Abstract

Common-path design criteria for laser datum based measurement of small angle deviations are proposed to guide the implementation of common-path principle in dealing with laser beam drifts resulting from laser generation mechanism and instability of beam transmission medium. A laser autocollimation method is designed in compliance with the criteria, and can achieve an accuracy of 0.013arcsec and a two-hour stability of 0.020arcsec over a measurement distance of two meters. The criteria and the method proposed can be effectively used for laser datum based measurement of small angle deviations with high accuracy and stability, especially over a long measurement distance.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Luo, C. Kuang, X. Hao, and X. Liu, “High-precision laser alignment technique based on spiral phase plate,” Opt. Lasers Eng.50(7), 944–949 (2012).
    [CrossRef]
  2. Q. Hao, D. Li, and Y. Wang, “High-accuracy long distance alignment using single-mode optical fiber and phase plate,” Opt. Laser Technol.34(4), 287–292 (2002).
    [CrossRef]
  3. C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sens. Actuators A Phys.125(1), 100–108 (2005).
    [CrossRef]
  4. Q. Feng, B. Zhang, and C. Kuang, “A straightness measurement system using a single-mode fiber-coupled laser module,” Opt. Laser Technol.36(4), 279–283 (2004).
    [CrossRef]
  5. W. Zhao, J. Tan, L. Qiu, L. Zou, J. Cui, and Z. Shi, “Enhancing laser beam directional stability by single-mode optical fiber and feedback control of drifts,” Rev. Sci. Instrum.76(3), 036101 (2005).
    [CrossRef]
  6. W. Zhao, L. Qiu, Z. Feng, and C. Li, “Laser beam alignment by fast feedback control of both linear and angular drifts,” Optik (Stuttg.)117(11), 505–510 (2006).
    [CrossRef]
  7. S. C. Irick, W. R. McKinney, D. L. J. Lunt, and P. Z. Takacs, “Using a straightness reference in obtaining more accurate surface profiles from a long trace profiler,” Rev. Sci. Instrum.63(1), 1436–1438 (1992).
    [CrossRef]
  8. S. Qian, K. Qian, Y. Hong, L. Sheng, T. Ho, and P. Takacs, “Systematic error reduction: non-tilted reference beam method for Long Trace Profiler,” Proc. SPIE6704, 67040I, 67040I-7 (2007).
    [CrossRef]
  9. K. Li, C. Kuang, and X. Liu, “Small angular displacement measurement based on an autocollimator and a common-path compensation principle,” Rev. Sci. Instrum.84(1), 015108 (2013).
    [CrossRef] [PubMed]
  10. H. H. Sakuma and H. Wada, “Straigtness measurement using a heterodyne moiré method,” Precis. Eng.9(1), 19–22 (1987).
    [CrossRef]
  11. J. Uchikoshi, S. Shimada, N. Ikawa, and A. Komura, “Straigtness measurement using laser beam straight datum,” Proc. SPIE2576, 315–322 (1995).
    [CrossRef]
  12. X. Jiang, K. Wang, and H. Martin, “Near common-path optical fiber interferometer for potentially fast on-line microscale-nanoscale surface measurement,” Opt. Lett.31(24), 3603–3605 (2006).
    [CrossRef] [PubMed]
  13. J. He, F. Li, L. Feng, H. Xiao, and Y. Liu, “Elimination of environmental noise in interferometric wavelength shift demodulation for dynamic fiber Bragg grating sensor array,” Opt. Commun.282(14), 2836–2840 (2009).
    [CrossRef]
  14. D. Lin, Z. Yue, N. Song, Y. Meng, and C. Yin, “A double common-path heterodyne interferometer for the measurement of flying height modulation,” Meas. Sci. Technol.19(5), 055303 (2008).
    [CrossRef]
  15. H. Zhao, R. Liang, D. Li, and M. Cao, “Practical common-path heterodyne surface profiling interferometer with automatic focusing,” Opt. Laser Technol.33(4), 259–265 (2001).
    [CrossRef]
  16. C. Yin and J. Guo, “Novel comprehension of “common path” principle,” Opt. Lasers Eng.43(10), 1081–1095 (2005).
    [CrossRef]
  17. J. S. Beggs, “Mirror-Image Kinematics,” J. Opt. Soc. Am.50(4), 388–393 (1960).
    [CrossRef]

