Abstract

We experimentally demonstrate and characterize an organic octagonal quasicrystal slab with a single-defect microcavity at low-index contrast. The gain medium is the conjugated-polymer, composed by two PPV derivatives, a BEHP-PPV and a MEH-PPV. By optical pumping, the lasing action is achieved at 607 nm with a FWHM of 1nm. The threshold of lasing is 9μJ/cm2. The intensity of the lasing peak depends linearly on the pump energy above the threshold.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fox, Optical Properties of Solids (Oxford University Press, city, 2010), p.165.
  2. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
    [CrossRef] [PubMed]
  3. C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev.6(4), 419–462 (2012).
    [CrossRef]
  4. N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature382(6593), 695–697 (1996).
    [CrossRef]
  5. V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductorwaveguide and double-heterostructure devices,” Nature389(6649), 362–364 (1997).
    [CrossRef]
  6. V. G. Kozlov, V. Bulovic, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett.71(18), 2575–2577 (1997).
    [CrossRef]
  7. A. Schulzgen, C. Spiegelberg, M. M. Morrell, S. B. Mendes, P. M. Allemand, Y. Kawabe, M. K. Gonokami, S. Honkanen, M. Fallahi, B. Kippelen, and N. Peyghambarian, “Light amplification and laser emission in conjugated polymers,” Opt. Eng.37(4), 1149–1156 (1998).
    [CrossRef]
  8. G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett.82(3), 313–315 (2003).
    [CrossRef]
  9. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284(5421), 1819–1821 (1999).
    [CrossRef] [PubMed]
  10. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature407(6804), 608–610 (2000).
    [CrossRef] [PubMed]
  11. F. Gourdon, M. Chakaroun, N. Fabre, J. Solard, E. Cambril, A. M. Yacomotti, S. Bouchoule, A. Fischer, and A. Boudrioua, “Optically pumped lasing from organic two-dimensional planar photonic crystal microcavity,” Appl. Phys. Lett.100(21), 213304 (2012).
    [CrossRef]
  12. C. Wang, C. Z. Zhou, and Z. Y. Li, “On-chip optical diode based on silicon photonic crystal heterojunctions,” Opt. Express19(27), 26948–26955 (2011).
    [CrossRef] [PubMed]
  13. A. V. Giannopoulos, Y. J. Li, C. M. Long, J. M. Jin, and K. D. Choquette, “Optical properties of photonic crystal heterostructure cavity lasers,” Opt. Express17(7), 5379–5390 (2009).
    [CrossRef] [PubMed]
  14. M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice,” Phys. Rev. Lett.92(12), 123906 (2004).
    [CrossRef] [PubMed]
  15. K. Nozaki and T. Baba, “Quasiperiodic photonic crystal microcavity lasers,” Appl. Phys. Lett.84(24), 4875–4877 (2004).
    [CrossRef]
  16. W. Y. Lai, R. D. Xia, Q. Y. He, Q. A. Levermore, W. Huang, and D. D. C. Bradley, “Enhanced solid-state luminescence and low-threshold lasing from starburst macromolecular materials,” Adv. Mater.21(3), 355–360 (2009).
    [CrossRef]
  17. H. J. Jiang, Z. Q. Gao, F. Liu, Q. Ling, W. Wei, and W. Huang, “Novel photoluminescent polymers containing fluorene and 2,4,6-triphenyl pyridine moieties: Effects of noncoplanar molecular architecture on the electro-optical properties of parent matrix,” Polymer (Guildf.)49(20), 4369–4377 (2008).
    [CrossRef]
  18. D. M. Johansson, G. Srdanov, G. Yu, M. Theander, O. Inganas, and M. R. Andersson, “Synthesis and characterization of highly soluble phenyl-substituted poly(p-phenylenevinylenes),” Macromolecues33(7), 2525–2529 (2000).
    [CrossRef]

2012

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev.6(4), 419–462 (2012).
[CrossRef]

