Abstract

We present the results of extensive characterization of selective emitters at high temperatures, including thermal emission measurements and thermal stability testing at 1000°C for 1h and 900°C for up to 144h. The selective emitters were fabricated as 2D photonic crystals (PhCs) on polycrystalline tantalum (Ta), targeting large-area applications in solid-state heat-to-electricity conversion. We characterized spectral emission as a function of temperature, observing very good selectivity of the emission as compared to flat Ta, with the emission of the PhC approaching the blackbody limit below the target cut-off wavelength of 2 μm, and a steep cut-off to low emission at longer wavelengths. In addition, we study the use of a thin, conformal layer (20 nm) of HfO2 deposited by atomic layer deposition (ALD) as a surface protective coating, and confirm experimentally that it acts as a diffusion inhibitor and thermal barrier coating, and prevents the formation of Ta carbide on the surface. Furthermore, we tested the thermal stability of the nanostructured emitters and their optical properties before and after annealing, observing no degradation even after 144h (6 days) at 900°C, which demonstrates the suitability of these selective emitters for high-temperature applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature417(6884), 52–55 (2002).
    [CrossRef] [PubMed]
  2. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B Condens. Matter54(16), 11245–11251 (1996).
    [CrossRef] [PubMed]
  3. M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B Condens. Matter52(16), 11744–11751 (1995).
    [CrossRef] [PubMed]
  4. E. R. Brown and O. B. McMahon, “Large electromagnetic stop bands in metallodielectric photonic crystals,” Appl. Phys. Lett.67(15), 2138–2140 (1995).
    [CrossRef]
  5. S. Lin, J. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
    [CrossRef]
  6. C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A59(6), 4736–4746 (1999).
    [CrossRef]
  7. W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A.110(14), 5309–5314 (2013).
    [CrossRef] [PubMed]
  8. C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc.746, 601–614 (2005).
    [CrossRef]
  9. V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Energy Eng.129(3), 298–303 (2007).
    [CrossRef]
  10. A. Steinfeld, “Solar thermochemical production of hydrogen - a review,” Sol. Energy78(5), 603–615 (2005).
    [CrossRef]
  11. A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt.47, 2399–2419 (2000).
  12. H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett.85(16), 3399–4001 (2004).
    [CrossRef]
  13. E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett.92(21), 211107 (2008).
    [CrossRef]
  14. I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett.92(19), 193101 (2008).
    [CrossRef]
  15. M. Araghchini, Y. X. Yeng, N. Jovanovic, P. Bermel, L. A. Kolodziejski, M. Soljačić, I. Celanovic, and J. D. Joannopoulos, “Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications,” J. Vac. Sci. Technol. B29(6), 061402 (2011).
    [CrossRef]
  16. V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B31(1), 011802 (2013).
    [CrossRef]
  17. H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett.82(11), 1685–1687 (2003).
    [CrossRef]
  18. C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro-structured selective tungsten emitters,” AIP Conf. Proc.653, 164–173 (2003).
    [CrossRef]
  19. P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem.21(29), 10836–10843 (2011).
    [CrossRef]
  20. K. A. Arpin, M. D. Losego, and P. Braun, “Electrodeposited 3D tungsten photonic crystal with enhanced thermal stability,” Chem. Mater.23(21), 4783–4788 (2011).
    [CrossRef]
  21. M. L. Schattenburg, R. J. Aucoin, and R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B13(6), 3007–3011 (1995).
    [CrossRef]
  22. M. L. Schattenburg, E. H. Anderson, and H. I. Smith, “X-ray/VUV transmission gratings for astrophysical and laboratory applications,” Phys. Scr.41(1), 13–20 (1990).
    [CrossRef]
  23. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
    [CrossRef]
  24. Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A.109(7), 2280–2285 (2012).
    [CrossRef] [PubMed]
  25. Y. S. Touloukian and D. P. DeWitt, Thermophysical Properties of Matter, Vol. 7: Thermal Radiative Properties (IFI/Plenum, 1970).