2013

K. Li, C. Kuang, and X. Liu, “Small angular displacement measurement based on an autocollimator and a common-path compensation principle,” Rev. Sci. Instrum.84(1), 015108 (2013).
[CrossRef] [PubMed]

2012

D. Luo, C. Kuang, X. Hao, and X. Liu, “High-precision laser alignment technique based on spiral phase plate,” Opt. Lasers Eng.50(7), 944–949 (2012).
[CrossRef]

2009

J. He, F. Li, L. Feng, H. Xiao, and Y. Liu, “Elimination of environmental noise in interferometric wavelength shift demodulation for dynamic fiber Bragg grating sensor array,” Opt. Commun.282(14), 2836–2840 (2009).
[CrossRef]

2008

D. Lin, Z. Yue, N. Song, Y. Meng, and C. Yin, “A double common-path heterodyne interferometer for the measurement of flying height modulation,” Meas. Sci. Technol.19(5), 055303 (2008).
[CrossRef]

2007

S. Qian, K. Qian, Y. Hong, L. Sheng, T. Ho, and P. Takacs, “Systematic error reduction: non-tilted reference beam method for Long Trace Profiler,” Proc. SPIE6704, 67040I, 67040I-7 (2007).
[CrossRef]

2006

W. Zhao, L. Qiu, Z. Feng, and C. Li, “Laser beam alignment by fast feedback control of both linear and angular drifts,” Optik (Stuttg.)117(11), 505–510 (2006).
[CrossRef]

X. Jiang, K. Wang, and H. Martin, “Near common-path optical fiber interferometer for potentially fast on-line microscale-nanoscale surface measurement,” Opt. Lett.31(24), 3603–3605 (2006).
[CrossRef] [PubMed]

2005

C. Yin and J. Guo, “Novel comprehension of “common path” principle,” Opt. Lasers Eng.43(10), 1081–1095 (2005).
[CrossRef]

W. Zhao, J. Tan, L. Qiu, L. Zou, J. Cui, and Z. Shi, “Enhancing laser beam directional stability by single-mode optical fiber and feedback control of drifts,” Rev. Sci. Instrum.76(3), 036101 (2005).
[CrossRef]

C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sens. Actuators A Phys.125(1), 100–108 (2005).
[CrossRef]

2004

Q. Feng, B. Zhang, and C. Kuang, “A straightness measurement system using a single-mode fiber-coupled laser module,” Opt. Laser Technol.36(4), 279–283 (2004).
[CrossRef]

2002

Q. Hao, D. Li, and Y. Wang, “High-accuracy long distance alignment using single-mode optical fiber and phase plate,” Opt. Laser Technol.34(4), 287–292 (2002).
[CrossRef]

2001

H. Zhao, R. Liang, D. Li, and M. Cao, “Practical common-path heterodyne surface profiling interferometer with automatic focusing,” Opt. Laser Technol.33(4), 259–265 (2001).
[CrossRef]

1995

J. Uchikoshi, S. Shimada, N. Ikawa, and A. Komura, “Straigtness measurement using laser beam straight datum,” Proc. SPIE2576, 315–322 (1995).
[CrossRef]

1992

S. C. Irick, W. R. McKinney, D. L. J. Lunt, and P. Z. Takacs, “Using a straightness reference in obtaining more accurate surface profiles from a long trace profiler,” Rev. Sci. Instrum.63(1), 1436–1438 (1992).
[CrossRef]

1987

H. H. Sakuma and H. Wada, “Straigtness measurement using a heterodyne moiré method,” Precis. Eng.9(1), 19–22 (1987).
[CrossRef]

1960

Beggs, J. S.

