Abstract

We report on the demonstration of liquid organic dye lasers based on 9-(2-ethylhexyl)carbazole (EHCz), so-called liquid carbazole, doped with green- and red-emitting laser dyes. Both waveguide and Fabry-Perot type microcavity fluidic organic dye lasers were prepared by capillary action under solvent-free conditions. Cascade Förster-type energy transfer processes from liquid carbazole to laser dyes were employed to achieve color-variable amplified spontaneous emission and lasing. Overall, this study provides the first step towards the development of solvent-free fluidic organic semiconducting lasers and demonstrates a new kind of optoelectronic applications for liquid organic semiconductors.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Ribierre, T. Aoyama, T. Muto, Y. Imase, and T. Wada, “Charge transport properties in liquid carbazole,” Org. Electron.9(3), 396–400 (2008).
    [CrossRef]
  2. B. A. Kamino, T. P. Bender, and R. A. Klenkler, “Hole mobility of a liquid organic semiconductor,” J. Phys. Chem. Lett.3(8), 1002–1006 (2012).
    [CrossRef]
  3. S. Santhosh Babu, J. Aimi, H. Ozawa, N. Shirahata, A. Saeki, S. Seki, A. Ajayaghosh, H. Möhwald, and T. Nakanishi, “Solvent-free luminescent organic liquids,” Angew. Chem. Int. Ed. Engl.51(14), 3391–3395 (2012).
    [CrossRef] [PubMed]
  4. J. C. Ribierre, T. Aoyama, T. Kobayashi, T. Sassa, T. Muto, and T. Wada, “Influence of the liquid carbazole concentration on charge trapping in C60 sensitized photorefractive polymers,” J. Appl. Phys.102(3), 033106 (2007).
    [CrossRef]
  5. D. Xu and C. Adachi, “Organic light-emitting diode with liquid emitting layer,” Appl. Phys. Lett.95(5), 053304 (2009).
    [CrossRef]
  6. S. Hirata, K. Kubota, H. H. Jung, O. Hirata, K. Goushi, M. Yahiro, and C. Adachi, “Improvement of electroluminescence performance of organic light-emitting diodes with a liquid-emitting layer by introduction of electrolyte and a hole-blocking layer,” Adv. Mater.23(7), 889–893 (2011).
    [CrossRef] [PubMed]
  7. C. H. Shim, S. Hirata, J. Oshima, T. Edura, R. Hattori, and C. Adachi, “Uniform and refreshable liquid electroluminescent device with a back side reservoir,” Appl. Phys. Lett.101(11), 113302 (2012).
    [CrossRef]
  8. H. J. Snaith, S. M. Zakeeruddin, Q. Wang, P. Péchy, and M. Grätzel, “Dye-sensitized solar cells incorporating a “liquid” hole-transporting material,” Nano Lett.6(9), 2000–2003 (2006).
    [CrossRef] [PubMed]
  9. J. C. Ribierre, T. Aoyama, T. Muto, and P. André, “Hybrid organic-inorganic liquid bistable memory devices,” Org. Electron.12(11), 1800–1805 (2011).
    [CrossRef]
  10. H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics5(10), 598–604 (2011).
    [CrossRef]
  11. Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang, Y. Wang, and H. L. W. Chan, “Optofluidic microcavities: Dye-lasers and biosensors,” Biomicrofluidics4(4), 043002 (2010).
    [CrossRef]
  12. B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng.13(2), 307–311 (2003).
    [CrossRef]
  13. W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett.94(16), 161110 (2009).
    [CrossRef]
  14. S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip9(19), 2767–2771 (2009).
    [CrossRef] [PubMed]
  15. Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A.107(37), 16039–16042 (2010).
    [CrossRef] [PubMed]
  16. D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
    [CrossRef] [PubMed]
  17. Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid.4(1-2), 145–158 (2008).
    [CrossRef]
  18. A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. W. Samuel, “Fluidic fibre dye lasers,” Opt. Express15(7), 3962–3967 (2007).
    [CrossRef] [PubMed]
  19. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
    [CrossRef] [PubMed]
  20. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
    [CrossRef]
  21. T. Kobayashi and W. J. Blau, “Laser emission from conjugated polymer in fiber waveguide structure,” Electron. Lett.38(2), 67–68 (2002).
    [CrossRef]
  22. N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated polymer microcavities,” Nature382(6593), 695–697 (1996).
    [CrossRef]
  23. A. Dodabalapur, M. Berggren, R. E. Slusher, and Z. Bao, “Light amplification in organic thin films using cascade energy transfer,” Nature389(6650), 466–469 (1997).
    [CrossRef]
  24. R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, and H. Wang, “Low threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett.73(24), 3492–3494 (1998).
    [CrossRef]
  25. A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, “Efficient energy transfer in organic thin films – implications for organic lasers,” J. Appl. Phys.92(11), 6367–6371 (2002).
    [CrossRef]
  26. A. Ruseckas, J. C. Ribierre, P. E. Shaw, S. V. Staton, P. L. Burn, and I. D. W. Samuel, “Singlet energy transfer and singlet-singlet annihilation in light-emitting blends of organic semiconductors,” Appl. Phys. Lett.95(18), 183305 (2009).
    [CrossRef]
  27. E. Gautier-Thianche, C. Sentein, A. Lorin, C. Denis, P. Raimond, and J. M. Nunzi, “Effect of coumarin on blue light-emitting diodes based on carbazole polymers,” J. Appl. Phys.83(8), 4236 (1998).
    [CrossRef]
  28. V. G. Kozlov, G. Parthasarathy, P. E. Burrows, S. R. Forrest, Y. You, and M. E. Thompson, “Optically pumped blue organic semiconductor lasers,” Appl. Phys. Lett.72(2), 144 (1998).
    [CrossRef]
  29. T. Förster, “Transfer mechanisms of electronic excitation,” Discuss. Faraday Soc.27, 7 (1959).
    [CrossRef]
  30. G. Heliotis, D. D. C. Bradley, G. A. Turnbull, and I. D. W. Samuel, “Light amplification and gain in polyfluorene waveguides,” Appl. Phys. Lett.81(3), 415 (2002).
    [CrossRef]
  31. C. Zenz, W. Graupner, S. Tasch, G. Leising, K. Müllen, and U. Scherf, “Blue green stimulated emission from a high gain conjugated polymer,” Appl. Phys. Lett.71(18), 2566 (1997).
    [CrossRef]
  32. X. Zhu, D. Gindre, N. Mercier, P. Frère, and J.-M. Nunzi, “Stimulated emission from a needle-like single crystal of an end-capped fluorene/phenylene co-oligomer,” Adv. Mater.15(11), 906–909 (2003).
    [CrossRef]
  33. J. C. Knight, H. S. T. Driver, R. J. Hutcheon, and G. N. Robertson, “Core-resonance capillary-fiber whispering-gallery-mode laser,” Opt. Lett.17(18), 1280–1282 (1992).
    [CrossRef] [PubMed]
  34. B. Schütte, H. Gothe, S. I. Hintschich, M. Sudzius, H. Fröb, V. G. Lyssenko, and K. Leo, “Continuously tunable laser emission from a wedge-shaped organic microcavity,” Appl. Phys. Lett.92(16), 163309 (2008).
    [CrossRef]
  35. T. Wienhold, F. Breithaupt, C. Vannahme, M. B. Christiansen, W. Dörfler, A. Kristensen, and T. Mappes, “Diffusion driven optofluidic dye lasers encapsulated into polymer chips,” Lab Chip12(19), 3734–3739 (2012).
    [CrossRef] [PubMed]
  36. D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett.85(11), 1886 (2004).
    [CrossRef]

