Abstract

Yb:YAG single crystal fiber (SCF) amplifiers have recently drawn much attention in the field of amplification of ultra-short pulses. In this paper, we report on the use of SCF amplifiers for the amplification of cylindrically polarized laser beams, as such beams offer promising properties for numerous applications. While the amplification of cylindrically polarized beams is challenging with other amplifier designs due to thermally induced depolarization, we demonstrate the amplification of 32 W cylindrically polarized beams to an output power of 100 W. A measured degree of radial polarization after the SCF of about 95% indicates an excellent conservation of polarization.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Weber, A. Michalowski, M. Abdou Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of Radial and Tangential Polarization in Laser Material Processing,” Physics Procedia12, 21–30 (2011).
    [CrossRef]
  2. M. Endo, “Azimuthally polarized 1 kW CO2 laser with a triple-axicon retroreflector optical resonator,” Opt. Lett.33(15), 1771–1773 (2008).
    [CrossRef] [PubMed]
  3. T. Moser, J. Balmer, D. Delbeke, P. Muys, S. Verstuyft, and R. Baets, “Intracavity generation of radially polarized CO2 laser beams based on a simple binary dielectric diffraction grating,” Appl. Opt.45(33), 8517–8522 (2006).
    [CrossRef] [PubMed]
  4. J. L. Li, K. Ueda, L. X. Zhong, M. Musha, A. Shirakawa, and T. Sato, “Efficient excitations of radially and azimuthally polarized Nd3+:YAG ceramic microchip laser by use of subwavelength multilayer concentric gratings composed of Nb2O5/SiO2.,” Opt. Express16(14), 10841–10848 (2008).
    [CrossRef] [PubMed]
  5. P. Phua, W. Lai, Y. Lim, B. Tan, R. Wu, K. Lai, and H. Tan, “High Power Radial Polarization Conversion Using Photonic Crystal Segmented Half-Wave-Plate,” in in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, 2008), paper CMO4.
    [CrossRef]
  6. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett.34(16), 2525–2527 (2009).
    [CrossRef] [PubMed]
  7. M. Fridman, M. Nixon, M. Dubinskii, A. A. Friesem, and N. Davidson, “Fiber amplification of radially and azimuthally polarized laser light,” Opt. Lett.35(9), 1332–1334 (2010).
    [CrossRef] [PubMed]
  8. D. Lin, K. Xia, J. Li, R. Li, K. Ueda, G. Li, and X. Li, “Efficient, high-power, and radially polarized fiber laser,” Opt. Lett.35(13), 2290–2292 (2010).
    [CrossRef] [PubMed]
  9. M. Rumpel, M. Haefner, T. Schoder, C. Pruss, A. Voss, W. Osten, M. A. Ahmed, and T. Graf, “Circular grating waveguide structures for intracavity generation of azimuthal polarization in a thin-disk laser,” Opt. Lett.37(10), 1763–1765 (2012).
    [CrossRef] [PubMed]
  10. M. A. Ahmed, M. Haefner, M. Vogel, C. Pruss, A. Voss, W. Osten, and T. Graf, “High-power radially polarized Yb:YAG thin-disk laser with high efficiency,” Opt. Express19(6), 5093–5104 (2011).
    [CrossRef] [PubMed]
  11. M. Abdou Ahmed, M. Vogel, A. Voss, and T. Graf, “A 1-kW radially polarized thin-disk laser,” in CLEO/Europe and EQEC 2009 Conference Digest, (Optical Society of America, 2009), paper CA1_1.
  12. M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J. C. Pommier, and T. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett.32(13), 1824–1826 (2007).
    [CrossRef] [PubMed]
  13. J. Didierjean, M. Castaing, F. Balembois, P. Georges, D. Perrodin, J. M. Fourmigué, K. Lebbou, A. Brenier, and O. Tillement, “High-power laser with Nd:YAG single-crystal fiber grown by the micro-pulling-down technique,” Opt. Lett.31(23), 3468–3470 (2006).
    [CrossRef] [PubMed]
  14. D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, and J. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
    [CrossRef]
  15. Y. Zaouter, I. Martial, N. Aubry, J. Didierjean, C. Hönninger, E. Mottay, F. Druon, P. Georges, and F. Balembois, “Direct amplification of ultrashort pulses in μ-pulling-down Yb:YAG single crystal fibers,” Opt. Lett.36(5), 748–750 (2011).
    [CrossRef] [PubMed]
  16. X. Délen, Y. Zaouter, I. Martial, N. Aubry, J. Didierjean, C. Hönninger, E. Mottay, F. Balembois, and P. Georges, “Yb:YAG single crystal fiber power amplifier for femtosecond sources,” Opt. Lett.38(2), 109–111 (2013).
    [CrossRef] [PubMed]
  17. X. Délen, S. Piehler, J. Didierjean, N. Aubry, A. Voss, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250 W single-crystal fiber Yb:YAG laser,” Opt. Lett.37(14), 2898–2900 (2012).
    [CrossRef] [PubMed]
  18. W. Koechner, Solid-State Laser Engineering, (Springer, 2006)
  19. M. Schmid, R. Weber, T. Graf, M. Roos, and H. P. Weber, “Numerical simulation and analytical description of thermally induced birefringence in laser rods,” IEEE J. Quantum Electron.36(5), 620–626 (2000).
    [CrossRef]
  20. M. Schmid, T. Graf, and H. P. Weber, “Analytical model of the temperature distribution and the thermally induced birefringence in laser rods with cylindrically symmetric heating,” J. OSA B–Optical Physics17(8), 1398–1404 (2000).
  21. T. Liebig, M. Abdou Ahmed, A. Voss, and T. Graf, “Novel multi-sensor polarimeter for the characterization of inhomogeneously polarized laser beams”, in SPIE LASE, Photonics West2010