Cao, M.

H. Zhao, R. Liang, D. Li, and M. Cao, “Practical common-path heterodyne surface profiling interferometer with automatic focusing,” Opt. Laser Technol.33(4), 259–265 (2001).
[CrossRef]

Chen, S.

C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sens. Actuators A Phys.125(1), 100–108 (2005).
[CrossRef]

Cui, J.

W. Zhao, J. Tan, L. Qiu, L. Zou, J. Cui, and Z. Shi, “Enhancing laser beam directional stability by single-mode optical fiber and feedback control of drifts,” Rev. Sci. Instrum.76(3), 036101 (2005).
[CrossRef]

Feng, L.

J. He, F. Li, L. Feng, H. Xiao, and Y. Liu, “Elimination of environmental noise in interferometric wavelength shift demodulation for dynamic fiber Bragg grating sensor array,” Opt. Commun.282(14), 2836–2840 (2009).
[CrossRef]

Feng, Q.

C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sens. Actuators A Phys.125(1), 100–108 (2005).
[CrossRef]

Q. Feng, B. Zhang, and C. Kuang, “A straightness measurement system using a single-mode fiber-coupled laser module,” Opt. Laser Technol.36(4), 279–283 (2004).
[CrossRef]

Feng, Z.

W. Zhao, L. Qiu, Z. Feng, and C. Li, “Laser beam alignment by fast feedback control of both linear and angular drifts,” Optik (Stuttg.)117(11), 505–510 (2006).
[CrossRef]

Guo, J.

C. Yin and J. Guo, “Novel comprehension of “common path” principle,” Opt. Lasers Eng.43(10), 1081–1095 (2005).
[CrossRef]

Hao, Q.

Q. Hao, D. Li, and Y. Wang, “High-accuracy long distance alignment using single-mode optical fiber and phase plate,” Opt. Laser Technol.34(4), 287–292 (2002).
[CrossRef]

Hao, X.

D. Luo, C. Kuang, X. Hao, and X. Liu, “High-precision laser alignment technique based on spiral phase plate,” Opt. Lasers Eng.50(7), 944–949 (2012).
[CrossRef]

He, J.

J. He, F. Li, L. Feng, H. Xiao, and Y. Liu, “Elimination of environmental noise in interferometric wavelength shift demodulation for dynamic fiber Bragg grating sensor array,” Opt. Commun.282(14), 2836–2840 (2009).
[CrossRef]

Ho, T.

S. Qian, K. Qian, Y. Hong, L. Sheng, T. Ho, and P. Takacs, “Systematic error reduction: non-tilted reference beam method for Long Trace Profiler,” Proc. SPIE6704, 67040I, 67040I-7 (2007).
[CrossRef]

Hong, Y.

S. Qian, K. Qian, Y. Hong, L. Sheng, T. Ho, and P. Takacs, “Systematic error reduction: non-tilted reference beam method for Long Trace Profiler,” Proc. SPIE6704, 67040I, 67040I-7 (2007).
[CrossRef]

Ikawa, N.

J. Uchikoshi, S. Shimada, N. Ikawa, and A. Komura, “Straigtness measurement using laser beam straight datum,” Proc. SPIE2576, 315–322 (1995).
[CrossRef]

Irick, S. C.

S. C. Irick, W. R. McKinney, D. L. J. Lunt, and P. Z. Takacs, “Using a straightness reference in obtaining more accurate surface profiles from a long trace profiler,” Rev. Sci. Instrum.63(1), 1436–1438 (1992).
[CrossRef]

Jiang, X.

Komura, A.

J. Uchikoshi, S. Shimada, N. Ikawa, and A. Komura, “Straigtness measurement using laser beam straight datum,” Proc. SPIE2576, 315–322 (1995).
[CrossRef]

Kuang, C.

