Abstract

Cuprous oxide (Cu2O) films synthesis by radical oxidation with nitrogen (N2) plasma treatment and different RF power at low temperature (500°C) are studied in this paper. X-ray diffraction measurements show that synthesized Cu2O thin films grow on c-sapphire substrate with preferred (111) orientation. With nitrogen (N2) plasma treatment, the optical bandgap energy is increased from 1.69 to 2.42 eV, when N2 plasma treatment time is increased from 0 min to 40 min. Although the hole density is increased from 1014 to 1015 cm−3 and the resistivity is decreased from 1879 to 780Ωcm after N2 plasma treatment, the performance of Cu2O films is poorer compared to that of Cu2O using RF power of 0. The fabricated ZnO/Cu2O solar cells based on Cu2O films with RF power of 0 W show a good rectifying behavior with a efficiency of 0.02%, an open-circuit voltage of 0.1 V, and a fill factor of 24%.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. S. Li, K. Akimoto, and A. Shen, “Growth of Cu2O thin films with high hole mobility by introducing a low-temperature buffer layer,” J. Cryst. Growth 311(4), 1102–1105 (2009).
    [Crossref]
  2. S. S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, “Electrodeposited ZnO/Cu2O heterojunction solar cells,” Electrochim. Acta 53(5), 2226–2231 (2008).
    [Crossref]
  3. I. Grozdanov, “Electroless chemical deposition technique for Cu2O thin films,” Mater. Lett. 19(5-6), 281–285 (1994).
    [Crossref]
  4. P. Wang, X. H. Zhao, and B. J. Li, “ZnO-coated CuO nanowire arrays: fabrications, optoelectronic properties, and photovoltaic applications,” Opt. Express 19(12), 11271–11279 (2011).
    [Crossref] [PubMed]
  5. A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett. 88(16), 163502 (2006).
    [Crossref]
  6. T. Minami, T. Miyata, K. Ihara, Y. Minamino, and S. Tsukada, “Effect of ZnO film deposition methods on the photovoltaic properties of ZnO–Cu2O heterojunctiondevices,” Thin Solid Films 494(1–2), 47–52 (2006).
    [Crossref]
  7. A. O. Musa, T. Akomolafe, and M. Carter, “Production of cuprousoxide, asolarcell material, by thermal oxidation and a study of its physical and electrical properties,” Sol. Energy Mater. Sol. Cells 51(3–4), 305–316 (1998).
    [Crossref]
  8. V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci. 254(13), 3949–3954 (2008).
    [Crossref]
  9. S. H. Jeong and E. S. Aydil, “Heteroepitaxial growth of Cu2O thin film on ZnO by metal organic chemical vapor deposition,” J. Cryst. Growth 311(17), 4188–4192 (2009).
    [Crossref]
  10. S. Kang, S. Hong, J. Choi, J. Kim, I. Hwang, I. Byun, Y. Kim, W. Kim, and B. Park, “Layer-to-island growth of electrodeposited Cu2O films and filamentary switching in single-channeled grain boundaries,” J. Appl. Phys. 107(5), 053704 (2010).
    [Crossref]
  11. L. Du and H. Wang, “Infrared laser induced lateral photovoltaic effect observed in Cu2O nanoscale film,” Opt. Express 18(9), 9113–9118 (2010).
    [Crossref] [PubMed]
  12. C. C. Ooi and G. K. L. Goh, “Formation of cuprous oxide films via oxygen plasma,” Thin Solid Films 518(24), e98–e100 (2010).
    [Crossref]
  13. H. J. Li, C. Y. Pu, C. Y. Ma, S. Li, W. J. Dong, S. Y. Bao, and Q. Y. Zhang, “Growth behavior and optical properties of N doped Cu2O films,” Thin Solid Films 520(1), 212–216 (2011).
    [Crossref]
  14. D. Mardare and G. I. Rusu, “The influence of heat treatment on the optical properties of titanium oxide thin films,” Mater. Lett. 56(3), 210–214 (2002).
    [Crossref]
  15. W. Seiler, E. Millon, J. Perrière, R. Benzerga, and C. Boulmer-Leborgne, “Epitaxial growth of copper oxide films by reactive cross-beam pulsed-laser deposition,” J. Cryst. Growth 311(12), 3352–3358 (2009).
    [Crossref]
  16. Y. Nakano, S. Saeki, and T. Morikawa, “Optical bandgap widening of p-type Cu2O films by nitrogen doping,” Appl. Phys. Lett. 94(2), 022111 (2009).
    [Crossref]
  17. S. H. Jeong, S. H. Song, K. Nagaich, S. A. Campbell, and E. S. Aydil, “An analysis of temperature dependent current-voltage characteristics of Cu2O/ZnO heterojunction solar cells,” Thin Solid Films 519(19), 6613–6619 (2011).
    [Crossref]
  18. B. Balamurugan and B. R. Mehta, “Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation,” Thin Solid Films 396(1–2), 90–96 (2001).
    [Crossref]