2012 (4)

B. A. Kamino, T. P. Bender, and R. A. Klenkler, “Hole mobility of a liquid organic semiconductor,” J. Phys. Chem. Lett.3(8), 1002–1006 (2012).
[CrossRef]

S. Santhosh Babu, J. Aimi, H. Ozawa, N. Shirahata, A. Saeki, S. Seki, A. Ajayaghosh, H. Möhwald, and T. Nakanishi, “Solvent-free luminescent organic liquids,” Angew. Chem. Int. Ed. Engl.51(14), 3391–3395 (2012).
[CrossRef] [PubMed]

C. H. Shim, S. Hirata, J. Oshima, T. Edura, R. Hattori, and C. Adachi, “Uniform and refreshable liquid electroluminescent device with a back side reservoir,” Appl. Phys. Lett.101(11), 113302 (2012).
[CrossRef]

T. Wienhold, F. Breithaupt, C. Vannahme, M. B. Christiansen, W. Dörfler, A. Kristensen, and T. Mappes, “Diffusion driven optofluidic dye lasers encapsulated into polymer chips,” Lab Chip12(19), 3734–3739 (2012).
[CrossRef] [PubMed]

2011 (3)

S. Hirata, K. Kubota, H. H. Jung, O. Hirata, K. Goushi, M. Yahiro, and C. Adachi, “Improvement of electroluminescence performance of organic light-emitting diodes with a liquid-emitting layer by introduction of electrolyte and a hole-blocking layer,” Adv. Mater.23(7), 889–893 (2011).
[CrossRef] [PubMed]

J. C. Ribierre, T. Aoyama, T. Muto, and P. André, “Hybrid organic-inorganic liquid bistable memory devices,” Org. Electron.12(11), 1800–1805 (2011).
[CrossRef]

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics5(10), 598–604 (2011).
[CrossRef]

2010 (2)

Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang, Y. Wang, and H. L. W. Chan, “Optofluidic microcavities: Dye-lasers and biosensors,” Biomicrofluidics4(4), 043002 (2010).
[CrossRef]

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A.107(37), 16039–16042 (2010).
[CrossRef] [PubMed]

2009 (4)

A. Ruseckas, J. C. Ribierre, P. E. Shaw, S. V. Staton, P. L. Burn, and I. D. W. Samuel, “Singlet energy transfer and singlet-singlet annihilation in light-emitting blends of organic semiconductors,” Appl. Phys. Lett.95(18), 183305 (2009).
[CrossRef]

D. Xu and C. Adachi, “Organic light-emitting diode with liquid emitting layer,” Appl. Phys. Lett.95(5), 053304 (2009).
[CrossRef]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett.94(16), 161110 (2009).
[CrossRef]

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

2008 (3)

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid.4(1-2), 145–158 (2008).
[CrossRef]

J. C. Ribierre, T. Aoyama, T. Muto, Y. Imase, and T. Wada, “Charge transport properties in liquid carbazole,” Org. Electron.9(3), 396–400 (2008).
[CrossRef]

B. Schütte, H. Gothe, S. I. Hintschich, M. Sudzius, H. Fröb, V. G. Lyssenko, and K. Leo, “Continuously tunable laser emission from a wedge-shaped organic microcavity,” Appl. Phys. Lett.92(16), 163309 (2008).
[CrossRef]

2007 (4)

J. C. Ribierre, T. Aoyama, T. Kobayashi, T. Sassa, T. Muto, and T. Wada, “Influence of the liquid carbazole concentration on charge trapping in C60 sensitized photorefractive polymers,” J. Appl. Phys.102(3), 033106 (2007).
[CrossRef]

A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. W. Samuel, “Fluidic fibre dye lasers,” Opt. Express15(7), 3962–3967 (2007).
[CrossRef] [PubMed]

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

2006 (2)

H. J. Snaith, S. M. Zakeeruddin, Q. Wang, P. Péchy, and M. Grätzel, “Dye-sensitized solar cells incorporating a “liquid” hole-transporting material,” Nano Lett.6(9), 2000–2003 (2006).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

2004 (1)

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett.85(11), 1886 (2004).
[CrossRef]

2003 (2)

X. Zhu, D. Gindre, N. Mercier, P. Frère, and J.-M. Nunzi, “Stimulated emission from a needle-like single crystal of an end-capped fluorene/phenylene co-oligomer,” Adv. Mater.15(11), 906–909 (2003).
[CrossRef]

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng.13(2), 307–311 (2003).
[CrossRef]

2002 (3)

T. Kobayashi and W. J. Blau, “Laser emission from conjugated polymer in fiber waveguide structure,” Electron. Lett.38(2), 67–68 (2002).
[CrossRef]

A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, “Efficient energy transfer in organic thin films – implications for organic lasers,” J. Appl. Phys.92(11), 6367–6371 (2002).
[CrossRef]

G. Heliotis, D. D. C. Bradley, G. A. Turnbull, and I. D. W. Samuel, “Light amplification and gain in polyfluorene waveguides,” Appl. Phys. Lett.81(3), 415 (2002).
[CrossRef]

1998 (3)

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, and H. Wang, “Low threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett.73(24), 3492–3494 (1998).
[CrossRef]

E. Gautier-Thianche, C. Sentein, A. Lorin, C. Denis, P. Raimond, and J. M. Nunzi, “Effect of coumarin on blue light-emitting diodes based on carbazole polymers,” J. Appl. Phys.83(8), 4236 (1998).
[CrossRef]

V. G. Kozlov, G. Parthasarathy, P. E. Burrows, S. R. Forrest, Y. You, and M. E. Thompson, “Optically pumped blue organic semiconductor lasers,” Appl. Phys. Lett.72(2), 144 (1998).
[CrossRef]

1997 (2)

A. Dodabalapur, M. Berggren, R. E. Slusher, and Z. Bao, “Light amplification in organic thin films using cascade energy transfer,” Nature389(6650), 466–469 (1997).
[CrossRef]

C. Zenz, W. Graupner, S. Tasch, G. Leising, K. Müllen, and U. Scherf, “Blue green stimulated emission from a high gain conjugated polymer,” Appl. Phys. Lett.71(18), 2566 (1997).
[CrossRef]

1996 (1)

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated polymer microcavities,” Nature382(6593), 695–697 (1996).
[CrossRef]

1992 (1)

1959 (1)

T. Förster, “Transfer mechanisms of electronic excitation,” Discuss. Faraday Soc.27, 7 (1959).
[CrossRef]

Abate, A. R.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

Adachi, C.

C. H. Shim, S. Hirata, J. Oshima, T. Edura, R. Hattori, and C. Adachi, “Uniform and refreshable liquid electroluminescent device with a back side reservoir,” Appl. Phys. Lett.101(11), 113302 (2012).
[CrossRef]

S. Hirata, K. Kubota, H. H. Jung, O. Hirata, K. Goushi, M. Yahiro, and C. Adachi, “Improvement of electroluminescence performance of organic light-emitting diodes with a liquid-emitting layer by introduction of electrolyte and a hole-blocking layer,” Adv. Mater.23(7), 889–893 (2011).
[CrossRef] [PubMed]

D. Xu and C. Adachi, “Organic light-emitting diode with liquid emitting layer,” Appl. Phys. Lett.95(5), 053304 (2009).
[CrossRef]

Agresti, J. J.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

Aimi, J.