K. Li, C. Kuang, and X. Liu, “Small angular displacement measurement based on an autocollimator and a common-path compensation principle,” Rev. Sci. Instrum.84(1), 015108 (2013).
[CrossRef] [PubMed]

D. Luo, C. Kuang, X. Hao, and X. Liu, “High-precision laser alignment technique based on spiral phase plate,” Opt. Lasers Eng.50(7), 944–949 (2012).
[CrossRef]

C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sens. Actuators A Phys.125(1), 100–108 (2005).
[CrossRef]

Q. Feng, B. Zhang, and C. Kuang, “A straightness measurement system using a single-mode fiber-coupled laser module,” Opt. Laser Technol.36(4), 279–283 (2004).
[CrossRef]

Li, C.

W. Zhao, L. Qiu, Z. Feng, and C. Li, “Laser beam alignment by fast feedback control of both linear and angular drifts,” Optik (Stuttg.)117(11), 505–510 (2006).
[CrossRef]

Li, D.

Q. Hao, D. Li, and Y. Wang, “High-accuracy long distance alignment using single-mode optical fiber and phase plate,” Opt. Laser Technol.34(4), 287–292 (2002).
[CrossRef]

H. Zhao, R. Liang, D. Li, and M. Cao, “Practical common-path heterodyne surface profiling interferometer with automatic focusing,” Opt. Laser Technol.33(4), 259–265 (2001).
[CrossRef]

Li, F.

J. He, F. Li, L. Feng, H. Xiao, and Y. Liu, “Elimination of environmental noise in interferometric wavelength shift demodulation for dynamic fiber Bragg grating sensor array,” Opt. Commun.282(14), 2836–2840 (2009).
[CrossRef]

Li, K.

K. Li, C. Kuang, and X. Liu, “Small angular displacement measurement based on an autocollimator and a common-path compensation principle,” Rev. Sci. Instrum.84(1), 015108 (2013).
[CrossRef] [PubMed]

Liang, R.

H. Zhao, R. Liang, D. Li, and M. Cao, “Practical common-path heterodyne surface profiling interferometer with automatic focusing,” Opt. Laser Technol.33(4), 259–265 (2001).
[CrossRef]

Lin, D.

D. Lin, Z. Yue, N. Song, Y. Meng, and C. Yin, “A double common-path heterodyne interferometer for the measurement of flying height modulation,” Meas. Sci. Technol.19(5), 055303 (2008).
[CrossRef]

Liu, B.

C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sens. Actuators A Phys.125(1), 100–108 (2005).
[CrossRef]

Liu, X.

K. Li, C. Kuang, and X. Liu, “Small angular displacement measurement based on an autocollimator and a common-path compensation principle,” Rev. Sci. Instrum.84(1), 015108 (2013).
[CrossRef] [PubMed]

D. Luo, C. Kuang, X. Hao, and X. Liu, “High-precision laser alignment technique based on spiral phase plate,” Opt. Lasers Eng.50(7), 944–949 (2012).
[CrossRef]

Liu, Y.

J. He, F. Li, L. Feng, H. Xiao, and Y. Liu, “Elimination of environmental noise in interferometric wavelength shift demodulation for dynamic fiber Bragg grating sensor array,” Opt. Commun.282(14), 2836–2840 (2009).
[CrossRef]

Lunt, D. L. J.

S. C. Irick, W. R. McKinney, D. L. J. Lunt, and P. Z. Takacs, “Using a straightness reference in obtaining more accurate surface profiles from a long trace profiler,” Rev. Sci. Instrum.63(1), 1436–1438 (1992).
[CrossRef]

Luo, D.

D. Luo, C. Kuang, X. Hao, and X. Liu, “High-precision laser alignment technique based on spiral phase plate,” Opt. Lasers Eng.50(7), 944–949 (2012).
[CrossRef]

Martin, H.