2013 (2)

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A.110(14), 5309–5314 (2013).
[CrossRef] [PubMed]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B31(1), 011802 (2013).
[CrossRef]

2012 (1)

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A.109(7), 2280–2285 (2012).
[CrossRef] [PubMed]

2011 (3)

P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem.21(29), 10836–10843 (2011).
[CrossRef]

K. A. Arpin, M. D. Losego, and P. Braun, “Electrodeposited 3D tungsten photonic crystal with enhanced thermal stability,” Chem. Mater.23(21), 4783–4788 (2011).
[CrossRef]

M. Araghchini, Y. X. Yeng, N. Jovanovic, P. Bermel, L. A. Kolodziejski, M. Soljačić, I. Celanovic, and J. D. Joannopoulos, “Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications,” J. Vac. Sci. Technol. B29(6), 061402 (2011).
[CrossRef]

2010 (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

2008 (2)

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett.92(21), 211107 (2008).
[CrossRef]

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett.92(19), 193101 (2008).
[CrossRef]

2007 (1)

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Energy Eng.129(3), 298–303 (2007).
[CrossRef]

2005 (2)

A. Steinfeld, “Solar thermochemical production of hydrogen - a review,” Sol. Energy78(5), 603–615 (2005).
[CrossRef]

C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc.746, 601–614 (2005).
[CrossRef]

2004 (1)

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett.85(16), 3399–4001 (2004).
[CrossRef]

2003 (2)

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett.82(11), 1685–1687 (2003).
[CrossRef]

C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro-structured selective tungsten emitters,” AIP Conf. Proc.653, 164–173 (2003).
[CrossRef]

2002 (1)

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature417(6884), 52–55 (2002).
[CrossRef] [PubMed]

2000 (1)

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt.47, 2399–2419 (2000).

1999 (1)

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A59(6), 4736–4746 (1999).
[CrossRef]

1998 (1)

S. Lin, J. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

1996 (1)

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B Condens. Matter54(16), 11245–11251 (1996).
[CrossRef] [PubMed]

1995 (3)

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B Condens. Matter52(16), 11744–11751 (1995).
[CrossRef] [PubMed]

E. R. Brown and O. B. McMahon, “Large electromagnetic stop bands in metallodielectric photonic crystals,” Appl. Phys. Lett.67(15), 2138–2140 (1995).
[CrossRef]

M. L. Schattenburg, R. J. Aucoin, and R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B13(6), 3007–3011 (1995).
[CrossRef]

1990 (1)

M. L. Schattenburg, E. H. Anderson, and H. I. Smith, “X-ray/VUV transmission gratings for astrophysical and laboratory applications,” Phys. Scr.41(1), 13–20 (1990).
[CrossRef]

Anderson, E. H.

M. L. Schattenburg, E. H. Anderson, and H. I. Smith, “X-ray/VUV transmission gratings for astrophysical and laboratory applications,” Phys. Scr.41(1), 13–20 (1990).
[CrossRef]

Andreev, V. M.

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Energy Eng.129(3), 298–303 (2007).
[CrossRef]

Araghchini, M.

M. Araghchini, Y. X. Yeng, N. Jovanovic, P. Bermel, L. A. Kolodziejski, M. Soljačić, I. Celanovic, and J. D. Joannopoulos, “Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications,” J. Vac. Sci. Technol. B29(6), 061402 (2011).
[CrossRef]

Arpin, K. A.

K. A. Arpin, M. D. Losego, and P. Braun, “Electrodeposited 3D tungsten photonic crystal with enhanced thermal stability,” Chem. Mater.23(21), 4783–4788 (2011).
[CrossRef]

Aschaber, J.

C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro-structured selective tungsten emitters,” AIP Conf. Proc.653, 164–173 (2003).
[CrossRef]

Aucoin, R. J.