F. Gourdon, M. Chakaroun, N. Fabre, J. Solard, E. Cambril, A. M. Yacomotti, S. Bouchoule, A. Fischer, and A. Boudrioua, “Optically pumped lasing from organic two-dimensional planar photonic crystal microcavity,” Appl. Phys. Lett.100(21), 213304 (2012).
[CrossRef]

2011

2009

A. V. Giannopoulos, Y. J. Li, C. M. Long, J. M. Jin, and K. D. Choquette, “Optical properties of photonic crystal heterostructure cavity lasers,” Opt. Express17(7), 5379–5390 (2009).
[CrossRef] [PubMed]

W. Y. Lai, R. D. Xia, Q. Y. He, Q. A. Levermore, W. Huang, and D. D. C. Bradley, “Enhanced solid-state luminescence and low-threshold lasing from starburst macromolecular materials,” Adv. Mater.21(3), 355–360 (2009).
[CrossRef]

2008

H. J. Jiang, Z. Q. Gao, F. Liu, Q. Ling, W. Wei, and W. Huang, “Novel photoluminescent polymers containing fluorene and 2,4,6-triphenyl pyridine moieties: Effects of noncoplanar molecular architecture on the electro-optical properties of parent matrix,” Polymer (Guildf.)49(20), 4369–4377 (2008).
[CrossRef]

2007

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

2004

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice,” Phys. Rev. Lett.92(12), 123906 (2004).
[CrossRef] [PubMed]

K. Nozaki and T. Baba, “Quasiperiodic photonic crystal microcavity lasers,” Appl. Phys. Lett.84(24), 4875–4877 (2004).
[CrossRef]

2003

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett.82(3), 313–315 (2003).
[CrossRef]

2000

D. M. Johansson, G. Srdanov, G. Yu, M. Theander, O. Inganas, and M. R. Andersson, “Synthesis and characterization of highly soluble phenyl-substituted poly(p-phenylenevinylenes),” Macromolecues33(7), 2525–2529 (2000).
[CrossRef]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature407(6804), 608–610 (2000).
[CrossRef] [PubMed]

1999

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

1998

A. Schulzgen, C. Spiegelberg, M. M. Morrell, S. B. Mendes, P. M. Allemand, Y. Kawabe, M. K. Gonokami, S. Honkanen, M. Fallahi, B. Kippelen, and N. Peyghambarian, “Light amplification and laser emission in conjugated polymers,” Opt. Eng.37(4), 1149–1156 (1998).
[CrossRef]

1997

V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductorwaveguide and double-heterostructure devices,” Nature389(6649), 362–364 (1997).
[CrossRef]

V. G. Kozlov, V. Bulovic, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett.71(18), 2575–2577 (1997).
[CrossRef]

1996

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature382(6593), 695–697 (1996).
[CrossRef]

Allemand, P. M.

A. Schulzgen, C. Spiegelberg, M. M. Morrell, S. B. Mendes, P. M. Allemand, Y. Kawabe, M. K. Gonokami, S. Honkanen, M. Fallahi, B. Kippelen, and N. Peyghambarian, “Light amplification and laser emission in conjugated polymers,” Opt. Eng.37(4), 1149–1156 (1998).
[CrossRef]

Andersson, M. R.

D. M. Johansson, G. Srdanov, G. Yu, M. Theander, O. Inganas, and M. R. Andersson, “Synthesis and characterization of highly soluble phenyl-substituted poly(p-phenylenevinylenes),” Macromolecues33(7), 2525–2529 (2000).
[CrossRef]

Andrew, P.

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett.82(3), 313–315 (2003).
[CrossRef]

Baba, T.

K. Nozaki and T. Baba, “Quasiperiodic photonic crystal microcavity lasers,” Appl. Phys. Lett.84(24), 4875–4877 (2004).
[CrossRef]

Barnes, W. L.

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett.82(3), 313–315 (2003).
[CrossRef]

Bouchoule, S.