McKinney, W. R.

S. C. Irick, W. R. McKinney, D. L. J. Lunt, and P. Z. Takacs, “Using a straightness reference in obtaining more accurate surface profiles from a long trace profiler,” Rev. Sci. Instrum.63(1), 1436–1438 (1992).
[CrossRef]

Meng, Y.

D. Lin, Z. Yue, N. Song, Y. Meng, and C. Yin, “A double common-path heterodyne interferometer for the measurement of flying height modulation,” Meas. Sci. Technol.19(5), 055303 (2008).
[CrossRef]

Qian, K.

S. Qian, K. Qian, Y. Hong, L. Sheng, T. Ho, and P. Takacs, “Systematic error reduction: non-tilted reference beam method for Long Trace Profiler,” Proc. SPIE6704, 67040I, 67040I-7 (2007).
[CrossRef]

Qian, S.

S. Qian, K. Qian, Y. Hong, L. Sheng, T. Ho, and P. Takacs, “Systematic error reduction: non-tilted reference beam method for Long Trace Profiler,” Proc. SPIE6704, 67040I, 67040I-7 (2007).
[CrossRef]

Qiu, L.

W. Zhao, L. Qiu, Z. Feng, and C. Li, “Laser beam alignment by fast feedback control of both linear and angular drifts,” Optik (Stuttg.)117(11), 505–510 (2006).
[CrossRef]

W. Zhao, J. Tan, L. Qiu, L. Zou, J. Cui, and Z. Shi, “Enhancing laser beam directional stability by single-mode optical fiber and feedback control of drifts,” Rev. Sci. Instrum.76(3), 036101 (2005).
[CrossRef]

Sakuma, H. H.

H. H. Sakuma and H. Wada, “Straigtness measurement using a heterodyne moiré method,” Precis. Eng.9(1), 19–22 (1987).
[CrossRef]

Sheng, L.

S. Qian, K. Qian, Y. Hong, L. Sheng, T. Ho, and P. Takacs, “Systematic error reduction: non-tilted reference beam method for Long Trace Profiler,” Proc. SPIE6704, 67040I, 67040I-7 (2007).
[CrossRef]

Shi, Z.

W. Zhao, J. Tan, L. Qiu, L. Zou, J. Cui, and Z. Shi, “Enhancing laser beam directional stability by single-mode optical fiber and feedback control of drifts,” Rev. Sci. Instrum.76(3), 036101 (2005).
[CrossRef]

Shimada, S.

J. Uchikoshi, S. Shimada, N. Ikawa, and A. Komura, “Straigtness measurement using laser beam straight datum,” Proc. SPIE2576, 315–322 (1995).
[CrossRef]

Song, N.

D. Lin, Z. Yue, N. Song, Y. Meng, and C. Yin, “A double common-path heterodyne interferometer for the measurement of flying height modulation,” Meas. Sci. Technol.19(5), 055303 (2008).
[CrossRef]

Takacs, P.

S. Qian, K. Qian, Y. Hong, L. Sheng, T. Ho, and P. Takacs, “Systematic error reduction: non-tilted reference beam method for Long Trace Profiler,” Proc. SPIE6704, 67040I, 67040I-7 (2007).
[CrossRef]

Takacs, P. Z.

S. C. Irick, W. R. McKinney, D. L. J. Lunt, and P. Z. Takacs, “Using a straightness reference in obtaining more accurate surface profiles from a long trace profiler,” Rev. Sci. Instrum.63(1), 1436–1438 (1992).
[CrossRef]

Tan, J.

W. Zhao, J. Tan, L. Qiu, L. Zou, J. Cui, and Z. Shi, “Enhancing laser beam directional stability by single-mode optical fiber and feedback control of drifts,” Rev. Sci. Instrum.76(3), 036101 (2005).
[CrossRef]

Uchikoshi, J.