2011 (3)

P. Wang, X. H. Zhao, and B. J. Li, “ZnO-coated CuO nanowire arrays: fabrications, optoelectronic properties, and photovoltaic applications,” Opt. Express 19(12), 11271–11279 (2011).
[Crossref] [PubMed]

H. J. Li, C. Y. Pu, C. Y. Ma, S. Li, W. J. Dong, S. Y. Bao, and Q. Y. Zhang, “Growth behavior and optical properties of N doped Cu2O films,” Thin Solid Films 520(1), 212–216 (2011).
[Crossref]

S. H. Jeong, S. H. Song, K. Nagaich, S. A. Campbell, and E. S. Aydil, “An analysis of temperature dependent current-voltage characteristics of Cu2O/ZnO heterojunction solar cells,” Thin Solid Films 519(19), 6613–6619 (2011).
[Crossref]

2010 (3)

S. Kang, S. Hong, J. Choi, J. Kim, I. Hwang, I. Byun, Y. Kim, W. Kim, and B. Park, “Layer-to-island growth of electrodeposited Cu2O films and filamentary switching in single-channeled grain boundaries,” J. Appl. Phys. 107(5), 053704 (2010).
[Crossref]

L. Du and H. Wang, “Infrared laser induced lateral photovoltaic effect observed in Cu2O nanoscale film,” Opt. Express 18(9), 9113–9118 (2010).
[Crossref] [PubMed]

C. C. Ooi and G. K. L. Goh, “Formation of cuprous oxide films via oxygen plasma,” Thin Solid Films 518(24), e98–e100 (2010).
[Crossref]

2009 (4)

W. Seiler, E. Millon, J. Perrière, R. Benzerga, and C. Boulmer-Leborgne, “Epitaxial growth of copper oxide films by reactive cross-beam pulsed-laser deposition,” J. Cryst. Growth 311(12), 3352–3358 (2009).
[Crossref]

Y. Nakano, S. Saeki, and T. Morikawa, “Optical bandgap widening of p-type Cu2O films by nitrogen doping,” Appl. Phys. Lett. 94(2), 022111 (2009).
[Crossref]

B. S. Li, K. Akimoto, and A. Shen, “Growth of Cu2O thin films with high hole mobility by introducing a low-temperature buffer layer,” J. Cryst. Growth 311(4), 1102–1105 (2009).
[Crossref]

S. H. Jeong and E. S. Aydil, “Heteroepitaxial growth of Cu2O thin film on ZnO by metal organic chemical vapor deposition,” J. Cryst. Growth 311(17), 4188–4192 (2009).
[Crossref]

2008 (2)

V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci. 254(13), 3949–3954 (2008).
[Crossref]

S. S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, “Electrodeposited ZnO/Cu2O heterojunction solar cells,” Electrochim. Acta 53(5), 2226–2231 (2008).
[Crossref]

2006 (2)

A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett. 88(16), 163502 (2006).
[Crossref]

T. Minami, T. Miyata, K. Ihara, Y. Minamino, and S. Tsukada, “Effect of ZnO film deposition methods on the photovoltaic properties of ZnO–Cu2O heterojunctiondevices,” Thin Solid Films 494(1–2), 47–52 (2006).
[Crossref]

2002 (1)

D. Mardare and G. I. Rusu, “The influence of heat treatment on the optical properties of titanium oxide thin films,” Mater. Lett. 56(3), 210–214 (2002).
[Crossref]

2001 (1)

B. Balamurugan and B. R. Mehta, “Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation,” Thin Solid Films 396(1–2), 90–96 (2001).
[Crossref]

1998 (1)

A. O. Musa, T. Akomolafe, and M. Carter, “Production of cuprousoxide, asolarcell material, by thermal oxidation and a study of its physical and electrical properties,” Sol. Energy Mater. Sol. Cells 51(3–4), 305–316 (1998).
[Crossref]

1994 (1)

I. Grozdanov, “Electroless chemical deposition technique for Cu2O thin films,” Mater. Lett. 19(5-6), 281–285 (1994).
[Crossref]

Akimoto, K.