F. Gourdon, M. Chakaroun, N. Fabre, J. Solard, E. Cambril, A. M. Yacomotti, S. Bouchoule, A. Fischer, and A. Boudrioua, “Optically pumped lasing from organic two-dimensional planar photonic crystal microcavity,” Appl. Phys. Lett.100(21), 213304 (2012).
[CrossRef]

Boudrioua, A.

F. Gourdon, M. Chakaroun, N. Fabre, J. Solard, E. Cambril, A. M. Yacomotti, S. Bouchoule, A. Fischer, and A. Boudrioua, “Optically pumped lasing from organic two-dimensional planar photonic crystal microcavity,” Appl. Phys. Lett.100(21), 213304 (2012).
[CrossRef]

Bradley, D. D. C.

W. Y. Lai, R. D. Xia, Q. Y. He, Q. A. Levermore, W. Huang, and D. D. C. Bradley, “Enhanced solid-state luminescence and low-threshold lasing from starburst macromolecular materials,” Adv. Mater.21(3), 355–360 (2009).
[CrossRef]

Bulovic, V.

V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductorwaveguide and double-heterostructure devices,” Nature389(6649), 362–364 (1997).
[CrossRef]

V. G. Kozlov, V. Bulovic, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett.71(18), 2575–2577 (1997).
[CrossRef]

Burrows, P. E.

V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductorwaveguide and double-heterostructure devices,” Nature389(6649), 362–364 (1997).
[CrossRef]

Cambril, E.

F. Gourdon, M. Chakaroun, N. Fabre, J. Solard, E. Cambril, A. M. Yacomotti, S. Bouchoule, A. Fischer, and A. Boudrioua, “Optically pumped lasing from organic two-dimensional planar photonic crystal microcavity,” Appl. Phys. Lett.100(21), 213304 (2012).
[CrossRef]

Chakaroun, M.

F. Gourdon, M. Chakaroun, N. Fabre, J. Solard, E. Cambril, A. M. Yacomotti, S. Bouchoule, A. Fischer, and A. Boudrioua, “Optically pumped lasing from organic two-dimensional planar photonic crystal microcavity,” Appl. Phys. Lett.100(21), 213304 (2012).
[CrossRef]

Choquette, K. D.

Chutinan, A.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Denton, G. J.

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature382(6593), 695–697 (1996).
[CrossRef]

Edagawa, K.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice,” Phys. Rev. Lett.92(12), 123906 (2004).
[CrossRef] [PubMed]

Fabre, N.

F. Gourdon, M. Chakaroun, N. Fabre, J. Solard, E. Cambril, A. M. Yacomotti, S. Bouchoule, A. Fischer, and A. Boudrioua, “Optically pumped lasing from organic two-dimensional planar photonic crystal microcavity,” Appl. Phys. Lett.100(21), 213304 (2012).
[CrossRef]

Fallahi, M.

A. Schulzgen, C. Spiegelberg, M. M. Morrell, S. B. Mendes, P. M. Allemand, Y. Kawabe, M. K. Gonokami, S. Honkanen, M. Fallahi, B. Kippelen, and N. Peyghambarian, “Light amplification and laser emission in conjugated polymers,” Opt. Eng.37(4), 1149–1156 (1998).
[CrossRef]

Fischer, A.

F. Gourdon, M. Chakaroun, N. Fabre, J. Solard, E. Cambril, A. M. Yacomotti, S. Bouchoule, A. Fischer, and A. Boudrioua, “Optically pumped lasing from organic two-dimensional planar photonic crystal microcavity,” Appl. Phys. Lett.100(21), 213304 (2012).
[CrossRef]

Forrest, S. R.

V. G. Kozlov, V. Bulovic, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett.71(18), 2575–2577 (1997).
[CrossRef]

V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductorwaveguide and double-heterostructure devices,” Nature389(6649), 362–364 (1997).
[CrossRef]

Friend, R. H.

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature382(6593), 695–697 (1996).
[CrossRef]

Gao, Z. Q.