S. Santhosh Babu, J. Aimi, H. Ozawa, N. Shirahata, A. Saeki, S. Seki, A. Ajayaghosh, H. Möhwald, and T. Nakanishi, “Solvent-free luminescent organic liquids,” Angew. Chem. Int. Ed. Engl.51(14), 3391–3395 (2012).
[CrossRef] [PubMed]

Ajayaghosh, A.

S. Santhosh Babu, J. Aimi, H. Ozawa, N. Shirahata, A. Saeki, S. Seki, A. Ajayaghosh, H. Möhwald, and T. Nakanishi, “Solvent-free luminescent organic liquids,” Angew. Chem. Int. Ed. Engl.51(14), 3391–3395 (2012).
[CrossRef] [PubMed]

André, P.

J. C. Ribierre, T. Aoyama, T. Muto, and P. André, “Hybrid organic-inorganic liquid bistable memory devices,” Org. Electron.12(11), 1800–1805 (2011).
[CrossRef]

Aoyama, T.

J. C. Ribierre, T. Aoyama, T. Muto, and P. André, “Hybrid organic-inorganic liquid bistable memory devices,” Org. Electron.12(11), 1800–1805 (2011).
[CrossRef]

J. C. Ribierre, T. Aoyama, T. Muto, Y. Imase, and T. Wada, “Charge transport properties in liquid carbazole,” Org. Electron.9(3), 396–400 (2008).
[CrossRef]

J. C. Ribierre, T. Aoyama, T. Kobayashi, T. Sassa, T. Muto, and T. Wada, “Influence of the liquid carbazole concentration on charge trapping in C60 sensitized photorefractive polymers,” J. Appl. Phys.102(3), 033106 (2007).
[CrossRef]

Arnold, S.

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A.107(37), 16039–16042 (2010).
[CrossRef] [PubMed]

Bacher, A.

A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, “Efficient energy transfer in organic thin films – implications for organic lasers,” J. Appl. Phys.92(11), 6367–6371 (2002).
[CrossRef]

Bao, Z.

A. Dodabalapur, M. Berggren, R. E. Slusher, and Z. Bao, “Light amplification in organic thin films using cascade energy transfer,” Nature389(6650), 466–469 (1997).
[CrossRef]

Becker, E.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett.85(11), 1886 (2004).
[CrossRef]

Bender, T. P.

B. A. Kamino, T. P. Bender, and R. A. Klenkler, “Hole mobility of a liquid organic semiconductor,” J. Phys. Chem. Lett.3(8), 1002–1006 (2012).
[CrossRef]

Berggren, M.

A. Dodabalapur, M. Berggren, R. E. Slusher, and Z. Bao, “Light amplification in organic thin films using cascade energy transfer,” Nature389(6650), 466–469 (1997).
[CrossRef]

Blau, W. J.

T. Kobayashi and W. J. Blau, “Laser emission from conjugated polymer in fiber waveguide structure,” Electron. Lett.38(2), 67–68 (2002).
[CrossRef]

Bradley, D. D. C.

A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, “Efficient energy transfer in organic thin films – implications for organic lasers,” J. Appl. Phys.92(11), 6367–6371 (2002).
[CrossRef]

G. Heliotis, D. D. C. Bradley, G. A. Turnbull, and I. D. W. Samuel, “Light amplification and gain in polyfluorene waveguides,” Appl. Phys. Lett.81(3), 415 (2002).
[CrossRef]

Breithaupt, F.

T. Wienhold, F. Breithaupt, C. Vannahme, M. B. Christiansen, W. Dörfler, A. Kristensen, and T. Mappes, “Diffusion driven optofluidic dye lasers encapsulated into polymer chips,” Lab Chip12(19), 3734–3739 (2012).
[CrossRef] [PubMed]

Buckley, A. R.

A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, “Efficient energy transfer in organic thin films – implications for organic lasers,” J. Appl. Phys.92(11), 6367–6371 (2002).
[CrossRef]

Burn, P. L.

A. Ruseckas, J. C. Ribierre, P. E. Shaw, S. V. Staton, P. L. Burn, and I. D. W. Samuel, “Singlet energy transfer and singlet-singlet annihilation in light-emitting blends of organic semiconductors,” Appl. Phys. Lett.95(18), 183305 (2009).
[CrossRef]

Burrows, P. E.

V. G. Kozlov, G. Parthasarathy, P. E. Burrows, S. R. Forrest, Y. You, and M. E. Thompson, “Optically pumped blue organic semiconductor lasers,” Appl. Phys. Lett.72(2), 144 (1998).
[CrossRef]

Chan, H. L. W.

Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang, Y. Wang, and H. L. W. Chan, “Optofluidic microcavities: Dye-lasers and biosensors,” Biomicrofluidics4(4), 043002 (2010).
[CrossRef]

Chen, Y.

Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang, Y. Wang, and H. L. W. Chan, “Optofluidic microcavities: Dye-lasers and biosensors,” Biomicrofluidics4(4), 043002 (2010).
[CrossRef]

Christiansen, M. B.

T. Wienhold, F. Breithaupt, C. Vannahme, M. B. Christiansen, W. Dörfler, A. Kristensen, and T. Mappes, “Diffusion driven optofluidic dye lasers encapsulated into polymer chips,” Lab Chip12(19), 3734–3739 (2012).
[CrossRef] [PubMed]

Denis, C.

E. Gautier-Thianche, C. Sentein, A. Lorin, C. Denis, P. Raimond, and J. M. Nunzi, “Effect of coumarin on blue light-emitting diodes based on carbazole polymers,” J. Appl. Phys.83(8), 4236 (1998).
[CrossRef]

Denton, G. J.

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated polymer microcavities,” Nature382(6593), 695–697 (1996).
[CrossRef]

Dobbertin, T.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett.85(11), 1886 (2004).
[CrossRef]

Dodabalapur, A.

A. Dodabalapur, M. Berggren, R. E. Slusher, and Z. Bao, “Light amplification in organic thin films using cascade energy transfer,” Nature389(6650), 466–469 (1997).
[CrossRef]

Dogariu, A.

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, and H. Wang, “Low threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett.73(24), 3492–3494 (1998).
[CrossRef]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

Dörfler, W.

T. Wienhold, F. Breithaupt, C. Vannahme, M. B. Christiansen, W. Dörfler, A. Kristensen, and T. Mappes, “Diffusion driven optofluidic dye lasers encapsulated into polymer chips,” Lab Chip12(19), 3734–3739 (2012).
[CrossRef] [PubMed]

Driver, H. S. T.

Edura, T.

C. H. Shim, S. Hirata, J. Oshima, T. Edura, R. Hattori, and C. Adachi, “Uniform and refreshable liquid electroluminescent device with a back side reservoir,” Appl. Phys. Lett.101(11), 113302 (2012).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

Fan, X.

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A.107(37), 16039–16042 (2010).
[CrossRef] [PubMed]

Forrest, S. R.

V. G. Kozlov, G. Parthasarathy, P. E. Burrows, S. R. Forrest, Y. You, and M. E. Thompson, “Optically pumped blue organic semiconductor lasers,” Appl. Phys. Lett.72(2), 144 (1998).
[CrossRef]

Förster, T.

T. Förster, “Transfer mechanisms of electronic excitation,” Discuss. Faraday Soc.27, 7 (1959).
[CrossRef]

Fox, A. M.

A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, “Efficient energy transfer in organic thin films – implications for organic lasers,” J. Appl. Phys.92(11), 6367–6371 (2002).
[CrossRef]

Frère, P.