B. S. Li, K. Akimoto, and A. Shen, “Growth of Cu2O thin films with high hole mobility by introducing a low-temperature buffer layer,” J. Cryst. Growth 311(4), 1102–1105 (2009).
[Crossref]

Akomolafe, T.

A. O. Musa, T. Akomolafe, and M. Carter, “Production of cuprousoxide, asolarcell material, by thermal oxidation and a study of its physical and electrical properties,” Sol. Energy Mater. Sol. Cells 51(3–4), 305–316 (1998).
[Crossref]

Alves, E.

V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci. 254(13), 3949–3954 (2008).
[Crossref]

Aydil, E. S.

S. H. Jeong, S. H. Song, K. Nagaich, S. A. Campbell, and E. S. Aydil, “An analysis of temperature dependent current-voltage characteristics of Cu2O/ZnO heterojunction solar cells,” Thin Solid Films 519(19), 6613–6619 (2011).
[Crossref]

S. H. Jeong and E. S. Aydil, “Heteroepitaxial growth of Cu2O thin film on ZnO by metal organic chemical vapor deposition,” J. Cryst. Growth 311(17), 4188–4192 (2009).
[Crossref]

Balamurugan, B.

B. Balamurugan and B. R. Mehta, “Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation,” Thin Solid Films 396(1–2), 90–96 (2001).
[Crossref]

Bao, S. Y.

H. J. Li, C. Y. Pu, C. Y. Ma, S. Li, W. J. Dong, S. Y. Bao, and Q. Y. Zhang, “Growth behavior and optical properties of N doped Cu2O films,” Thin Solid Films 520(1), 212–216 (2011).
[Crossref]

Barquinha, P.

V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci. 254(13), 3949–3954 (2008).
[Crossref]

Benzerga, R.

W. Seiler, E. Millon, J. Perrière, R. Benzerga, and C. Boulmer-Leborgne, “Epitaxial growth of copper oxide films by reactive cross-beam pulsed-laser deposition,” J. Cryst. Growth 311(12), 3352–3358 (2009).
[Crossref]

Boulmer-Leborgne, C.

W. Seiler, E. Millon, J. Perrière, R. Benzerga, and C. Boulmer-Leborgne, “Epitaxial growth of copper oxide films by reactive cross-beam pulsed-laser deposition,” J. Cryst. Growth 311(12), 3352–3358 (2009).
[Crossref]

Byun, I.

S. Kang, S. Hong, J. Choi, J. Kim, I. Hwang, I. Byun, Y. Kim, W. Kim, and B. Park, “Layer-to-island growth of electrodeposited Cu2O films and filamentary switching in single-channeled grain boundaries,” J. Appl. Phys. 107(5), 053704 (2010).
[Crossref]

Campbell, S. A.

S. H. Jeong, S. H. Song, K. Nagaich, S. A. Campbell, and E. S. Aydil, “An analysis of temperature dependent current-voltage characteristics of Cu2O/ZnO heterojunction solar cells,” Thin Solid Films 519(19), 6613–6619 (2011).
[Crossref]

Carter, M.

A. O. Musa, T. Akomolafe, and M. Carter, “Production of cuprousoxide, asolarcell material, by thermal oxidation and a study of its physical and electrical properties,” Sol. Energy Mater. Sol. Cells 51(3–4), 305–316 (1998).
[Crossref]

Choi, J.

S. Kang, S. Hong, J. Choi, J. Kim, I. Hwang, I. Byun, Y. Kim, W. Kim, and B. Park, “Layer-to-island growth of electrodeposited Cu2O films and filamentary switching in single-channeled grain boundaries,” J. Appl. Phys. 107(5), 053704 (2010).
[Crossref]

Dong, W. J.

H. J. Li, C. Y. Pu, C. Y. Ma, S. Li, W. J. Dong, S. Y. Bao, and Q. Y. Zhang, “Growth behavior and optical properties of N doped Cu2O films,” Thin Solid Films 520(1), 212–216 (2011).
[Crossref]

Du, L.