H. J. Jiang, Z. Q. Gao, F. Liu, Q. Ling, W. Wei, and W. Huang, “Novel photoluminescent polymers containing fluorene and 2,4,6-triphenyl pyridine moieties: Effects of noncoplanar molecular architecture on the electro-optical properties of parent matrix,” Polymer (Guildf.)49(20), 4369–4377 (2008).
[CrossRef]

Giannopoulos, A. V.

Gonokami, M. K.

A. Schulzgen, C. Spiegelberg, M. M. Morrell, S. B. Mendes, P. M. Allemand, Y. Kawabe, M. K. Gonokami, S. Honkanen, M. Fallahi, B. Kippelen, and N. Peyghambarian, “Light amplification and laser emission in conjugated polymers,” Opt. Eng.37(4), 1149–1156 (1998).
[CrossRef]

Gourdon, F.

F. Gourdon, M. Chakaroun, N. Fabre, J. Solard, E. Cambril, A. M. Yacomotti, S. Bouchoule, A. Fischer, and A. Boudrioua, “Optically pumped lasing from organic two-dimensional planar photonic crystal microcavity,” Appl. Phys. Lett.100(21), 213304 (2012).
[CrossRef]

Grivas, C.

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev.6(4), 419–462 (2012).
[CrossRef]

He, Q. Y.

W. Y. Lai, R. D. Xia, Q. Y. He, Q. A. Levermore, W. Huang, and D. D. C. Bradley, “Enhanced solid-state luminescence and low-threshold lasing from starburst macromolecular materials,” Adv. Mater.21(3), 355–360 (2009).
[CrossRef]

Honkanen, S.

A. Schulzgen, C. Spiegelberg, M. M. Morrell, S. B. Mendes, P. M. Allemand, Y. Kawabe, M. K. Gonokami, S. Honkanen, M. Fallahi, B. Kippelen, and N. Peyghambarian, “Light amplification and laser emission in conjugated polymers,” Opt. Eng.37(4), 1149–1156 (1998).
[CrossRef]

Huang, W.

W. Y. Lai, R. D. Xia, Q. Y. He, Q. A. Levermore, W. Huang, and D. D. C. Bradley, “Enhanced solid-state luminescence and low-threshold lasing from starburst macromolecular materials,” Adv. Mater.21(3), 355–360 (2009).
[CrossRef]

H. J. Jiang, Z. Q. Gao, F. Liu, Q. Ling, W. Wei, and W. Huang, “Novel photoluminescent polymers containing fluorene and 2,4,6-triphenyl pyridine moieties: Effects of noncoplanar molecular architecture on the electro-optical properties of parent matrix,” Polymer (Guildf.)49(20), 4369–4377 (2008).
[CrossRef]

Imada, M.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Inganas, O.

D. M. Johansson, G. Srdanov, G. Yu, M. Theander, O. Inganas, and M. R. Andersson, “Synthesis and characterization of highly soluble phenyl-substituted poly(p-phenylenevinylenes),” Macromolecues33(7), 2525–2529 (2000).
[CrossRef]

Jiang, H. J.

H. J. Jiang, Z. Q. Gao, F. Liu, Q. Ling, W. Wei, and W. Huang, “Novel photoluminescent polymers containing fluorene and 2,4,6-triphenyl pyridine moieties: Effects of noncoplanar molecular architecture on the electro-optical properties of parent matrix,” Polymer (Guildf.)49(20), 4369–4377 (2008).
[CrossRef]

Jin, J. M.

Johansson, D. M.

D. M. Johansson, G. Srdanov, G. Yu, M. Theander, O. Inganas, and M. R. Andersson, “Synthesis and characterization of highly soluble phenyl-substituted poly(p-phenylenevinylenes),” Macromolecues33(7), 2525–2529 (2000).
[CrossRef]

Kawabe, Y.