X. Zhu, D. Gindre, N. Mercier, P. Frère, and J.-M. Nunzi, “Stimulated emission from a needle-like single crystal of an end-capped fluorene/phenylene co-oligomer,” Adv. Mater.15(11), 906–909 (2003).
[CrossRef]

Friend, R. H.

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated polymer microcavities,” Nature382(6593), 695–697 (1996).
[CrossRef]

Fröb, H.

B. Schütte, H. Gothe, S. I. Hintschich, M. Sudzius, H. Fröb, V. G. Lyssenko, and K. Leo, “Continuously tunable laser emission from a wedge-shaped organic microcavity,” Appl. Phys. Lett.92(16), 163309 (2008).
[CrossRef]

Gautier-Thianche, E.

E. Gautier-Thianche, C. Sentein, A. Lorin, C. Denis, P. Raimond, and J. M. Nunzi, “Effect of coumarin on blue light-emitting diodes based on carbazole polymers,” J. Appl. Phys.83(8), 4236 (1998).
[CrossRef]

Gindre, D.

X. Zhu, D. Gindre, N. Mercier, P. Frère, and J.-M. Nunzi, “Stimulated emission from a needle-like single crystal of an end-capped fluorene/phenylene co-oligomer,” Adv. Mater.15(11), 906–909 (2003).
[CrossRef]

Gothe, H.

B. Schütte, H. Gothe, S. I. Hintschich, M. Sudzius, H. Fröb, V. G. Lyssenko, and K. Leo, “Continuously tunable laser emission from a wedge-shaped organic microcavity,” Appl. Phys. Lett.92(16), 163309 (2008).
[CrossRef]

Goushi, K.

S. Hirata, K. Kubota, H. H. Jung, O. Hirata, K. Goushi, M. Yahiro, and C. Adachi, “Improvement of electroluminescence performance of organic light-emitting diodes with a liquid-emitting layer by introduction of electrolyte and a hole-blocking layer,” Adv. Mater.23(7), 889–893 (2011).
[CrossRef] [PubMed]

Grätzel, M.

H. J. Snaith, S. M. Zakeeruddin, Q. Wang, P. Péchy, and M. Grätzel, “Dye-sensitized solar cells incorporating a “liquid” hole-transporting material,” Nano Lett.6(9), 2000–2003 (2006).
[CrossRef] [PubMed]

Graupner, W.

C. Zenz, W. Graupner, S. Tasch, G. Leising, K. Müllen, and U. Scherf, “Blue green stimulated emission from a high gain conjugated polymer,” Appl. Phys. Lett.71(18), 2566 (1997).
[CrossRef]

Gupta, R.

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, and H. Wang, “Low threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett.73(24), 3492–3494 (1998).
[CrossRef]

Hattori, R.

C. H. Shim, S. Hirata, J. Oshima, T. Edura, R. Hattori, and C. Adachi, “Uniform and refreshable liquid electroluminescent device with a back side reservoir,” Appl. Phys. Lett.101(11), 113302 (2012).
[CrossRef]

Hawkins, A. R.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics5(10), 598–604 (2011).
[CrossRef]

Heeger, A. J.

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, and H. Wang, “Low threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett.73(24), 3492–3494 (1998).
[CrossRef]

Helbo, B.

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng.13(2), 307–311 (2003).
[CrossRef]

Heliotis, G.

G. Heliotis, D. D. C. Bradley, G. A. Turnbull, and I. D. W. Samuel, “Light amplification and gain in polyfluorene waveguides,” Appl. Phys. Lett.81(3), 415 (2002).
[CrossRef]

Hintschich, S. I.

B. Schütte, H. Gothe, S. I. Hintschich, M. Sudzius, H. Fröb, V. G. Lyssenko, and K. Leo, “Continuously tunable laser emission from a wedge-shaped organic microcavity,” Appl. Phys. Lett.92(16), 163309 (2008).
[CrossRef]

Hinze, P.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett.85(11), 1886 (2004).
[CrossRef]

Hirata, O.

S. Hirata, K. Kubota, H. H. Jung, O. Hirata, K. Goushi, M. Yahiro, and C. Adachi, “Improvement of electroluminescence performance of organic light-emitting diodes with a liquid-emitting layer by introduction of electrolyte and a hole-blocking layer,” Adv. Mater.23(7), 889–893 (2011).
[CrossRef] [PubMed]

Hirata, S.

C. H. Shim, S. Hirata, J. Oshima, T. Edura, R. Hattori, and C. Adachi, “Uniform and refreshable liquid electroluminescent device with a back side reservoir,” Appl. Phys. Lett.101(11), 113302 (2012).
[CrossRef]

S. Hirata, K. Kubota, H. H. Jung, O. Hirata, K. Goushi, M. Yahiro, and C. Adachi, “Improvement of electroluminescence performance of organic light-emitting diodes with a liquid-emitting layer by introduction of electrolyte and a hole-blocking layer,” Adv. Mater.23(7), 889–893 (2011).
[CrossRef] [PubMed]

Hutcheon, R. J.

Imase, Y.

J. C. Ribierre, T. Aoyama, T. Muto, Y. Imase, and T. Wada, “Charge transport properties in liquid carbazole,” Org. Electron.9(3), 396–400 (2008).
[CrossRef]

Johannes, H. H.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett.85(11), 1886 (2004).
[CrossRef]

Jung, H. H.

S. Hirata, K. Kubota, H. H. Jung, O. Hirata, K. Goushi, M. Yahiro, and C. Adachi, “Improvement of electroluminescence performance of organic light-emitting diodes with a liquid-emitting layer by introduction of electrolyte and a hole-blocking layer,” Adv. Mater.23(7), 889–893 (2011).
[CrossRef] [PubMed]

Kamino, B. A.

B. A. Kamino, T. P. Bender, and R. A. Klenkler, “Hole mobility of a liquid organic semiconductor,” J. Phys. Chem. Lett.3(8), 1002–1006 (2012).
[CrossRef]

Klenkler, R. A.

B. A. Kamino, T. P. Bender, and R. A. Klenkler, “Hole mobility of a liquid organic semiconductor,” J. Phys. Chem. Lett.3(8), 1002–1006 (2012).
[CrossRef]

Knight, J. C.

Kobayashi, T.

J. C. Ribierre, T. Aoyama, T. Kobayashi, T. Sassa, T. Muto, and T. Wada, “Influence of the liquid carbazole concentration on charge trapping in C60 sensitized photorefractive polymers,” J. Appl. Phys.102(3), 033106 (2007).
[CrossRef]

T. Kobayashi and W. J. Blau, “Laser emission from conjugated polymer in fiber waveguide structure,” Electron. Lett.38(2), 67–68 (2002).
[CrossRef]

Kowalsky, W.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett.85(11), 1886 (2004).
[CrossRef]

Kozlov, V. G.

V. G. Kozlov, G. Parthasarathy, P. E. Burrows, S. R. Forrest, Y. You, and M. E. Thompson, “Optically pumped blue organic semiconductor lasers,” Appl. Phys. Lett.72(2), 144 (1998).
[CrossRef]

Kristensen, A.

T. Wienhold, F. Breithaupt, C. Vannahme, M. B. Christiansen, W. Dörfler, A. Kristensen, and T. Mappes, “Diffusion driven optofluidic dye lasers encapsulated into polymer chips,” Lab Chip12(19), 3734–3739 (2012).
[CrossRef] [PubMed]

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng.13(2), 307–311 (2003).
[CrossRef]

Kröger, M.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett.85(11), 1886 (2004).
[CrossRef]

Kubota, K.