Elangovan, E.

V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci. 254(13), 3949–3954 (2008).
[Crossref]

Figueiredo, V.

V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci. 254(13), 3949–3954 (2008).
[Crossref]

Fortunato, E.

V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci. 254(13), 3949–3954 (2008).
[Crossref]

Franco, N.

V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci. 254(13), 3949–3954 (2008).
[Crossref]

Goh, G. K. L.

C. C. Ooi and G. K. L. Goh, “Formation of cuprous oxide films via oxygen plasma,” Thin Solid Films 518(24), e98–e100 (2010).
[Crossref]

Goncalves, G.

V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci. 254(13), 3949–3954 (2008).
[Crossref]

Grozdanov, I.

I. Grozdanov, “Electroless chemical deposition technique for Cu2O thin films,” Mater. Lett. 19(5-6), 281–285 (1994).
[Crossref]

Hong, S.

S. Kang, S. Hong, J. Choi, J. Kim, I. Hwang, I. Byun, Y. Kim, W. Kim, and B. Park, “Layer-to-island growth of electrodeposited Cu2O films and filamentary switching in single-channeled grain boundaries,” J. Appl. Phys. 107(5), 053704 (2010).
[Crossref]

Hwang, I.

S. Kang, S. Hong, J. Choi, J. Kim, I. Hwang, I. Byun, Y. Kim, W. Kim, and B. Park, “Layer-to-island growth of electrodeposited Cu2O films and filamentary switching in single-channeled grain boundaries,” J. Appl. Phys. 107(5), 053704 (2010).
[Crossref]

Ihara, K.

T. Minami, T. Miyata, K. Ihara, Y. Minamino, and S. Tsukada, “Effect of ZnO film deposition methods on the photovoltaic properties of ZnO–Cu2O heterojunctiondevices,” Thin Solid Films 494(1–2), 47–52 (2006).
[Crossref]

Jeong, S. H.

S. H. Jeong, S. H. Song, K. Nagaich, S. A. Campbell, and E. S. Aydil, “An analysis of temperature dependent current-voltage characteristics of Cu2O/ZnO heterojunction solar cells,” Thin Solid Films 519(19), 6613–6619 (2011).
[Crossref]

S. H. Jeong and E. S. Aydil, “Heteroepitaxial growth of Cu2O thin film on ZnO by metal organic chemical vapor deposition,” J. Cryst. Growth 311(17), 4188–4192 (2009).
[Crossref]

Jeong, S. S.

S. S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, “Electrodeposited ZnO/Cu2O heterojunction solar cells,” Electrochim. Acta 53(5), 2226–2231 (2008).
[Crossref]

Kang, S.

S. Kang, S. Hong, J. Choi, J. Kim, I. Hwang, I. Byun, Y. Kim, W. Kim, and B. Park, “Layer-to-island growth of electrodeposited Cu2O films and filamentary switching in single-channeled grain boundaries,” J. Appl. Phys. 107(5), 053704 (2010).
[Crossref]

Kim, J.

S. Kang, S. Hong, J. Choi, J. Kim, I. Hwang, I. Byun, Y. Kim, W. Kim, and B. Park, “Layer-to-island growth of electrodeposited Cu2O films and filamentary switching in single-channeled grain boundaries,” J. Appl. Phys. 107(5), 053704 (2010).
[Crossref]

Kim, W.

S. Kang, S. Hong, J. Choi, J. Kim, I. Hwang, I. Byun, Y. Kim, W. Kim, and B. Park, “Layer-to-island growth of electrodeposited Cu2O films and filamentary switching in single-channeled grain boundaries,” J. Appl. Phys. 107(5), 053704 (2010).
[Crossref]

Kim, Y.

S. Kang, S. Hong, J. Choi, J. Kim, I. Hwang, I. Byun, Y. Kim, W. Kim, and B. Park, “Layer-to-island growth of electrodeposited Cu2O films and filamentary switching in single-channeled grain boundaries,” J. Appl. Phys. 107(5), 053704 (2010).
[Crossref]

Li, B. J.

Li, B. S.

B. S. Li, K. Akimoto, and A. Shen, “Growth of Cu2O thin films with high hole mobility by introducing a low-temperature buffer layer,” J. Cryst. Growth 311(4), 1102–1105 (2009).
[Crossref]

Li, H. J.