M. L. Schattenburg, R. J. Aucoin, and R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B13(6), 3007–3011 (1995).
[CrossRef]

Bermel, P.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A.110(14), 5309–5314 (2013).
[CrossRef] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A.109(7), 2280–2285 (2012).
[CrossRef] [PubMed]

M. Araghchini, Y. X. Yeng, N. Jovanovic, P. Bermel, L. A. Kolodziejski, M. Soljačić, I. Celanovic, and J. D. Joannopoulos, “Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications,” J. Vac. Sci. Technol. B29(6), 061402 (2011).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Biswas, R.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature417(6884), 52–55 (2002).
[CrossRef] [PubMed]

S. Lin, J. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Bläsi, B.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt.47, 2399–2419 (2000).

Boerner, V.

C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro-structured selective tungsten emitters,” AIP Conf. Proc.653, 164–173 (2003).
[CrossRef]

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt.47, 2399–2419 (2000).

Braun, P.

K. A. Arpin, M. D. Losego, and P. Braun, “Electrodeposited 3D tungsten photonic crystal with enhanced thermal stability,” Chem. Mater.23(21), 4783–4788 (2011).
[CrossRef]

Brown, E. R.

E. R. Brown and O. B. McMahon, “Large electromagnetic stop bands in metallodielectric photonic crystals,” Appl. Phys. Lett.67(15), 2138–2140 (1995).
[CrossRef]

Bur, J.

S. Lin, J. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Celanovic, I.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A.110(14), 5309–5314 (2013).
[CrossRef] [PubMed]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B31(1), 011802 (2013).
[CrossRef]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A.109(7), 2280–2285 (2012).
[CrossRef] [PubMed]

M. Araghchini, Y. X. Yeng, N. Jovanovic, P. Bermel, L. A. Kolodziejski, M. Soljačić, I. Celanovic, and J. D. Joannopoulos, “Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications,” J. Vac. Sci. Technol. B29(6), 061402 (2011).
[CrossRef]

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett.92(19), 193101 (2008).
[CrossRef]

Chan, C. T.

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B Condens. Matter52(16), 11744–11751 (1995).
[CrossRef] [PubMed]

Chan, W. R.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A.110(14), 5309–5314 (2013).
[CrossRef] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A.109(7), 2280–2285 (2012).
[CrossRef] [PubMed]

Chubb, D. L.

C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc.746, 601–614 (2005).
[CrossRef]

Cornelius, C. M.

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A59(6), 4736–4746 (1999).
[CrossRef]

Crowley, C. J.

C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc.746, 601–614 (2005).
[CrossRef]

Denny, N. R.

P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem.21(29), 10836–10843 (2011).
[CrossRef]

DeWilde, J.

P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem.21(29), 10836–10843 (2011).
[CrossRef]

Dowling, J. P.

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A59(6), 4736–4746 (1999).
[CrossRef]

El-Kady, I.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Elkouh, N. A.

C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc.746, 601–614 (2005).
[CrossRef]

Fan, S.

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett.92(21), 211107 (2008).
[CrossRef]

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B Condens. Matter54(16), 11245–11251 (1996).
[CrossRef] [PubMed]

Fleming, J.

S. Lin, J. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Fleming, J. G.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Fleming, R. C.

M. L. Schattenburg, R. J. Aucoin, and R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B13(6), 3007–3011 (1995).
[CrossRef]

Gazaryan, P. Y.

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Energy Eng.129(3), 298–303 (2007).
[CrossRef]

Geil, R. D.

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B31(1), 011802 (2013).
[CrossRef]

Ghebrebrhan, M.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A.109(7), 2280–2285 (2012).
[CrossRef] [PubMed]

Gombert, A.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt.47, 2399–2419 (2000).

Heinzel, A.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt.47, 2399–2419 (2000).

Hetherington, D. L.