J. Uchikoshi, S. Shimada, N. Ikawa, and A. Komura, “Straigtness measurement using laser beam straight datum,” Proc. SPIE2576, 315–322 (1995).
[CrossRef]

Wada, H.

H. H. Sakuma and H. Wada, “Straigtness measurement using a heterodyne moiré method,” Precis. Eng.9(1), 19–22 (1987).
[CrossRef]

Wang, K.

Wang, Y.

Q. Hao, D. Li, and Y. Wang, “High-accuracy long distance alignment using single-mode optical fiber and phase plate,” Opt. Laser Technol.34(4), 287–292 (2002).
[CrossRef]

Xiao, H.

J. He, F. Li, L. Feng, H. Xiao, and Y. Liu, “Elimination of environmental noise in interferometric wavelength shift demodulation for dynamic fiber Bragg grating sensor array,” Opt. Commun.282(14), 2836–2840 (2009).
[CrossRef]

Yin, C.

D. Lin, Z. Yue, N. Song, Y. Meng, and C. Yin, “A double common-path heterodyne interferometer for the measurement of flying height modulation,” Meas. Sci. Technol.19(5), 055303 (2008).
[CrossRef]

C. Yin and J. Guo, “Novel comprehension of “common path” principle,” Opt. Lasers Eng.43(10), 1081–1095 (2005).
[CrossRef]

Yue, Z.

D. Lin, Z. Yue, N. Song, Y. Meng, and C. Yin, “A double common-path heterodyne interferometer for the measurement of flying height modulation,” Meas. Sci. Technol.19(5), 055303 (2008).
[CrossRef]

Zhang, B.

C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sens. Actuators A Phys.125(1), 100–108 (2005).
[CrossRef]

Q. Feng, B. Zhang, and C. Kuang, “A straightness measurement system using a single-mode fiber-coupled laser module,” Opt. Laser Technol.36(4), 279–283 (2004).
[CrossRef]

Zhang, Z.

C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sens. Actuators A Phys.125(1), 100–108 (2005).
[CrossRef]

Zhao, H.

H. Zhao, R. Liang, D. Li, and M. Cao, “Practical common-path heterodyne surface profiling interferometer with automatic focusing,” Opt. Laser Technol.33(4), 259–265 (2001).
[CrossRef]

Zhao, W.

W. Zhao, L. Qiu, Z. Feng, and C. Li, “Laser beam alignment by fast feedback control of both linear and angular drifts,” Optik (Stuttg.)117(11), 505–510 (2006).
[CrossRef]

W. Zhao, J. Tan, L. Qiu, L. Zou, J. Cui, and Z. Shi, “Enhancing laser beam directional stability by single-mode optical fiber and feedback control of drifts,” Rev. Sci. Instrum.76(3), 036101 (2005).
[CrossRef]

Zou, L.

W. Zhao, J. Tan, L. Qiu, L. Zou, J. Cui, and Z. Shi, “Enhancing laser beam directional stability by single-mode optical fiber and feedback control of drifts,” Rev. Sci. Instrum.76(3), 036101 (2005).
[CrossRef]

J. Opt. Soc. Am.

Meas. Sci. Technol.

D. Lin, Z. Yue, N. Song, Y. Meng, and C. Yin, “A double common-path heterodyne interferometer for the measurement of flying height modulation,” Meas. Sci. Technol.19(5), 055303 (2008).
[CrossRef]

Opt. Commun.

J. He, F. Li, L. Feng, H. Xiao, and Y. Liu, “Elimination of environmental noise in interferometric wavelength shift demodulation for dynamic fiber Bragg grating sensor array,” Opt. Commun.282(14), 2836–2840 (2009).
[CrossRef]

Opt. Laser Technol.