H. J. Li, C. Y. Pu, C. Y. Ma, S. Li, W. J. Dong, S. Y. Bao, and Q. Y. Zhang, “Growth behavior and optical properties of N doped Cu2O films,” Thin Solid Films 520(1), 212–216 (2011).
[Crossref]

Li, S.

H. J. Li, C. Y. Pu, C. Y. Ma, S. Li, W. J. Dong, S. Y. Bao, and Q. Y. Zhang, “Growth behavior and optical properties of N doped Cu2O films,” Thin Solid Films 520(1), 212–216 (2011).
[Crossref]

Ma, C. Y.

H. J. Li, C. Y. Pu, C. Y. Ma, S. Li, W. J. Dong, S. Y. Bao, and Q. Y. Zhang, “Growth behavior and optical properties of N doped Cu2O films,” Thin Solid Films 520(1), 212–216 (2011).
[Crossref]

Mardare, D.

D. Mardare and G. I. Rusu, “The influence of heat treatment on the optical properties of titanium oxide thin films,” Mater. Lett. 56(3), 210–214 (2002).
[Crossref]

Martins, R.

V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci. 254(13), 3949–3954 (2008).
[Crossref]

Masci, A.

S. S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, “Electrodeposited ZnO/Cu2O heterojunction solar cells,” Electrochim. Acta 53(5), 2226–2231 (2008).
[Crossref]

Mehta, B. R.

B. Balamurugan and B. R. Mehta, “Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation,” Thin Solid Films 396(1–2), 90–96 (2001).
[Crossref]

Millon, E.

W. Seiler, E. Millon, J. Perrière, R. Benzerga, and C. Boulmer-Leborgne, “Epitaxial growth of copper oxide films by reactive cross-beam pulsed-laser deposition,” J. Cryst. Growth 311(12), 3352–3358 (2009).
[Crossref]

Minami, T.

T. Minami, T. Miyata, K. Ihara, Y. Minamino, and S. Tsukada, “Effect of ZnO film deposition methods on the photovoltaic properties of ZnO–Cu2O heterojunctiondevices,” Thin Solid Films 494(1–2), 47–52 (2006).
[Crossref]

Minamino, Y.

T. Minami, T. Miyata, K. Ihara, Y. Minamino, and S. Tsukada, “Effect of ZnO film deposition methods on the photovoltaic properties of ZnO–Cu2O heterojunctiondevices,” Thin Solid Films 494(1–2), 47–52 (2006).
[Crossref]

Mittiga, A.

S. S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, “Electrodeposited ZnO/Cu2O heterojunction solar cells,” Electrochim. Acta 53(5), 2226–2231 (2008).
[Crossref]

A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett. 88(16), 163502 (2006).
[Crossref]

Miyata, T.

T. Minami, T. Miyata, K. Ihara, Y. Minamino, and S. Tsukada, “Effect of ZnO film deposition methods on the photovoltaic properties of ZnO–Cu2O heterojunctiondevices,” Thin Solid Films 494(1–2), 47–52 (2006).
[Crossref]

Morikawa, T.

Y. Nakano, S. Saeki, and T. Morikawa, “Optical bandgap widening of p-type Cu2O films by nitrogen doping,” Appl. Phys. Lett. 94(2), 022111 (2009).
[Crossref]

Musa, A. O.

A. O. Musa, T. Akomolafe, and M. Carter, “Production of cuprousoxide, asolarcell material, by thermal oxidation and a study of its physical and electrical properties,” Sol. Energy Mater. Sol. Cells 51(3–4), 305–316 (1998).
[Crossref]

Nagaich, K.

S. H. Jeong, S. H. Song, K. Nagaich, S. A. Campbell, and E. S. Aydil, “An analysis of temperature dependent current-voltage characteristics of Cu2O/ZnO heterojunction solar cells,” Thin Solid Films 519(19), 6613–6619 (2011).
[Crossref]

Nakano, Y.

Y. Nakano, S. Saeki, and T. Morikawa, “Optical bandgap widening of p-type Cu2O films by nitrogen doping,” Appl. Phys. Lett. 94(2), 022111 (2009).
[Crossref]

Ooi, C. C.

C. C. Ooi and G. K. L. Goh, “Formation of cuprous oxide films via oxygen plasma,” Thin Solid Films 518(24), e98–e100 (2010).
[Crossref]

Park, B.