S. Lin, J. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Ho, K. M.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature417(6884), 52–55 (2002).
[CrossRef] [PubMed]

S. Lin, J. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B Condens. Matter52(16), 11744–11751 (1995).
[CrossRef] [PubMed]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Jensen, K. F.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A.110(14), 5309–5314 (2013).
[CrossRef] [PubMed]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B31(1), 011802 (2013).
[CrossRef]

Joannopoulos, J. D.

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B31(1), 011802 (2013).
[CrossRef]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A.110(14), 5309–5314 (2013).
[CrossRef] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A.109(7), 2280–2285 (2012).
[CrossRef] [PubMed]

M. Araghchini, Y. X. Yeng, N. Jovanovic, P. Bermel, L. A. Kolodziejski, M. Soljačić, I. Celanovic, and J. D. Joannopoulos, “Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications,” J. Vac. Sci. Technol. B29(6), 061402 (2011).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B Condens. Matter54(16), 11245–11251 (1996).
[CrossRef] [PubMed]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Josephson, D. P.

P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem.21(29), 10836–10843 (2011).
[CrossRef]

Jovanovic, N.

M. Araghchini, Y. X. Yeng, N. Jovanovic, P. Bermel, L. A. Kolodziejski, M. Soljačić, I. Celanovic, and J. D. Joannopoulos, “Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications,” J. Vac. Sci. Technol. B29(6), 061402 (2011).
[CrossRef]

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett.92(19), 193101 (2008).
[CrossRef]

Kanamori, Y.

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett.82(11), 1685–1687 (2003).
[CrossRef]

Kassakian, J.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett.92(19), 193101 (2008).
[CrossRef]

Khvostikov, V. P.

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Energy Eng.129(3), 298–303 (2007).
[CrossRef]

Khvostikova, O. A.

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Energy Eng.129(3), 298–303 (2007).
[CrossRef]

Kolodziejski, L. A.

M. Araghchini, Y. X. Yeng, N. Jovanovic, P. Bermel, L. A. Kolodziejski, M. Soljačić, I. Celanovic, and J. D. Joannopoulos, “Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications,” J. Vac. Sci. Technol. B29(6), 061402 (2011).
[CrossRef]

Kurtz, S. R.

S. Lin, J. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Lin, S.

S. Lin, J. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Lin, S. Y.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Losego, M. D.

K. A. Arpin, M. D. Losego, and P. Braun, “Electrodeposited 3D tungsten photonic crystal with enhanced thermal stability,” Chem. Mater.23(21), 4783–4788 (2011).
[CrossRef]

Luther, J.

C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro-structured selective tungsten emitters,” AIP Conf. Proc.653, 164–173 (2003).
[CrossRef]

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt.47, 2399–2419 (2000).

Marton, C. H.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A.110(14), 5309–5314 (2013).
[CrossRef] [PubMed]

McMahon, O. B.

E. R. Brown and O. B. McMahon, “Large electromagnetic stop bands in metallodielectric photonic crystals,” Appl. Phys. Lett.67(15), 2138–2140 (1995).
[CrossRef]

Murray, S.

C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc.746, 601–614 (2005).
[CrossRef]

Nagpal, P.

P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem.21(29), 10836–10843 (2011).
[CrossRef]

Ndao, S.

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B31(1), 011802 (2013).
[CrossRef]

Norris, D. J.

P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem.21(29), 10836–10843 (2011).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Pilawa-Podgurski, R. C. N.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A.110(14), 5309–5314 (2013).
[CrossRef] [PubMed]

Rephaeli, E.

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett.92(21), 211107 (2008).
[CrossRef]

Rinnerbauer, V.

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B31(1), 011802 (2013).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Sadchikov, N. A.

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Energy Eng.129(3), 298–303 (2007).
[CrossRef]

Sai, H.

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett.85(16), 3399–4001 (2004).
[CrossRef]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett.82(11), 1685–1687 (2003).
[CrossRef]

Schattenburg, M. L.