A. Schulzgen, C. Spiegelberg, M. M. Morrell, S. B. Mendes, P. M. Allemand, Y. Kawabe, M. K. Gonokami, S. Honkanen, M. Fallahi, B. Kippelen, and N. Peyghambarian, “Light amplification and laser emission in conjugated polymers,” Opt. Eng.37(4), 1149–1156 (1998).
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Kippelen, B.

A. Schulzgen, C. Spiegelberg, M. M. Morrell, S. B. Mendes, P. M. Allemand, Y. Kawabe, M. K. Gonokami, S. Honkanen, M. Fallahi, B. Kippelen, and N. Peyghambarian, “Light amplification and laser emission in conjugated polymers,” Opt. Eng.37(4), 1149–1156 (1998).
[CrossRef]

Kozlov, V. G.

V. G. Kozlov, V. Bulovic, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett.71(18), 2575–2577 (1997).
[CrossRef]

V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductorwaveguide and double-heterostructure devices,” Nature389(6649), 362–364 (1997).
[CrossRef]

Lai, W. Y.

W. Y. Lai, R. D. Xia, Q. Y. He, Q. A. Levermore, W. Huang, and D. D. C. Bradley, “Enhanced solid-state luminescence and low-threshold lasing from starburst macromolecular materials,” Adv. Mater.21(3), 355–360 (2009).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Levermore, Q. A.

W. Y. Lai, R. D. Xia, Q. Y. He, Q. A. Levermore, W. Huang, and D. D. C. Bradley, “Enhanced solid-state luminescence and low-threshold lasing from starburst macromolecular materials,” Adv. Mater.21(3), 355–360 (2009).
[CrossRef]

Li, Y. J.

Li, Z. Y.

Ling, Q.

H. J. Jiang, Z. Q. Gao, F. Liu, Q. Ling, W. Wei, and W. Huang, “Novel photoluminescent polymers containing fluorene and 2,4,6-triphenyl pyridine moieties: Effects of noncoplanar molecular architecture on the electro-optical properties of parent matrix,” Polymer (Guildf.)49(20), 4369–4377 (2008).
[CrossRef]

Liu, F.

H. J. Jiang, Z. Q. Gao, F. Liu, Q. Ling, W. Wei, and W. Huang, “Novel photoluminescent polymers containing fluorene and 2,4,6-triphenyl pyridine moieties: Effects of noncoplanar molecular architecture on the electro-optical properties of parent matrix,” Polymer (Guildf.)49(20), 4369–4377 (2008).
[CrossRef]

Long, C. M.

Mendes, S. B.

A. Schulzgen, C. Spiegelberg, M. M. Morrell, S. B. Mendes, P. M. Allemand, Y. Kawabe, M. K. Gonokami, S. Honkanen, M. Fallahi, B. Kippelen, and N. Peyghambarian, “Light amplification and laser emission in conjugated polymers,” Opt. Eng.37(4), 1149–1156 (1998).
[CrossRef]

Morrell, M. M.

A. Schulzgen, C. Spiegelberg, M. M. Morrell, S. B. Mendes, P. M. Allemand, Y. Kawabe, M. K. Gonokami, S. Honkanen, M. Fallahi, B. Kippelen, and N. Peyghambarian, “Light amplification and laser emission in conjugated polymers,” Opt. Eng.37(4), 1149–1156 (1998).
[CrossRef]

Noda, S.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Notomi, M.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice,” Phys. Rev. Lett.92(12), 123906 (2004).
[CrossRef] [PubMed]

Nozaki, K.

K. Nozaki and T. Baba, “Quasiperiodic photonic crystal microcavity lasers,” Appl. Phys. Lett.84(24), 4875–4877 (2004).
[CrossRef]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Peyghambarian, N.

A. Schulzgen, C. Spiegelberg, M. M. Morrell, S. B. Mendes, P. M. Allemand, Y. Kawabe, M. K. Gonokami, S. Honkanen, M. Fallahi, B. Kippelen, and N. Peyghambarian, “Light amplification and laser emission in conjugated polymers,” Opt. Eng.37(4), 1149–1156 (1998).
[CrossRef]

Pollnau, M.