S. Hirata, K. Kubota, H. H. Jung, O. Hirata, K. Goushi, M. Yahiro, and C. Adachi, “Improvement of electroluminescence performance of organic light-emitting diodes with a liquid-emitting layer by introduction of electrolyte and a hole-blocking layer,” Adv. Mater.23(7), 889–893 (2011).
[CrossRef] [PubMed]

Lei, L.

Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang, Y. Wang, and H. L. W. Chan, “Optofluidic microcavities: Dye-lasers and biosensors,” Biomicrofluidics4(4), 043002 (2010).
[CrossRef]

Leising, G.

C. Zenz, W. Graupner, S. Tasch, G. Leising, K. Müllen, and U. Scherf, “Blue green stimulated emission from a high gain conjugated polymer,” Appl. Phys. Lett.71(18), 2566 (1997).
[CrossRef]

Leo, K.

B. Schütte, H. Gothe, S. I. Hintschich, M. Sudzius, H. Fröb, V. G. Lyssenko, and K. Leo, “Continuously tunable laser emission from a wedge-shaped organic microcavity,” Appl. Phys. Lett.92(16), 163309 (2008).
[CrossRef]

Li, H.

Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang, Y. Wang, and H. L. W. Chan, “Optofluidic microcavities: Dye-lasers and biosensors,” Biomicrofluidics4(4), 043002 (2010).
[CrossRef]

Li, Z.

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett.94(16), 161110 (2009).
[CrossRef]

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid.4(1-2), 145–158 (2008).
[CrossRef]

Lorin, A.

E. Gautier-Thianche, C. Sentein, A. Lorin, C. Denis, P. Raimond, and J. M. Nunzi, “Effect of coumarin on blue light-emitting diodes based on carbazole polymers,” J. Appl. Phys.83(8), 4236 (1998).
[CrossRef]

Lyssenko, V. G.

B. Schütte, H. Gothe, S. I. Hintschich, M. Sudzius, H. Fröb, V. G. Lyssenko, and K. Leo, “Continuously tunable laser emission from a wedge-shaped organic microcavity,” Appl. Phys. Lett.92(16), 163309 (2008).
[CrossRef]

Mappes, T.

T. Wienhold, F. Breithaupt, C. Vannahme, M. B. Christiansen, W. Dörfler, A. Kristensen, and T. Mappes, “Diffusion driven optofluidic dye lasers encapsulated into polymer chips,” Lab Chip12(19), 3734–3739 (2012).
[CrossRef] [PubMed]

McGehee, M. D.

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, and H. Wang, “Low threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett.73(24), 3492–3494 (1998).
[CrossRef]

Menon, A.

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng.13(2), 307–311 (2003).
[CrossRef]

Mercier, N.

X. Zhu, D. Gindre, N. Mercier, P. Frère, and J.-M. Nunzi, “Stimulated emission from a needle-like single crystal of an end-capped fluorene/phenylene co-oligomer,” Adv. Mater.15(11), 906–909 (2003).
[CrossRef]

Möhwald, H.

S. Santhosh Babu, J. Aimi, H. Ozawa, N. Shirahata, A. Saeki, S. Seki, A. Ajayaghosh, H. Möhwald, and T. Nakanishi, “Solvent-free luminescent organic liquids,” Angew. Chem. Int. Ed. Engl.51(14), 3391–3395 (2012).
[CrossRef] [PubMed]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

Müllen, K.

C. Zenz, W. Graupner, S. Tasch, G. Leising, K. Müllen, and U. Scherf, “Blue green stimulated emission from a high gain conjugated polymer,” Appl. Phys. Lett.71(18), 2566 (1997).
[CrossRef]

Muto, T.

J. C. Ribierre, T. Aoyama, T. Muto, and P. André, “Hybrid organic-inorganic liquid bistable memory devices,” Org. Electron.12(11), 1800–1805 (2011).
[CrossRef]

J. C. Ribierre, T. Aoyama, T. Muto, Y. Imase, and T. Wada, “Charge transport properties in liquid carbazole,” Org. Electron.9(3), 396–400 (2008).
[CrossRef]

J. C. Ribierre, T. Aoyama, T. Kobayashi, T. Sassa, T. Muto, and T. Wada, “Influence of the liquid carbazole concentration on charge trapping in C60 sensitized photorefractive polymers,” J. Appl. Phys.102(3), 033106 (2007).
[CrossRef]

Nakanishi, T.

S. Santhosh Babu, J. Aimi, H. Ozawa, N. Shirahata, A. Saeki, S. Seki, A. Ajayaghosh, H. Möhwald, and T. Nakanishi, “Solvent-free luminescent organic liquids,” Angew. Chem. Int. Ed. Engl.51(14), 3391–3395 (2012).
[CrossRef] [PubMed]

Nunzi, J. M.

E. Gautier-Thianche, C. Sentein, A. Lorin, C. Denis, P. Raimond, and J. M. Nunzi, “Effect of coumarin on blue light-emitting diodes based on carbazole polymers,” J. Appl. Phys.83(8), 4236 (1998).
[CrossRef]

Nunzi, J.-M.

X. Zhu, D. Gindre, N. Mercier, P. Frère, and J.-M. Nunzi, “Stimulated emission from a needle-like single crystal of an end-capped fluorene/phenylene co-oligomer,” Adv. Mater.15(11), 906–909 (2003).
[CrossRef]

Oshima, J.

C. H. Shim, S. Hirata, J. Oshima, T. Edura, R. Hattori, and C. Adachi, “Uniform and refreshable liquid electroluminescent device with a back side reservoir,” Appl. Phys. Lett.101(11), 113302 (2012).
[CrossRef]

Ozawa, H.

S. Santhosh Babu, J. Aimi, H. Ozawa, N. Shirahata, A. Saeki, S. Seki, A. Ajayaghosh, H. Möhwald, and T. Nakanishi, “Solvent-free luminescent organic liquids,” Angew. Chem. Int. Ed. Engl.51(14), 3391–3395 (2012).
[CrossRef] [PubMed]

Park, J. Y.

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, and H. Wang, “Low threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett.73(24), 3492–3494 (1998).
[CrossRef]

Parthasarathy, G.

V. G. Kozlov, G. Parthasarathy, P. E. Burrows, S. R. Forrest, Y. You, and M. E. Thompson, “Optically pumped blue organic semiconductor lasers,” Appl. Phys. Lett.72(2), 144 (1998).
[CrossRef]

Péchy, P.

H. J. Snaith, S. M. Zakeeruddin, Q. Wang, P. Péchy, and M. Grätzel, “Dye-sensitized solar cells incorporating a “liquid” hole-transporting material,” Nano Lett.6(9), 2000–2003 (2006).
[CrossRef] [PubMed]

Psaltis, D.

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett.94(16), 161110 (2009).
[CrossRef]

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid.4(1-2), 145–158 (2008).
[CrossRef]

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Rabe, T.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett.85(11), 1886 (2004).
[CrossRef]

Raimond, P.

E. Gautier-Thianche, C. Sentein, A. Lorin, C. Denis, P. Raimond, and J. M. Nunzi, “Effect of coumarin on blue light-emitting diodes based on carbazole polymers,” J. Appl. Phys.83(8), 4236 (1998).
[CrossRef]

Ribierre, J. C.