M. L. Schattenburg, R. J. Aucoin, and R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B13(6), 3007–3011 (1995).
[CrossRef]

M. L. Schattenburg, E. H. Anderson, and H. I. Smith, “X-ray/VUV transmission gratings for astrophysical and laboratory applications,” Phys. Scr.41(1), 13–20 (1990).
[CrossRef]

Schlemmer, C.

C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro-structured selective tungsten emitters,” AIP Conf. Proc.653, 164–173 (2003).
[CrossRef]

Senkevich, J. J.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A.110(14), 5309–5314 (2013).
[CrossRef] [PubMed]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B31(1), 011802 (2013).
[CrossRef]

Sigalas, M. M.

S. Lin, J. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B Condens. Matter52(16), 11744–11751 (1995).
[CrossRef] [PubMed]

Smith, B. K.

S. Lin, J. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Smith, H. I.

M. L. Schattenburg, E. H. Anderson, and H. I. Smith, “X-ray/VUV transmission gratings for astrophysical and laboratory applications,” Phys. Scr.41(1), 13–20 (1990).
[CrossRef]

Soljacic, M.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A.110(14), 5309–5314 (2013).
[CrossRef] [PubMed]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B31(1), 011802 (2013).
[CrossRef]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A.109(7), 2280–2285 (2012).
[CrossRef] [PubMed]

M. Araghchini, Y. X. Yeng, N. Jovanovic, P. Bermel, L. A. Kolodziejski, M. Soljačić, I. Celanovic, and J. D. Joannopoulos, “Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications,” J. Vac. Sci. Technol. B29(6), 061402 (2011).
[CrossRef]

Sorokina, S. V.

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Energy Eng.129(3), 298–303 (2007).
[CrossRef]

Soukoulis, C. M.

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B Condens. Matter52(16), 11744–11751 (1995).
[CrossRef] [PubMed]

Stein, A.

P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem.21(29), 10836–10843 (2011).
[CrossRef]

Steinfeld, A.

A. Steinfeld, “Solar thermochemical production of hydrogen - a review,” Sol. Energy78(5), 603–615 (2005).
[CrossRef]

Villeneuve, P. R.

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B Condens. Matter54(16), 11245–11251 (1996).
[CrossRef] [PubMed]

Vlasov, A. S.

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Energy Eng.129(3), 298–303 (2007).
[CrossRef]

Wittwer, V.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt.47, 2399–2419 (2000).

Xiang Yeng, Y.

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B31(1), 011802 (2013).
[CrossRef]

Yeng, Y. X.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A.109(7), 2280–2285 (2012).
[CrossRef] [PubMed]

M. Araghchini, Y. X. Yeng, N. Jovanovic, P. Bermel, L. A. Kolodziejski, M. Soljačić, I. Celanovic, and J. D. Joannopoulos, “Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications,” J. Vac. Sci. Technol. B29(6), 061402 (2011).
[CrossRef]

Yugami, H.

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett.85(16), 3399–4001 (2004).
[CrossRef]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett.82(11), 1685–1687 (2003).
[CrossRef]

Zubrzycki, W.

S. Lin, J. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

AIP Conf. Proc. (2)

C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc.746, 601–614 (2005).
[CrossRef]

C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro-structured selective tungsten emitters,” AIP Conf. Proc.653, 164–173 (2003).
[CrossRef]

Appl. Phys. Lett. (5)

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett.82(11), 1685–1687 (2003).
[CrossRef]

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett.85(16), 3399–4001 (2004).
[CrossRef]

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett.92(21), 211107 (2008).
[CrossRef]

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett.92(19), 193101 (2008).
[CrossRef]

E. R. Brown and O. B. McMahon, “Large electromagnetic stop bands in metallodielectric photonic crystals,” Appl. Phys. Lett.67(15), 2138–2140 (1995).
[CrossRef]

Chem. Mater. (1)

K. A. Arpin, M. D. Losego, and P. Braun, “Electrodeposited 3D tungsten photonic crystal with enhanced thermal stability,” Chem. Mater.23(21), 4783–4788 (2011).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

J. Mater. Chem. (1)

P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem.21(29), 10836–10843 (2011).
[CrossRef]

J. Mod. Opt. (1)

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt.47, 2399–2419 (2000).