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev.6(4), 419–462 (2012).
[CrossRef]

Samuel, I. D. W.

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett.82(3), 313–315 (2003).
[CrossRef]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Schulzgen, A.

A. Schulzgen, C. Spiegelberg, M. M. Morrell, S. B. Mendes, P. M. Allemand, Y. Kawabe, M. K. Gonokami, S. Honkanen, M. Fallahi, B. Kippelen, and N. Peyghambarian, “Light amplification and laser emission in conjugated polymers,” Opt. Eng.37(4), 1149–1156 (1998).
[CrossRef]

Solard, J.

F. Gourdon, M. Chakaroun, N. Fabre, J. Solard, E. Cambril, A. M. Yacomotti, S. Bouchoule, A. Fischer, and A. Boudrioua, “Optically pumped lasing from organic two-dimensional planar photonic crystal microcavity,” Appl. Phys. Lett.100(21), 213304 (2012).
[CrossRef]

Spiegelberg, C.

A. Schulzgen, C. Spiegelberg, M. M. Morrell, S. B. Mendes, P. M. Allemand, Y. Kawabe, M. K. Gonokami, S. Honkanen, M. Fallahi, B. Kippelen, and N. Peyghambarian, “Light amplification and laser emission in conjugated polymers,” Opt. Eng.37(4), 1149–1156 (1998).
[CrossRef]

Srdanov, G.

D. M. Johansson, G. Srdanov, G. Yu, M. Theander, O. Inganas, and M. R. Andersson, “Synthesis and characterization of highly soluble phenyl-substituted poly(p-phenylenevinylenes),” Macromolecues33(7), 2525–2529 (2000).
[CrossRef]

Suzuki, H.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice,” Phys. Rev. Lett.92(12), 123906 (2004).
[CrossRef] [PubMed]

Tamamura, T.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice,” Phys. Rev. Lett.92(12), 123906 (2004).
[CrossRef] [PubMed]

Tessler, N.

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature382(6593), 695–697 (1996).
[CrossRef]

Theander, M.

D. M. Johansson, G. Srdanov, G. Yu, M. Theander, O. Inganas, and M. R. Andersson, “Synthesis and characterization of highly soluble phenyl-substituted poly(p-phenylenevinylenes),” Macromolecues33(7), 2525–2529 (2000).
[CrossRef]

Turnbull, G. A.

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett.82(3), 313–315 (2003).
[CrossRef]

Wang, C.

Wei, W.

H. J. Jiang, Z. Q. Gao, F. Liu, Q. Ling, W. Wei, and W. Huang, “Novel photoluminescent polymers containing fluorene and 2,4,6-triphenyl pyridine moieties: Effects of noncoplanar molecular architecture on the electro-optical properties of parent matrix,” Polymer (Guildf.)49(20), 4369–4377 (2008).
[CrossRef]

Xia, R. D.

W. Y. Lai, R. D. Xia, Q. Y. He, Q. A. Levermore, W. Huang, and D. D. C. Bradley, “Enhanced solid-state luminescence and low-threshold lasing from starburst macromolecular materials,” Adv. Mater.21(3), 355–360 (2009).
[CrossRef]

Yacomotti, A. M.

F. Gourdon, M. Chakaroun, N. Fabre, J. Solard, E. Cambril, A. M. Yacomotti, S. Bouchoule, A. Fischer, and A. Boudrioua, “Optically pumped lasing from organic two-dimensional planar photonic crystal microcavity,” Appl. Phys. Lett.100(21), 213304 (2012).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Yu, G.

D. M. Johansson, G. Srdanov, G. Yu, M. Theander, O. Inganas, and M. R. Andersson, “Synthesis and characterization of highly soluble phenyl-substituted poly(p-phenylenevinylenes),” Macromolecues33(7), 2525–2529 (2000).
[CrossRef]

Zhou, C. Z.

Adv. Mater.

