. Electron.36,259–269 (2004).
[CrossRef]

Quan, H.

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D39,5133 (2006).
[CrossRef]

Ren, L.

Rodrguez, J. R.

J. R. Rodrguez, J. G. C. Veinot, P. Bianucci, and A. Meldrum, “Whispering gallery modes in hollow cylindrical microcavities containing silicon nanocrystals,” Appl. Phys. Lett.92,131119-1–3 (2008).

Rose, A.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovic, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature434,876–879 (2005).
[CrossRef] [PubMed]

Rowland, D. R.

D. R. Rowland and J. D. Love, “Evanescent wave coupling of whispering gallery modes of a dielectric cylinder,” Optoelec., IEE Proc. J.140,177–188 (1993).
[CrossRef]

Schloer, S.

Shopova, S. I.

S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S. Ja, “On-column micro gas chromatography detection with capillary-based optical ring resonators,” Anal. Chem.80,2232–2238 (2008).
[CrossRef] [PubMed]

Silverstone, J. W.

Snyder, A. W.

A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).

Stoffer, S.

K. R. Hiremath, M. Hammer, S. Stoffer, L. Prkna, and Čtyroký, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quant. Electron.37,37–61 (2005).
[CrossRef]

Sumetsky, M.

Sun, Y.

S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S. Ja, “On-column micro gas chromatography detection with capillary-based optical ring resonators,” Anal. Chem.80,2232–2238 (2008).
[CrossRef] [PubMed]

Suter, J. D.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79,930–937 (2007).
[CrossRef] [PubMed]

H. Zhu, I .M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express15,9139–9146 (2007).
[CrossRef] [PubMed]

Swager, T. M.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovic, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature434,876–879 (2005).
[CrossRef] [PubMed]

Thompson, A.

S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S. Ja, “On-column micro gas chromatography detection with capillary-based optical ring resonators,” Anal. Chem.80,2232–2238 (2008).
[CrossRef] [PubMed]

Veinot, J. G. C.

C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcapillaries,” Opt. Express19,21540–21551 (2011).
[CrossRef] [PubMed]

J. R. Rodrguez, J. G. C. Veinot, P. Bianucci, and A. Meldrum, “Whispering gallery modes in hollow cylindrical microcavities containing silicon nanocrystals,” Appl. Phys. Lett.92,131119-1–3 (2008).

Vicente, G .

G . Vicente and L. A. Colon, “Separation of bioconjugated quantum dots using capillary electrophoresis,” Anal. Chem.80,1988–1994 (2008).
[CrossRef] [PubMed]

Wang, J.

J. Wang and K. Y. Wong, “Polarization characteristics of a light-emitting polymer microring laser,” Appl. Phys. B87,685–691 (2007).
[CrossRef]

Wang, M.

White, I .M.

White, I. M.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nature Phot.5,591–597 (2011).
[CrossRef]

S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S. Ja, “On-column micro gas chromatography detection with capillary-based optical ring resonators,” Anal. Chem.80,2232–2238 (2008).
[CrossRef] [PubMed]

G. Yang, I. M. White, and X. Fan, “An opto-fluidic ring resonator biosensor for the detection of organophosphorus pesticides,” Sens. Actuators B Chem.133,105–112 (2008).
[CrossRef]

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79,930–937 (2007).
[CrossRef] [PubMed]

I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett.31,1319–1312 (2006).
[CrossRef] [PubMed]

Wong, K. Y.

J. Wang and K. Y. Wong, “Polarization characteristics of a light-emitting polymer microring laser,” Appl. Phys. B87,685–691 (2007).
[CrossRef]

Wu, X.

Xu, L.

Yamasaki, N.

N. Yamasaki, K. Masuyama, A. Fujii, and M. Ozaki, “Spectral modulation of microcapillary laser based on emissive π-conjugated polymers by poor solvent injection,” Thin Solid Films519,995–997 (2010).
[CrossRef]

Yang, G.

G. Yang, I. M. White, and X. Fan, “An opto-fluidic ring resonator biosensor for the detection of organophosphorus pesticides,” Sens. Actuators B Chem.133,105–112 (2008).
[CrossRef]

Zamora, V.