2013

2012

2011

2010

2009

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, and J. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett.34(16), 2525–2527 (2009).
[CrossRef] [PubMed]

2008

2007

2006

2000

M. Schmid, R. Weber, T. Graf, M. Roos, and H. P. Weber, “Numerical simulation and analytical description of thermally induced birefringence in laser rods,” IEEE J. Quantum Electron.36(5), 620–626 (2000).
[CrossRef]

M. Schmid, T. Graf, and H. P. Weber, “Analytical model of the temperature distribution and the thermally induced birefringence in laser rods with cylindrically symmetric heating,” J. OSA B–Optical Physics17(8), 1398–1404 (2000).

Abdou Ahmed, M.

R. Weber, A. Michalowski, M. Abdou Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of Radial and Tangential Polarization in Laser Material Processing,” Physics Procedia12, 21–30 (2011).
[CrossRef]

Ahmed, M. A.

Aubry, N.

Baets, R.

Balembois, F.

Balmer, J.

Brenier, A.

Castaing, M.

Davidson, N.

Delbeke, D.

Délen, X.

Didierjean, J.

Druon, F.

Dubinskii, M.

Endo, M.

Fourmigué, J.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, and J. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

Fourmigué, J. M.

Fridman, M.

Friesem, A. A.

Georges, P.

Graf, T.

M. Rumpel, M. Haefner, T. Schoder, C. Pruss, A. Voss, W. Osten, M. A. Ahmed, and T. Graf, “Circular grating waveguide structures for intracavity generation of azimuthal polarization in a thin-disk laser,” Opt. Lett.37(10), 1763–1765 (2012).
[CrossRef] [PubMed]

X. Délen, S. Piehler, J. Didierjean, N. Aubry, A. Voss, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250 W single-crystal fiber Yb:YAG laser,” Opt. Lett.37(14), 2898–2900 (2012).
[CrossRef] [PubMed]

M. A. Ahmed, M. Haefner, M. Vogel, C. Pruss, A. Voss, W. Osten, and T. Graf, “High-power radially polarized Yb:YAG thin-disk laser with high efficiency,” Opt. Express19(6), 5093–5104 (2011).
[CrossRef] [PubMed]

R. Weber, A. Michalowski, M. Abdou Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of Radial and Tangential Polarization in Laser Material Processing,” Physics Procedia12, 21–30 (2011).
[CrossRef]

M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J. C. Pommier, and T. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett.32(13), 1824–1826 (2007).
[CrossRef] [PubMed]

M. Schmid, R. Weber, T. Graf, M. Roos, and H. P. Weber, “Numerical simulation and analytical description of thermally induced birefringence in laser rods,” IEEE J. Quantum Electron.36(5), 620–626 (2000).
[CrossRef]

M. Schmid, T. Graf, and H. P. Weber, “Analytical model of the temperature distribution and the thermally induced birefringence in laser rods with cylindrically symmetric heating,” J. OSA B–Optical Physics17(8), 1398–1404 (2000).