J. C. Ribierre, T. Aoyama, T. Muto, and P. André, “Hybrid organic-inorganic liquid bistable memory devices,” Org. Electron.12(11), 1800–1805 (2011).
[CrossRef]

A. Ruseckas, J. C. Ribierre, P. E. Shaw, S. V. Staton, P. L. Burn, and I. D. W. Samuel, “Singlet energy transfer and singlet-singlet annihilation in light-emitting blends of organic semiconductors,” Appl. Phys. Lett.95(18), 183305 (2009).
[CrossRef]

J. C. Ribierre, T. Aoyama, T. Muto, Y. Imase, and T. Wada, “Charge transport properties in liquid carbazole,” Org. Electron.9(3), 396–400 (2008).
[CrossRef]

J. C. Ribierre, T. Aoyama, T. Kobayashi, T. Sassa, T. Muto, and T. Wada, “Influence of the liquid carbazole concentration on charge trapping in C60 sensitized photorefractive polymers,” J. Appl. Phys.102(3), 033106 (2007).
[CrossRef]

Riedl, T.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett.85(11), 1886 (2004).
[CrossRef]

Robertson, G. N.

Ruseckas, A.

A. Ruseckas, J. C. Ribierre, P. E. Shaw, S. V. Staton, P. L. Burn, and I. D. W. Samuel, “Singlet energy transfer and singlet-singlet annihilation in light-emitting blends of organic semiconductors,” Appl. Phys. Lett.95(18), 183305 (2009).
[CrossRef]

Saeki, A.

S. Santhosh Babu, J. Aimi, H. Ozawa, N. Shirahata, A. Saeki, S. Seki, A. Ajayaghosh, H. Möhwald, and T. Nakanishi, “Solvent-free luminescent organic liquids,” Angew. Chem. Int. Ed. Engl.51(14), 3391–3395 (2012).
[CrossRef] [PubMed]

Samuel, I. D. W.

A. Ruseckas, J. C. Ribierre, P. E. Shaw, S. V. Staton, P. L. Burn, and I. D. W. Samuel, “Singlet energy transfer and singlet-singlet annihilation in light-emitting blends of organic semiconductors,” Appl. Phys. Lett.95(18), 183305 (2009).
[CrossRef]

A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. W. Samuel, “Fluidic fibre dye lasers,” Opt. Express15(7), 3962–3967 (2007).
[CrossRef] [PubMed]

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, “Efficient energy transfer in organic thin films – implications for organic lasers,” J. Appl. Phys.92(11), 6367–6371 (2002).
[CrossRef]

G. Heliotis, D. D. C. Bradley, G. A. Turnbull, and I. D. W. Samuel, “Light amplification and gain in polyfluorene waveguides,” Appl. Phys. Lett.81(3), 415 (2002).
[CrossRef]

Santhosh Babu, S.

S. Santhosh Babu, J. Aimi, H. Ozawa, N. Shirahata, A. Saeki, S. Seki, A. Ajayaghosh, H. Möhwald, and T. Nakanishi, “Solvent-free luminescent organic liquids,” Angew. Chem. Int. Ed. Engl.51(14), 3391–3395 (2012).
[CrossRef] [PubMed]

Sassa, T.

J. C. Ribierre, T. Aoyama, T. Kobayashi, T. Sassa, T. Muto, and T. Wada, “Influence of the liquid carbazole concentration on charge trapping in C60 sensitized photorefractive polymers,” J. Appl. Phys.102(3), 033106 (2007).
[CrossRef]

Scherf, U.

C. Zenz, W. Graupner, S. Tasch, G. Leising, K. Müllen, and U. Scherf, “Blue green stimulated emission from a high gain conjugated polymer,” Appl. Phys. Lett.71(18), 2566 (1997).
[CrossRef]

Schmidt, H.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics5(10), 598–604 (2011).
[CrossRef]

Schneider, D.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett.85(11), 1886 (2004).
[CrossRef]

Schütte, B.

B. Schütte, H. Gothe, S. I. Hintschich, M. Sudzius, H. Fröb, V. G. Lyssenko, and K. Leo, “Continuously tunable laser emission from a wedge-shaped organic microcavity,” Appl. Phys. Lett.92(16), 163309 (2008).
[CrossRef]

Seki, S.

S. Santhosh Babu, J. Aimi, H. Ozawa, N. Shirahata, A. Saeki, S. Seki, A. Ajayaghosh, H. Möhwald, and T. Nakanishi, “Solvent-free luminescent organic liquids,” Angew. Chem. Int. Ed. Engl.51(14), 3391–3395 (2012).
[CrossRef] [PubMed]

Sentein, C.

E. Gautier-Thianche, C. Sentein, A. Lorin, C. Denis, P. Raimond, and J. M. Nunzi, “Effect of coumarin on blue light-emitting diodes based on carbazole polymers,” J. Appl. Phys.83(8), 4236 (1998).
[CrossRef]

Shaw, P. E.

A. Ruseckas, J. C. Ribierre, P. E. Shaw, S. V. Staton, P. L. Burn, and I. D. W. Samuel, “Singlet energy transfer and singlet-singlet annihilation in light-emitting blends of organic semiconductors,” Appl. Phys. Lett.95(18), 183305 (2009).
[CrossRef]

Sheridan, A. K.

A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, “Efficient energy transfer in organic thin films – implications for organic lasers,” J. Appl. Phys.92(11), 6367–6371 (2002).
[CrossRef]

Shi, J.

Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang, Y. Wang, and H. L. W. Chan, “Optofluidic microcavities: Dye-lasers and biosensors,” Biomicrofluidics4(4), 043002 (2010).
[CrossRef]

Shim, C. H.

C. H. Shim, S. Hirata, J. Oshima, T. Edura, R. Hattori, and C. Adachi, “Uniform and refreshable liquid electroluminescent device with a back side reservoir,” Appl. Phys. Lett.101(11), 113302 (2012).
[CrossRef]

Shirahata, N.

S. Santhosh Babu, J. Aimi, H. Ozawa, N. Shirahata, A. Saeki, S. Seki, A. Ajayaghosh, H. Möhwald, and T. Nakanishi, “Solvent-free luminescent organic liquids,” Angew. Chem. Int. Ed. Engl.51(14), 3391–3395 (2012).
[CrossRef] [PubMed]

Shopova, S. I.

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A.107(37), 16039–16042 (2010).
[CrossRef] [PubMed]

Slusher, R. E.

A. Dodabalapur, M. Berggren, R. E. Slusher, and Z. Bao, “Light amplification in organic thin films using cascade energy transfer,” Nature389(6650), 466–469 (1997).
[CrossRef]

Snaith, H. J.

H. J. Snaith, S. M. Zakeeruddin, Q. Wang, P. Péchy, and M. Grätzel, “Dye-sensitized solar cells incorporating a “liquid” hole-transporting material,” Nano Lett.6(9), 2000–2003 (2006).
[CrossRef] [PubMed]

Song, W.

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett.94(16), 161110 (2009).
[CrossRef]

Srdanov, V.

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, and H. Wang, “Low threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett.73(24), 3492–3494 (1998).
[CrossRef]

Staton, S. V.

A. Ruseckas, J. C. Ribierre, P. E. Shaw, S. V. Staton, P. L. Burn, and I. D. W. Samuel, “Singlet energy transfer and singlet-singlet annihilation in light-emitting blends of organic semiconductors,” Appl. Phys. Lett.95(18), 183305 (2009).
[CrossRef]

Stevenson, M.

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, and H. Wang, “Low threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett.73(24), 3492–3494 (1998).
[CrossRef]

Sudzius, M.

B. Schütte, H. Gothe, S. I. Hintschich, M. Sudzius, H. Fröb, V. G. Lyssenko, and K. Leo, “Continuously tunable laser emission from a wedge-shaped organic microcavity,” Appl. Phys. Lett.92(16), 163309 (2008).
[CrossRef]

Sun, Y.