C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcapillaries,” Opt. Express19,21540–21551 (2011).
[CrossRef] [PubMed]

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Cylindrical optical microcavities: basic properties and sensor applications,” Phot. Nano.9,149–158 (2010).
[CrossRef]

Zhang, X.

Zhu, H.

S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S. Ja, “On-column micro gas chromatography detection with capillary-based optical ring resonators,” Anal. Chem.80,2232–2238 (2008).
[CrossRef] [PubMed]

H. Zhu, I .M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express15,9139–9146 (2007).
[CrossRef] [PubMed]

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79,930–937 (2007).
[CrossRef] [PubMed]

Zhu, Z.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovic, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature434,876–879 (2005).
[CrossRef] [PubMed]

Zourob, M.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79,930–937 (2007).
[CrossRef] [PubMed]

Anal. Chem.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79,930–937 (2007).
[CrossRef] [PubMed]

S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S. Ja, “On-column micro gas chromatography detection with capillary-based optical ring resonators,” Anal. Chem.80,2232–2238 (2008).
[CrossRef] [PubMed]

G . Vicente and L. A. Colon, “Separation of bioconjugated quantum dots using capillary electrophoresis,” Anal. Chem.80,1988–1994 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett.

J. R. Rodrguez, J. G. C. Veinot, P. Bianucci, and A. Meldrum, “Whispering gallery modes in hollow cylindrical microcavities containing silicon nanocrystals,” Appl. Phys. Lett.92,131119-1–3 (2008).

Appl. Phys. B

J. Wang and K. Y. Wong, “Polarization characteristics of a light-emitting polymer microring laser,” Appl. Phys. B87,685–691 (2007).
[CrossRef]

Appl. Phys. Lett.

T. Kobayashi and N. Byrne, “Plastic evanescent microlaser,” Appl. Phys. Lett.99,153307-1–3 (2011).
[CrossRef]

A. François and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett.94,141107 (2009).
[CrossRef]

Biotech. Appl. Biochem.

G. Kemp, “Capillary electrophoresis: a versatile family of analytical techniques,” Biotech. Appl. Biochem., 27,9–17 (1998).
[CrossRef]

Electrophoresis

J. Horvath and V. Dolník, “Polymer wall coatings for capillary electrophoresis,” Electrophoresis22,644–655 (2001).
[CrossRef] [PubMed]

IEEE Photon. J.

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of Extremely Porous Polymer Fibers,” IEEE Photon. J.1,286–292 (2009).
[CrossRef]

J Lumin.

J. Huang, V. Bekiari, P. Lianos, and S. Couris, “Study of poly(methyl methacrylate) thin films doped with laser dyes,” J Lumin.81,285–291 (1999).
[CrossRef]

J. Phys. D

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D39,5133 (2006).
[CrossRef]

Nature

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovic, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature434,876–879 (2005).
[CrossRef] [PubMed]

Nature Phot.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nature Phot.5,591–597 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quant. Electron.

L. Prkna, J. Čtyroký, and M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quant. Electron.36,259–269 (2004).
[CrossRef]

K. R. Hiremath, M. Hammer, S. Stoffer, L. Prkna, and Čtyroký, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quant. Electron.37,37–61 (2005).
[CrossRef]

Optoelec., IEE Proc. J.

D. R. Rowland and J. D. Love, “Evanescent wave coupling of whispering gallery modes of a dielectric cylinder,” Optoelec., IEE Proc. J.140,177–188 (1993).
[CrossRef]

Phot. Nano.

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Cylindrical optical microcavities: basic properties and sensor applications,” Phot. Nano.9,149–158 (2010).
[CrossRef]

Phys. Rev. Lett.