Haefner, M.

Hönninger, C.

Kraus, M.

R. Weber, A. Michalowski, M. Abdou Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of Radial and Tangential Polarization in Laser Material Processing,” Physics Procedia12, 21–30 (2011).
[CrossRef]

Kristensen, P.

Lebbou, K.

Li, G.

Li, J.

Li, J. L.

Li, R.

Li, X.

Lin, D.

Martial, I.

Michalowski, A.

R. Weber, A. Michalowski, M. Abdou Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of Radial and Tangential Polarization in Laser Material Processing,” Physics Procedia12, 21–30 (2011).
[CrossRef]

Moser, T.

Mottay, E.

Musha, M.

Muys, P.

Nixon, M.

Onuseit, V.

R. Weber, A. Michalowski, M. Abdou Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of Radial and Tangential Polarization in Laser Material Processing,” Physics Procedia12, 21–30 (2011).
[CrossRef]

Osten, W.

Parriaux, O.

Perrodin, D.

Piehler, S.

Pommier, J. C.

Pruss, C.

Ramachandran, S.

Rominger, V.

R. Weber, A. Michalowski, M. Abdou Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of Radial and Tangential Polarization in Laser Material Processing,” Physics Procedia12, 21–30 (2011).
[CrossRef]

Roos, M.

M. Schmid, R. Weber, T. Graf, M. Roos, and H. P. Weber, “Numerical simulation and analytical description of thermally induced birefringence in laser rods,” IEEE J. Quantum Electron.36(5), 620–626 (2000).
[CrossRef]

Rumpel, M.

Sangla, D.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, and J. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

Sato, T.

Schmid, M.

M. Schmid, T. Graf, and H. P. Weber, “Analytical model of the temperature distribution and the thermally induced birefringence in laser rods with cylindrically symmetric heating,” J. OSA B–Optical Physics17(8), 1398–1404 (2000).

M. Schmid, R. Weber, T. Graf, M. Roos, and H. P. Weber, “Numerical simulation and analytical description of thermally induced birefringence in laser rods,” IEEE J. Quantum Electron.36(5), 620–626 (2000).
[CrossRef]

Schoder, T.

Schulz, J.

Shirakawa, A.

Tillement, O.

Ueda, K.

Verstuyft, S.

Vogel, M.

Voss, A.

Weber, H. P.

M. Schmid, T. Graf, and H. P. Weber, “Analytical model of the temperature distribution and the thermally induced birefringence in laser rods with cylindrically symmetric heating,” J. OSA B–Optical Physics17(8), 1398–1404 (2000).

M. Schmid, R. Weber, T. Graf, M. Roos, and H. P. Weber, “Numerical simulation and analytical description of thermally induced birefringence in laser rods,” IEEE J. Quantum Electron.36(5), 620–626 (2000).
[CrossRef]

Weber, R.

R. Weber, A. Michalowski, M. Abdou Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of Radial and Tangential Polarization in Laser Material Processing,” Physics Procedia12, 21–30 (2011).
[CrossRef]

M. Schmid, R. Weber, T. Graf, M. Roos, and H. P. Weber, “Numerical simulation and analytical description of thermally induced birefringence in laser rods,” IEEE J. Quantum Electron.36(5), 620–626 (2000).
[CrossRef]

Xia, K.

Yan, M. F.

Zaouter, Y.

Zhong, L. X.

Appl. Opt.

Appl. Phys. B

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, and J. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

IEEE J. Quantum Electron.

M. Schmid, R. Weber, T. Graf, M. Roos, and H. P. Weber, “Numerical simulation and analytical description of thermally induced birefringence in laser rods,” IEEE J. Quantum Electron.36(5), 620–626 (2000).
[CrossRef]

J. OSA B–Optical Physics

M. Schmid, T. Graf, and H. P. Weber, “Analytical model of the temperature distribution and the thermally induced birefringence in laser rods with cylindrically symmetric heating,” J. OSA B–Optical Physics17(8), 1398–1404 (2000).

Opt. Express

Opt. Lett.