H. Zhao, R. Liang, D. Li, and M. Cao, “Practical common-path heterodyne surface profiling interferometer with automatic focusing,” Opt. Laser Technol.33(4), 259–265 (2001).
[CrossRef]

Q. Hao, D. Li, and Y. Wang, “High-accuracy long distance alignment using single-mode optical fiber and phase plate,” Opt. Laser Technol.34(4), 287–292 (2002).
[CrossRef]

Q. Feng, B. Zhang, and C. Kuang, “A straightness measurement system using a single-mode fiber-coupled laser module,” Opt. Laser Technol.36(4), 279–283 (2004).
[CrossRef]

Opt. Lasers Eng.

C. Yin and J. Guo, “Novel comprehension of “common path” principle,” Opt. Lasers Eng.43(10), 1081–1095 (2005).
[CrossRef]

D. Luo, C. Kuang, X. Hao, and X. Liu, “High-precision laser alignment technique based on spiral phase plate,” Opt. Lasers Eng.50(7), 944–949 (2012).
[CrossRef]

Opt. Lett.

Optik (Stuttg.)

W. Zhao, L. Qiu, Z. Feng, and C. Li, “Laser beam alignment by fast feedback control of both linear and angular drifts,” Optik (Stuttg.)117(11), 505–510 (2006).
[CrossRef]

Precis. Eng.

H. H. Sakuma and H. Wada, “Straigtness measurement using a heterodyne moiré method,” Precis. Eng.9(1), 19–22 (1987).
[CrossRef]

Proc. SPIE

J. Uchikoshi, S. Shimada, N. Ikawa, and A. Komura, “Straigtness measurement using laser beam straight datum,” Proc. SPIE2576, 315–322 (1995).
[CrossRef]

S. Qian, K. Qian, Y. Hong, L. Sheng, T. Ho, and P. Takacs, “Systematic error reduction: non-tilted reference beam method for Long Trace Profiler,” Proc. SPIE6704, 67040I, 67040I-7 (2007).
[CrossRef]

Rev. Sci. Instrum.

K. Li, C. Kuang, and X. Liu, “Small angular displacement measurement based on an autocollimator and a common-path compensation principle,” Rev. Sci. Instrum.84(1), 015108 (2013).
[CrossRef] [PubMed]

S. C. Irick, W. R. McKinney, D. L. J. Lunt, and P. Z. Takacs, “Using a straightness reference in obtaining more accurate surface profiles from a long trace profiler,” Rev. Sci. Instrum.63(1), 1436–1438 (1992).
[CrossRef]

W. Zhao, J. Tan, L. Qiu, L. Zou, J. Cui, and Z. Shi, “Enhancing laser beam directional stability by single-mode optical fiber and feedback control of drifts,” Rev. Sci. Instrum.76(3), 036101 (2005).
[CrossRef]

Sens. Actuators A Phys.

C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sens. Actuators A Phys.125(1), 100–108 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of laser autocollimation method. 1.single-mode optical fiber(SMOF); 2.object plane; 3.QPD; 4.PSD; 5.secondary PBS; 6.collimating lens; 7.primary PBS; 8.beam splitting target reflector(BSTR); 8(a).semi-reflective film; 8(b).first reflective surface; 8(c).second reflective surface; 9.half-wave plate; 10.45° tilted mirror; 11.BS; 12.combination reflector.

Fig. 2
Fig. 2

Principle of combination reflector. (a)deflections of measurement and reference beams with angular drift of incident laser beam; (b) deflections of measurement and reference beams with small angle deviation of combination reflector; (c) variations of polarizations of measurement and reference beams.

Fig. 3
Fig. 3

Directional changes of reference beam after passing through a parallel mirror pair and a right-angle prism. (a) parallel mirror pair; (b) right-angle prism; (c) parallel mirror pair with error δ2 ; (b) right-angle prism with error δ1.

Fig. 4
Fig. 4

Setup for consistency test of the drifts of reference and measurement beams.

Fig. 5
Fig. 5

Directional changes of reference and measurement beams with incident collimated laser beam. (a) directional changes of incident collimated laser beam; (b) directional changes of reference and measurement beams.