A. J. Campillo, J. D. Eversole, and H-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett.67,437–440 (1991).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

G. Yang, I. M. White, and X. Fan, “An opto-fluidic ring resonator biosensor for the detection of organophosphorus pesticides,” Sens. Actuators B Chem.133,105–112 (2008).
[CrossRef]

Thin Solid Films

N. Yamasaki, K. Masuyama, A. Fujii, and M. Ozaki, “Spectral modulation of microcapillary laser based on emissive π-conjugated polymers by poor solvent injection,” Thin Solid Films519,995–997 (2010).
[CrossRef]

Other

E. Franchimon, Modelling Circular Optical Microresonators Using Whispering Gallery Modes, Thesis (2010).

A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).

D. R. Lide, (ed.), CRC Handbook of Chemistry and Physics, 84th edition Chap. 8–66 (CRC Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagrams of conventional and inverted cylindrical resonators. Arrows represent the circulation of light about the perimeter of the high index regions (red).

Fig. 2
Fig. 2

Properties of the whispering gallery modes within the high-index layer of the capillary resonator vs. layer thickness t for azimuthal order l = 350. Top left: Q of the modes with radial orders m = 1, 2 and 3 over a range of t for n0 = ng(0) = 1.3329... (water, see Eq. 3). Right: The modes’ electric field for the layer thicknesses indicated by the solid black points on the Q plot, each normalised to the maximum value of |E|. Their associated mode properties are listed in Tab. 1. The capillary sensors demonstrated in §§ 3 and 4 have layer thicknesses close to the calculated t = 400 nm m = 1 mode (circled dot and bottom field profile). Bottom left: Sensitivity of the m = 1 resonance wavelength to changes in the inner channel index n1 for t = 250 nm → 800 nm in steps of 50 nm.

Fig. 3
Fig. 3

Top and center: optical micrographs of a cleaved end of a capillary internally coated with Nile Red doped PBzMA. Note the uniform thickness of the coating (fluorescent red ring). Right: scanning electron micrograph (SEM) of a section (white square in the center image) of a polymer layer.

Fig. 4
Fig. 4

Left: optical micrograph side view of a Nile Red doped PBzMA internally coated capillary (windowed section where the protective outer coating has been removed). Right: scanning electron micrograph of a cleaved end of a prepared capillary (same sample as Fig. 3), revealing the inner surface of the layer by tilting the sample.

Fig. 5
Fig. 5

A schematic of the apparatus used to flow solutions through a coated capillary and detect the WGM modulated fluorescence spectrum of the dye doped polymer layer.

Fig. 6
Fig. 6

Top: fluorescence spectra of an internal dye doped polymer layer (capillary C1, Fig. 7) following flushing of the capillary with the target solutions, increasing n1 from top to bottom – vertically offset for clarity. Bottom: the same spectra (overlayed) with a wide (10% full spectral window) moving average subtracted and converted to k0 space for analysis (as per § 4.1).

Fig. 7
Fig. 7

Left: wavelength shifts of three coated capillaries upon flushing with glucose solutions of increasing concentration (refractive index). Data points represent the Fourier-derived shift of the time-averaged spectra. Lines represent a linear fit to each series of shifts. Right: time series of Δλ for each capillary, each spanning 10 minutes with equal time steps. For this figure, a reference wavelength of λ̄ = 600 nm was used for all calculations of Δλ.

Tables (1)

Tables Icon

Table 1. Summary of the properties (rounded to 6 significant figures) of the modes whose fields are shown above (Fig. 2, right) and are represented by the solid black points in the Q(t) plot (Fig. 2, top left). All have azimuthal mode order l = 350.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k l = l / ( n 2 R ) ,
A ( k 0 ) = ( J l ( k 1 r 1 ) J l ( k 2 r 1 ) Y l ( k 2 r 1 ) 0 k 1 J l ( k 1 r 1 ) k 2 J l ( k 2 r 1 ) k 2 Y l ( k 2 r 1 ) 0 0 J l ( k 2 r 2 ) Y l ( k 2 r 2 ) H l ( 1 ) ( k 3 r 2 ) 0 k 2 J l ( k 2 r 2 ) k 2 Y l ( k 2 r 2 ) k 3 H l ( 1 ) ( k 3 r 1 ) ) ,
n g ( C ) = 1.564705 × 10 3 C + 1.332917

Metrics