M. Endo, “Azimuthally polarized 1 kW CO2 laser with a triple-axicon retroreflector optical resonator,” Opt. Lett.33(15), 1771–1773 (2008).
[CrossRef] [PubMed]

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett.34(16), 2525–2527 (2009).
[CrossRef] [PubMed]

M. Fridman, M. Nixon, M. Dubinskii, A. A. Friesem, and N. Davidson, “Fiber amplification of radially and azimuthally polarized laser light,” Opt. Lett.35(9), 1332–1334 (2010).
[CrossRef] [PubMed]

D. Lin, K. Xia, J. Li, R. Li, K. Ueda, G. Li, and X. Li, “Efficient, high-power, and radially polarized fiber laser,” Opt. Lett.35(13), 2290–2292 (2010).
[CrossRef] [PubMed]

M. Rumpel, M. Haefner, T. Schoder, C. Pruss, A. Voss, W. Osten, M. A. Ahmed, and T. Graf, “Circular grating waveguide structures for intracavity generation of azimuthal polarization in a thin-disk laser,” Opt. Lett.37(10), 1763–1765 (2012).
[CrossRef] [PubMed]

M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J. C. Pommier, and T. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett.32(13), 1824–1826 (2007).
[CrossRef] [PubMed]

J. Didierjean, M. Castaing, F. Balembois, P. Georges, D. Perrodin, J. M. Fourmigué, K. Lebbou, A. Brenier, and O. Tillement, “High-power laser with Nd:YAG single-crystal fiber grown by the micro-pulling-down technique,” Opt. Lett.31(23), 3468–3470 (2006).
[CrossRef] [PubMed]

Y. Zaouter, I. Martial, N. Aubry, J. Didierjean, C. Hönninger, E. Mottay, F. Druon, P. Georges, and F. Balembois, “Direct amplification of ultrashort pulses in μ-pulling-down Yb:YAG single crystal fibers,” Opt. Lett.36(5), 748–750 (2011).
[CrossRef] [PubMed]

X. Délen, Y. Zaouter, I. Martial, N. Aubry, J. Didierjean, C. Hönninger, E. Mottay, F. Balembois, and P. Georges, “Yb:YAG single crystal fiber power amplifier for femtosecond sources,” Opt. Lett.38(2), 109–111 (2013).
[CrossRef] [PubMed]

X. Délen, S. Piehler, J. Didierjean, N. Aubry, A. Voss, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250 W single-crystal fiber Yb:YAG laser,” Opt. Lett.37(14), 2898–2900 (2012).
[CrossRef] [PubMed]

Physics Procedia

R. Weber, A. Michalowski, M. Abdou Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of Radial and Tangential Polarization in Laser Material Processing,” Physics Procedia12, 21–30 (2011).
[CrossRef]

Other

P. Phua, W. Lai, Y. Lim, B. Tan, R. Wu, K. Lai, and H. Tan, “High Power Radial Polarization Conversion Using Photonic Crystal Segmented Half-Wave-Plate,” in in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, 2008), paper CMO4.
[CrossRef]

W. Koechner, Solid-State Laser Engineering, (Springer, 2006)

M. Abdou Ahmed, M. Vogel, A. Voss, and T. Graf, “A 1-kW radially polarized thin-disk laser,” in CLEO/Europe and EQEC 2009 Conference Digest, (Optical Society of America, 2009), paper CA1_1.

T. Liebig, M. Abdou Ahmed, A. Voss, and T. Graf, “Novel multi-sensor polarimeter for the characterization of inhomogeneously polarized laser beams”, in SPIE LASE, Photonics West2010

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Output power of the amplified beam for the case of linear polarization. The inset shows the far-field intensity distribution of the output beam measured at maximum pump and maximum seed power.

Fig. 3
Fig. 3

Linear to radial / azimuthal polarization converter based on segmented waveplates. The lowest transversal order mode with cylindrical polarization is the LG01* -mode with a donut-shaped intensity distribution.

Fig. 4
Fig. 4

Output power of the amplified beam for (a) radial and (b) azimuthally polarized input.

Fig. 5
Fig. 5

Far-field intensity distribution of the amplified beam at maximum pump and maximum seed power for radial polarization (a) and azimuthal polarization (e). (b-d) Intensity distribution with rotation of the analyzer axis (the arrow indicates the transmission axis of the analyzer). (f-h) Intensity distributions with rotation of the analyzer axis.

Fig. 6
Fig. 6

Measured local polarization ellipses overlaid with the measured intensity distribution. The individual ellipses depict the local polarization state measured at the pixel in the center of each ellipse.

Metrics