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A.107(37), 16039–16042 (2010).
[CrossRef] [PubMed]

Tang, S. K. Y.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

Tasch, S.

C. Zenz, W. Graupner, S. Tasch, G. Leising, K. Müllen, and U. Scherf, “Blue green stimulated emission from a high gain conjugated polymer,” Appl. Phys. Lett.71(18), 2566 (1997).
[CrossRef]

Tessler, N.

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated polymer microcavities,” Nature382(6593), 695–697 (1996).
[CrossRef]

Thompson, M. E.

V. G. Kozlov, G. Parthasarathy, P. E. Burrows, S. R. Forrest, Y. You, and M. E. Thompson, “Optically pumped blue organic semiconductor lasers,” Appl. Phys. Lett.72(2), 144 (1998).
[CrossRef]

Town, G. E.

Turnbull, G. A.

A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. W. Samuel, “Fluidic fibre dye lasers,” Opt. Express15(7), 3962–3967 (2007).
[CrossRef] [PubMed]

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

G. Heliotis, D. D. C. Bradley, G. A. Turnbull, and I. D. W. Samuel, “Light amplification and gain in polyfluorene waveguides,” Appl. Phys. Lett.81(3), 415 (2002).
[CrossRef]

Vannahme, C.

T. Wienhold, F. Breithaupt, C. Vannahme, M. B. Christiansen, W. Dörfler, A. Kristensen, and T. Mappes, “Diffusion driven optofluidic dye lasers encapsulated into polymer chips,” Lab Chip12(19), 3734–3739 (2012).
[CrossRef] [PubMed]

Vasdekis, A. E.

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett.94(16), 161110 (2009).
[CrossRef]

A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. W. Samuel, “Fluidic fibre dye lasers,” Opt. Express15(7), 3962–3967 (2007).
[CrossRef] [PubMed]

Wada, T.

J. C. Ribierre, T. Aoyama, T. Muto, Y. Imase, and T. Wada, “Charge transport properties in liquid carbazole,” Org. Electron.9(3), 396–400 (2008).
[CrossRef]

J. C. Ribierre, T. Aoyama, T. Kobayashi, T. Sassa, T. Muto, and T. Wada, “Influence of the liquid carbazole concentration on charge trapping in C60 sensitized photorefractive polymers,” J. Appl. Phys.102(3), 033106 (2007).
[CrossRef]

Wang, H.

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, and H. Wang, “Low threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett.73(24), 3492–3494 (1998).
[CrossRef]

Wang, J.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett.85(11), 1886 (2004).
[CrossRef]

Wang, L.

Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang, Y. Wang, and H. L. W. Chan, “Optofluidic microcavities: Dye-lasers and biosensors,” Biomicrofluidics4(4), 043002 (2010).
[CrossRef]

Wang, Q.

H. J. Snaith, S. M. Zakeeruddin, Q. Wang, P. Péchy, and M. Grätzel, “Dye-sensitized solar cells incorporating a “liquid” hole-transporting material,” Nano Lett.6(9), 2000–2003 (2006).
[CrossRef] [PubMed]

Wang, Y.

Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang, Y. Wang, and H. L. W. Chan, “Optofluidic microcavities: Dye-lasers and biosensors,” Biomicrofluidics4(4), 043002 (2010).
[CrossRef]

Weimann, T.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett.85(11), 1886 (2004).
[CrossRef]

Weitz, D. A.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

Whitesides, G. M.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

Wienhold, T.

T. Wienhold, F. Breithaupt, C. Vannahme, M. B. Christiansen, W. Dörfler, A. Kristensen, and T. Mappes, “Diffusion driven optofluidic dye lasers encapsulated into polymer chips,” Lab Chip12(19), 3734–3739 (2012).
[CrossRef] [PubMed]

Wu, C. S.

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A.107(37), 16039–16042 (2010).
[CrossRef] [PubMed]

Xu, D.

D. Xu and C. Adachi, “Organic light-emitting diode with liquid emitting layer,” Appl. Phys. Lett.95(5), 053304 (2009).
[CrossRef]

Yahiro, M.

S. Hirata, K. Kubota, H. H. Jung, O. Hirata, K. Goushi, M. Yahiro, and C. Adachi, “Improvement of electroluminescence performance of organic light-emitting diodes with a liquid-emitting layer by introduction of electrolyte and a hole-blocking layer,” Adv. Mater.23(7), 889–893 (2011).
[CrossRef] [PubMed]

Yang, C. H.

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

You, Y.

V. G. Kozlov, G. Parthasarathy, P. E. Burrows, S. R. Forrest, Y. You, and M. E. Thompson, “Optically pumped blue organic semiconductor lasers,” Appl. Phys. Lett.72(2), 144 (1998).
[CrossRef]

Zakeeruddin, S. M.

H. J. Snaith, S. M. Zakeeruddin, Q. Wang, P. Péchy, and M. Grätzel, “Dye-sensitized solar cells incorporating a “liquid” hole-transporting material,” Nano Lett.6(9), 2000–2003 (2006).
[CrossRef] [PubMed]

Zenz, C.

C. Zenz, W. Graupner, S. Tasch, G. Leising, K. Müllen, and U. Scherf, “Blue green stimulated emission from a high gain conjugated polymer,” Appl. Phys. Lett.71(18), 2566 (1997).
[CrossRef]

Zhang, K.

Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang, Y. Wang, and H. L. W. Chan, “Optofluidic microcavities: Dye-lasers and biosensors,” Biomicrofluidics4(4), 043002 (2010).
[CrossRef]

Zhang, X. M.

Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang, Y. Wang, and H. L. W. Chan, “Optofluidic microcavities: Dye-lasers and biosensors,” Biomicrofluidics4(4), 043002 (2010).
[CrossRef]

Zhu, X.

X. Zhu, D. Gindre, N. Mercier, P. Frère, and J.-M. Nunzi, “Stimulated emission from a needle-like single crystal of an end-capped fluorene/phenylene co-oligomer,” Adv. Mater.15(11), 906–909 (2003).
[CrossRef]

Adv. Mater. (2)

S. Hirata, K. Kubota, H. H. Jung, O. Hirata, K. Goushi, M. Yahiro, and C. Adachi, “Improvement of electroluminescence performance of organic light-emitting diodes with a liquid-emitting layer by introduction of electrolyte and a hole-blocking layer,” Adv. Mater.23(7), 889–893 (2011).
[CrossRef] [PubMed]

X. Zhu, D. Gindre, N. Mercier, P. Frère, and J.-M. Nunzi, “Stimulated emission from a needle-like single crystal of an end-capped fluorene/phenylene co-oligomer,” Adv. Mater.15(11), 906–909 (2003).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

S. Santhosh Babu, J. Aimi, H. Ozawa, N. Shirahata, A. Saeki, S. Seki, A. Ajayaghosh, H. Möhwald, and T. Nakanishi, “Solvent-free luminescent organic liquids,” Angew. Chem. Int. Ed. Engl.51(14), 3391–3395 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (10)

C. H. Shim, S. Hirata, J. Oshima, T. Edura, R. Hattori, and C. Adachi, “Uniform and refreshable liquid electroluminescent device with a back side reservoir,” Appl. Phys. Lett.101(11), 113302 (2012).
[CrossRef]

D. Xu and C. Adachi, “Organic light-emitting diode with liquid emitting layer,” Appl. Phys. Lett.95(5), 053304 (2009).
[CrossRef]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett.94(16), 161110 (2009).
[CrossRef]