J. Sol. Energy Eng. (1)

V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Energy Eng.129(3), 298–303 (2007).
[CrossRef]

J. Vac. Sci. Technol. B (3)

M. Araghchini, Y. X. Yeng, N. Jovanovic, P. Bermel, L. A. Kolodziejski, M. Soljačić, I. Celanovic, and J. D. Joannopoulos, “Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications,” J. Vac. Sci. Technol. B29(6), 061402 (2011).
[CrossRef]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B31(1), 011802 (2013).
[CrossRef]

M. L. Schattenburg, R. J. Aucoin, and R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B13(6), 3007–3011 (1995).
[CrossRef]

Nature (2)

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature417(6884), 52–55 (2002).
[CrossRef] [PubMed]

S. Lin, J. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998).
[CrossRef]

Phys. Rev. A (1)

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A59(6), 4736–4746 (1999).
[CrossRef]

Phys. Rev. B Condens. Matter (2)

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B Condens. Matter54(16), 11245–11251 (1996).
[CrossRef] [PubMed]

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B Condens. Matter52(16), 11744–11751 (1995).
[CrossRef] [PubMed]

Phys. Scr. (1)

M. L. Schattenburg, E. H. Anderson, and H. I. Smith, “X-ray/VUV transmission gratings for astrophysical and laboratory applications,” Phys. Scr.41(1), 13–20 (1990).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (2)

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A.109(7), 2280–2285 (2012).
[CrossRef] [PubMed]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A.110(14), 5309–5314 (2013).
[CrossRef] [PubMed]

Sol. Energy (1)

A. Steinfeld, “Solar thermochemical production of hydrogen - a review,” Sol. Energy78(5), 603–615 (2005).
[CrossRef]

Other (1)

Y. S. Touloukian and D. P. DeWitt, Thermophysical Properties of Matter, Vol. 7: Thermal Radiative Properties (IFI/Plenum, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Measured normal spectral emission of a Ta PhC at different temperatures (solid lines), compared to the simulated emission of a Ta PhC (dashed line), calculated emission of flat Ta (dashed-dotted line), and calculated blackbody emission (dashed black line) at 982°C. Inset: Scanning electron micrograph of the fabricated Ta PhC.

Fig. 2
Fig. 2

Emissivity of Ta PhC as a function of temperature: solid lines are measured curves of a fabricated Ta PhC and flat Ta at RT, and the emissivity derived from measured emission at 982°C. Dashed lines are simulated emissivity of a Ta PhC with period a = 1.35 µm, radius r = 0.51 µm and depth d = 6.26 µm using Drude-Lorentz material parameters for Ta fitted to the reflectivity of flat Ta measured at RT, and to emissivity of Ta at 1205°C and 2527°C as taken from literature [25]. Inset: schematic view of the Ta PhC.

Fig. 3
Fig. 3

(a) Emissivity of a Ta PhC without any surface coating measured at RT before and after heating to 900°C for 3h, 24h and 72h, respectively, (b) and (c) surface of a Ta PhC after heating for 3h and 24h, respectively, showing TaC formation.

Fig. 4
Fig. 4

(a) Emissivity of a Ta PhC with HfO2 coating measured at RT before and after heating to 1000°C for 1h and subsequently to 900°C for 144h (in 6 runs of 24h each). Inset: SEM micrograph of the surface of a Ta PhC after heating to 900°C for 144h. (b) SEM micrograph of Ta PhC with HfO2 coating before heating and (c) after heating to 900°C for 144h, showing no signs of structural degradation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T= hc λkln( 2εhc λ 5 L S +1) ,
ΔT T = Δε ln( 2h c 2 ε λ 5 L S +1 )( ε+ λ 5 L S 2h c 2 ) .

Metrics