S. Kang, S. Hong, J. Choi, J. Kim, I. Hwang, I. Byun, Y. Kim, W. Kim, and B. Park, “Layer-to-island growth of electrodeposited Cu2O films and filamentary switching in single-channeled grain boundaries,” J. Appl. Phys. 107(5), 053704 (2010).
[Crossref]

Passerini, S.

S. S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, “Electrodeposited ZnO/Cu2O heterojunction solar cells,” Electrochim. Acta 53(5), 2226–2231 (2008).
[Crossref]

Pereira, L.

V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci. 254(13), 3949–3954 (2008).
[Crossref]

Perrière, J.

W. Seiler, E. Millon, J. Perrière, R. Benzerga, and C. Boulmer-Leborgne, “Epitaxial growth of copper oxide films by reactive cross-beam pulsed-laser deposition,” J. Cryst. Growth 311(12), 3352–3358 (2009).
[Crossref]

Pu, C. Y.

H. J. Li, C. Y. Pu, C. Y. Ma, S. Li, W. J. Dong, S. Y. Bao, and Q. Y. Zhang, “Growth behavior and optical properties of N doped Cu2O films,” Thin Solid Films 520(1), 212–216 (2011).
[Crossref]

Rusu, G. I.

D. Mardare and G. I. Rusu, “The influence of heat treatment on the optical properties of titanium oxide thin films,” Mater. Lett. 56(3), 210–214 (2002).
[Crossref]

Saeki, S.

Y. Nakano, S. Saeki, and T. Morikawa, “Optical bandgap widening of p-type Cu2O films by nitrogen doping,” Appl. Phys. Lett. 94(2), 022111 (2009).
[Crossref]

Salza, E.

S. S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, “Electrodeposited ZnO/Cu2O heterojunction solar cells,” Electrochim. Acta 53(5), 2226–2231 (2008).
[Crossref]

A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett. 88(16), 163502 (2006).
[Crossref]

Sarto, F.

A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett. 88(16), 163502 (2006).
[Crossref]

Seiler, W.

W. Seiler, E. Millon, J. Perrière, R. Benzerga, and C. Boulmer-Leborgne, “Epitaxial growth of copper oxide films by reactive cross-beam pulsed-laser deposition,” J. Cryst. Growth 311(12), 3352–3358 (2009).
[Crossref]

Shen, A.

B. S. Li, K. Akimoto, and A. Shen, “Growth of Cu2O thin films with high hole mobility by introducing a low-temperature buffer layer,” J. Cryst. Growth 311(4), 1102–1105 (2009).
[Crossref]

Song, S. H.

S. H. Jeong, S. H. Song, K. Nagaich, S. A. Campbell, and E. S. Aydil, “An analysis of temperature dependent current-voltage characteristics of Cu2O/ZnO heterojunction solar cells,” Thin Solid Films 519(19), 6613–6619 (2011).
[Crossref]

Tsukada, S.

T. Minami, T. Miyata, K. Ihara, Y. Minamino, and S. Tsukada, “Effect of ZnO film deposition methods on the photovoltaic properties of ZnO–Cu2O heterojunctiondevices,” Thin Solid Films 494(1–2), 47–52 (2006).
[Crossref]

Tucci, M.

A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett. 88(16), 163502 (2006).
[Crossref]

Vasanthi, R.

A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett. 88(16), 163502 (2006).
[Crossref]

Wang, H.

Wang, P.

Zhang, Q. Y.

H. J. Li, C. Y. Pu, C. Y. Ma, S. Li, W. J. Dong, S. Y. Bao, and Q. Y. Zhang, “Growth behavior and optical properties of N doped Cu2O films,” Thin Solid Films 520(1), 212–216 (2011).
[Crossref]

Zhao, X. H.

Appl. Phys. Lett. (2)

A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Appl. Phys. Lett. 88(16), 163502 (2006).
[Crossref]

Y. Nakano, S. Saeki, and T. Morikawa, “Optical bandgap widening of p-type Cu2O films by nitrogen doping,” Appl. Phys. Lett. 94(2), 022111 (2009).
[Crossref]

Appl. Surf. Sci. (1)

V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci. 254(13), 3949–3954 (2008).
[Crossref]

Electrochim. Acta (1)

S. S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, “Electrodeposited ZnO/Cu2O heterojunction solar cells,” Electrochim. Acta 53(5), 2226–2231 (2008).
[Crossref]