B. Schütte, H. Gothe, S. I. Hintschich, M. Sudzius, H. Fröb, V. G. Lyssenko, and K. Leo, “Continuously tunable laser emission from a wedge-shaped organic microcavity,” Appl. Phys. Lett.92(16), 163309 (2008).
[CrossRef]

V. G. Kozlov, G. Parthasarathy, P. E. Burrows, S. R. Forrest, Y. You, and M. E. Thompson, “Optically pumped blue organic semiconductor lasers,” Appl. Phys. Lett.72(2), 144 (1998).
[CrossRef]

G. Heliotis, D. D. C. Bradley, G. A. Turnbull, and I. D. W. Samuel, “Light amplification and gain in polyfluorene waveguides,” Appl. Phys. Lett.81(3), 415 (2002).
[CrossRef]

C. Zenz, W. Graupner, S. Tasch, G. Leising, K. Müllen, and U. Scherf, “Blue green stimulated emission from a high gain conjugated polymer,” Appl. Phys. Lett.71(18), 2566 (1997).
[CrossRef]

R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, and H. Wang, “Low threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett.73(24), 3492–3494 (1998).
[CrossRef]

A. Ruseckas, J. C. Ribierre, P. E. Shaw, S. V. Staton, P. L. Burn, and I. D. W. Samuel, “Singlet energy transfer and singlet-singlet annihilation in light-emitting blends of organic semiconductors,” Appl. Phys. Lett.95(18), 183305 (2009).
[CrossRef]

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett.85(11), 1886 (2004).
[CrossRef]

Biomicrofluidics (1)

Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang, Y. Wang, and H. L. W. Chan, “Optofluidic microcavities: Dye-lasers and biosensors,” Biomicrofluidics4(4), 043002 (2010).
[CrossRef]

Chem. Rev. (1)

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

Discuss. Faraday Soc. (1)

T. Förster, “Transfer mechanisms of electronic excitation,” Discuss. Faraday Soc.27, 7 (1959).
[CrossRef]

Electron. Lett. (1)

T. Kobayashi and W. J. Blau, “Laser emission from conjugated polymer in fiber waveguide structure,” Electron. Lett.38(2), 67–68 (2002).
[CrossRef]

J. Appl. Phys. (3)

E. Gautier-Thianche, C. Sentein, A. Lorin, C. Denis, P. Raimond, and J. M. Nunzi, “Effect of coumarin on blue light-emitting diodes based on carbazole polymers,” J. Appl. Phys.83(8), 4236 (1998).
[CrossRef]

A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, “Efficient energy transfer in organic thin films – implications for organic lasers,” J. Appl. Phys.92(11), 6367–6371 (2002).
[CrossRef]

J. C. Ribierre, T. Aoyama, T. Kobayashi, T. Sassa, T. Muto, and T. Wada, “Influence of the liquid carbazole concentration on charge trapping in C60 sensitized photorefractive polymers,” J. Appl. Phys.102(3), 033106 (2007).
[CrossRef]

J. Micromech. Microeng. (1)

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng.13(2), 307–311 (2003).
[CrossRef]

J. Phys. Chem. Lett. (1)

B. A. Kamino, T. P. Bender, and R. A. Klenkler, “Hole mobility of a liquid organic semiconductor,” J. Phys. Chem. Lett.3(8), 1002–1006 (2012).
[CrossRef]

Lab Chip (2)

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

T. Wienhold, F. Breithaupt, C. Vannahme, M. B. Christiansen, W. Dörfler, A. Kristensen, and T. Mappes, “Diffusion driven optofluidic dye lasers encapsulated into polymer chips,” Lab Chip12(19), 3734–3739 (2012).
[CrossRef] [PubMed]

Microfluid. Nanofluid. (1)

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid.4(1-2), 145–158 (2008).
[CrossRef]

Nano Lett. (1)

H. J. Snaith, S. M. Zakeeruddin, Q. Wang, P. Péchy, and M. Grätzel, “Dye-sensitized solar cells incorporating a “liquid” hole-transporting material,” Nano Lett.6(9), 2000–2003 (2006).
[CrossRef] [PubMed]

Nat. Photonics (2)

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics5(10), 598–604 (2011).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

Nature (3)

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated polymer microcavities,” Nature382(6593), 695–697 (1996).
[CrossRef]

A. Dodabalapur, M. Berggren, R. E. Slusher, and Z. Bao, “Light amplification in organic thin films using cascade energy transfer,” Nature389(6650), 466–469 (1997).
[CrossRef]

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Org. Electron. (2)

J. C. Ribierre, T. Aoyama, T. Muto, and P. André, “Hybrid organic-inorganic liquid bistable memory devices,” Org. Electron.12(11), 1800–1805 (2011).
[CrossRef]

J. C. Ribierre, T. Aoyama, T. Muto, Y. Imase, and T. Wada, “Charge transport properties in liquid carbazole,” Org. Electron.9(3), 396–400 (2008).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A.107(37), 16039–16042 (2010).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Chemical structure of liquid carbazole (EHCz), coumarin 153 (C153) and DCM. (b) Photographs of waveguiding capillary tubes filled with (1) EHCz:C153:DCM (95; 3.1; 1.9 wt.%), (2) EHCz:DCM (97.5:2.5 wt.%) and (3) EHCz:C153 (96.5: 3.5 wt.%). (c) Photograph of interference fringes observed on a screen from a Fabry-Perot type microcavity solvent-free liquid organic green dye laser filled with EHCz:C153 (96.5; 3.5 wt.%). The device was optically pumped at 355 nm by the third harmonic of a nanosecond Nd:YAG laser.

Fig. 2
Fig. 2

(a) Normalized absorbance and photoluminescence spectra of the liquid host material and the laser dyes. The spectra from EHCz are measured from a solvent-free neat layer whereas the other spectra are from solutions in chloroform. Note that the spectra measured in C153 and DCM are vertically shifted for clarity reasons. (b) Photoluminescence spectra measured in solvent-free liquid carbazole blends. The excitation wavelength was 350 nm.

Fig. 3
Fig. 3

Emission spectra measured in single core waveguiding capillary tubes filled with liquid carbazole blends at different pumping intensities. The excitation wavelength was 355 nm. The three blends used in these measurements are: (a) EHCz:C153 (96.5: 3.5 wt.%), (b) EHCz:DCM (97.5: 2.5 wt.%) and (c)) EHCz:C153:DCM (95: 3.1: 1.9 wt.%). (d) Output intensity and full width at half maximum (FWHM) of the ASE spectra as a function of the input fluence in waveguiding devices filled with EHCz:C153:DCM (95: 3.1: 1.9 wt.%).

Fig. 4
Fig. 4

(a) Schematic representation of a Fabry-Perot type microcavity solvent-free fluidic organic dye laser. (b) An example of transmission spectrum measured in a microcavity filled with EHCz:C153 (96.8:3.2 wt.%) using unpolarized white light at normal incidence. For this sample, four cavity modes were clearly observed at 533, 548, 564 and 580 nm.

Fig. 5
Fig. 5

(a) Laser emission spectra from Fabry-Perot type solvent-free liquid organic microcavities based on EHCz:C153 (96.8:3.2 wt.%) and EHCz:C153:DCM (95:3.1:1.9 wt.%). (b) Temporal decay of the laser emission intensity from the EHCz:C153 microcavity for pulse repetition rate of 10 Hz and a pumping energy density of about 0.13 mJ/cm2. The solid line corresponds to a fit by a single exponential decay function. (c) Output intensity as a function of the input energy density showing a laser emission with a lasing threshold for wavelengths of 512 and 526 nm from the EHCz:C153 microcavity laser.

Metrics