W. Y. Lai, R. D. Xia, Q. Y. He, Q. A. Levermore, W. Huang, and D. D. C. Bradley, “Enhanced solid-state luminescence and low-threshold lasing from starburst macromolecular materials,” Adv. Mater.21(3), 355–360 (2009).
[CrossRef]

Appl. Phys. Lett.

F. Gourdon, M. Chakaroun, N. Fabre, J. Solard, E. Cambril, A. M. Yacomotti, S. Bouchoule, A. Fischer, and A. Boudrioua, “Optically pumped lasing from organic two-dimensional planar photonic crystal microcavity,” Appl. Phys. Lett.100(21), 213304 (2012).
[CrossRef]

V. G. Kozlov, V. Bulovic, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett.71(18), 2575–2577 (1997).
[CrossRef]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett.82(3), 313–315 (2003).
[CrossRef]

K. Nozaki and T. Baba, “Quasiperiodic photonic crystal microcavity lasers,” Appl. Phys. Lett.84(24), 4875–4877 (2004).
[CrossRef]

Chem. Rev.

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

Laser Photonics Rev.

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev.6(4), 419–462 (2012).
[CrossRef]

Macromolecues

D. M. Johansson, G. Srdanov, G. Yu, M. Theander, O. Inganas, and M. R. Andersson, “Synthesis and characterization of highly soluble phenyl-substituted poly(p-phenylenevinylenes),” Macromolecues33(7), 2525–2529 (2000).
[CrossRef]

Nature

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature382(6593), 695–697 (1996).
[CrossRef]

V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductorwaveguide and double-heterostructure devices,” Nature389(6649), 362–364 (1997).
[CrossRef]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Opt. Eng.

A. Schulzgen, C. Spiegelberg, M. M. Morrell, S. B. Mendes, P. M. Allemand, Y. Kawabe, M. K. Gonokami, S. Honkanen, M. Fallahi, B. Kippelen, and N. Peyghambarian, “Light amplification and laser emission in conjugated polymers,” Opt. Eng.37(4), 1149–1156 (1998).
[CrossRef]

Opt. Express

Phys. Rev. Lett.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a penrose lattice,” Phys. Rev. Lett.92(12), 123906 (2004).
[CrossRef] [PubMed]

Polymer (Guildf.)

H. J. Jiang, Z. Q. Gao, F. Liu, Q. Ling, W. Wei, and W. Huang, “Novel photoluminescent polymers containing fluorene and 2,4,6-triphenyl pyridine moieties: Effects of noncoplanar molecular architecture on the electro-optical properties of parent matrix,” Polymer (Guildf.)49(20), 4369–4377 (2008).
[CrossRef]

Science

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Other

M. Fox, Optical Properties of Solids (Oxford University Press, city, 2010), p.165.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Absorption spectrum of (BEHP-PPV)-co-(MEH-PPV) thin films measured by spectrophotometer (Lamda 950) and photoluminescence spectrum excited by Nd: YAG laser at wavelength 355nm and width 30ps. Inset: Chemical structure of (BEHP-PPV)-co-(MEH-PPV).

Fig. 2
Fig. 2

(a) Schematic geometry of an organic octagonal QPC witha9-hole-missing defect microcavity, (b) transmission spectrum of TE-like Gaussian light in QPC microcavity with the slab thickness 500nm. (c) field pattern of the resonant mode at 589nm.

Fig. 3
Fig. 3

SEM picture of the 8-fold symmetry QPC microcavity

Fig. 4
Fig. 4

(a) Experimental setup for the detection of an organic QPC microcavity and (b) distribution of refractive index in microcavity domain

Fig. 5
Fig. 5

Excitation spectra from the microcavity area in a 8-fold QPC pattern and from the unpatterned area.

Fig. 6
Fig. 6

Excitation spectra of the BMPPVPhC microcavity at different pump energy densities. The spectrum at the bottom is multiplied by a factor of 10.

Fig. 7
Fig. 7

Radiated light peak intensity as a function of pump energy densities

Metrics