Fig. 6
Fig. 6

Contrast of drifts between reference and measurement beams resulting from the instability of air medium. (a) drifts in two hours; (b) drifts in two minutes.

Fig. 7
Fig. 7

Stability test of laser autocollimation system. (a) drifts of measurement and reference beams in two hours; (b) drifts of measurement and reference beams in ten minutes; (c) stability of the system in two hours; (d) stability of the system in ten minutes.

Fig. 8
Fig. 8

Setup for calibration of laser autocollimation system.

Fig. 9
Fig. 9

Calibration results of laser autocollimation system. (a) output of laser angle interferometer and fitted curve of output of laser autocollimation system; (b) residuals of fitted curve and output of laser angle interferometer.

Fig. 10
Fig. 10

Straightness measurement of slide. (a) outputs of two commercial autocollimators and laser autocollimation system; (b) straightness results according to the outputs.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Ax+By+Cz+D=0
R=[ 1 2 A 2 / F 2 2AB / F 2 2AC / F 2 2AB / F 2 1 2 B 2 / F 2 2BC / F 2 2AC / F 2 2BC / F 2 1 2 C 2 / F 2 ]
R 1 =[ 1 0 0 0 1 0 0 0 1 ], R 2 =[ 1 0 0 0 0 1 0 1 0 ], R 3 =[ 1 0 0 0 0 1 0 1 0 ], R 4 =[ 1 0 0 0 0 1 0 1 0 ], R 5 =[ 1 0 0 0 0 1 0 1 0 ]
A 1 =[ 0 sinα cosα ]
A 2 = R 1 A 1 =[ 1 0 0 0 1 0 0 0 1 ][ 0 sinα cosα ]=[ 0 sinα cosα ]
A 3 = R 5 R 4 R 3 R 2 A 1 =[ 0 sinα cosα ]
R 1 '=[ 1 0 0 0 cos( 2θ ) sin( 2θ ) 0 sin( 2θ ) cos( 2θ ) ], R 2 '=[ 1 0 0 0 sin( 2θ ) cos( 2θ ) 0 cos( 2θ ) sin( 2θ ) ], R 3 '=[ 1 0 0 0 sin( 2θ ) cos( 2θ ) 0 cos( 2θ ) sin( 2θ ) ], R 4 '=[ 1 0 0 0 sin( 2θ ) cos( 2θ ) 0 cos( 2θ ) sin( 2θ ) ], R 5 '=[ 1 0 0 0 sin( 2θ ) cos( 2θ ) 0 cos( 2θ ) sin( 2θ ) ]
A 2 '= R 1 ' A 1 =[ 1 0 0 0 cos( 2θ ) sin( 2θ ) 0 sin( 2θ ) cos( 2θ ) ][ 0 sinα cosα ]=[ 0 sin( 2θ+α ) cos( 2θ+α ) ]
A 3 '= R 5 ' R 4 ' R 3 ' R 2 ' A 1 =[ 0 sinα cosα ]
β=( 2θ+α ),γ=α
γ+φ= Δ 2 f
2θ+γ+φ= Δ 1 f
θ= Δ 1 Δ 2 2f
R 3 ''=[ 1 0 0 0 sin( 2θ+2 δ 1 ) cos( 2θ+2 δ 1 ) 0 cos( 2θ+2 δ 1 ) sin( 2θ+2 δ 1 ) ]
R 4 ''=[ 1 0 0 0 sin( 2θ+2 δ 2 ) cos( 2θ+2 δ 2 ) 0 cos( 2θ+2 δ 2 ) sin( 2θ+2 δ 2 ) ]
A 3 '= R 5 ' R 4 '' R 3 '' R 2 ' A 1 =[ 0 sin( α2 δ 1 +2 δ 2 ) cos( α2 δ 1 +2 δ 2 ) ]
γ'=α2 δ 1 +2 δ 2

Metrics