J. Appl. Phys. (1)

S. Kang, S. Hong, J. Choi, J. Kim, I. Hwang, I. Byun, Y. Kim, W. Kim, and B. Park, “Layer-to-island growth of electrodeposited Cu2O films and filamentary switching in single-channeled grain boundaries,” J. Appl. Phys. 107(5), 053704 (2010).
[Crossref]

J. Cryst. Growth (3)

W. Seiler, E. Millon, J. Perrière, R. Benzerga, and C. Boulmer-Leborgne, “Epitaxial growth of copper oxide films by reactive cross-beam pulsed-laser deposition,” J. Cryst. Growth 311(12), 3352–3358 (2009).
[Crossref]

S. H. Jeong and E. S. Aydil, “Heteroepitaxial growth of Cu2O thin film on ZnO by metal organic chemical vapor deposition,” J. Cryst. Growth 311(17), 4188–4192 (2009).
[Crossref]

B. S. Li, K. Akimoto, and A. Shen, “Growth of Cu2O thin films with high hole mobility by introducing a low-temperature buffer layer,” J. Cryst. Growth 311(4), 1102–1105 (2009).
[Crossref]

Mater. Lett. (2)

I. Grozdanov, “Electroless chemical deposition technique for Cu2O thin films,” Mater. Lett. 19(5-6), 281–285 (1994).
[Crossref]

D. Mardare and G. I. Rusu, “The influence of heat treatment on the optical properties of titanium oxide thin films,” Mater. Lett. 56(3), 210–214 (2002).
[Crossref]

Opt. Express (2)

Sol. Energy Mater. Sol. Cells (1)

A. O. Musa, T. Akomolafe, and M. Carter, “Production of cuprousoxide, asolarcell material, by thermal oxidation and a study of its physical and electrical properties,” Sol. Energy Mater. Sol. Cells 51(3–4), 305–316 (1998).
[Crossref]

Thin Solid Films (5)

T. Minami, T. Miyata, K. Ihara, Y. Minamino, and S. Tsukada, “Effect of ZnO film deposition methods on the photovoltaic properties of ZnO–Cu2O heterojunctiondevices,” Thin Solid Films 494(1–2), 47–52 (2006).
[Crossref]

S. H. Jeong, S. H. Song, K. Nagaich, S. A. Campbell, and E. S. Aydil, “An analysis of temperature dependent current-voltage characteristics of Cu2O/ZnO heterojunction solar cells,” Thin Solid Films 519(19), 6613–6619 (2011).
[Crossref]

B. Balamurugan and B. R. Mehta, “Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation,” Thin Solid Films 396(1–2), 90–96 (2001).
[Crossref]

C. C. Ooi and G. K. L. Goh, “Formation of cuprous oxide films via oxygen plasma,” Thin Solid Films 518(24), e98–e100 (2010).
[Crossref]

H. J. Li, C. Y. Pu, C. Y. Ma, S. Li, W. J. Dong, S. Y. Bao, and Q. Y. Zhang, “Growth behavior and optical properties of N doped Cu2O films,” Thin Solid Films 520(1), 212–216 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Photographs of Cu2O samples and (b) XRD patterns of Cu2O samples prepared under different N plasma treatment time.

Fig. 2
Fig. 2

(a) The transmission spectrum of Cu2O samples and (b) the calculated bandgap of Cu2O samples with different N2 plasma treatment time.

Fig. 3
Fig. 3

(a) The measured carrier concentration, mobility, and (b) resistivity of Cu2O samples as a function of N2 plasma treatment time.

Fig. 4
Fig. 4

XRD patterns of Cu2O samples prepared with different O2 RF power.

Fig. 5
Fig. 5

The measured carrier concentration, mobility, and (b) resistivity of Cu2O samples as a function of O2 RF power.

Fig. 6
Fig. 6

Log scale J-V characteristics of ZnO/Cu2O solar cells fabricated (a) with N2 plasma treatment and RF = 30 W. and (b) without N2 plasma treatment and RF = 0 W.

Fig. 7
Fig. 7

J-V characteristics of ZnO/Cu2O solar cells fabricated without N2 plasmatreatment and RF = 0 W.

Fig. 8
Fig. 8

SEM micrographs of Cu2O samples. (a) with N2 plasmatreatment and RF = 30 W, and (b) without N2 plasmatreatment and RF = 0 W.

Metrics