Abstract

A plasmonic heterograting device, consisting of two juxtaposed parallel gratings with different periods, is demonstrated to function as a compact bandwidth-tunable polarization filter. The essential aspect of the structure is that the grating couples into a photonic mode of the substrate. Using this device, a linearly polarized spectrum can be conveniently and selectively picked out from nonpolarized white light. The bandwidth depends on the incident angle and the overlap of the first-order diffraction spectra of the two different grating, and can be freely narrowed. The tuning characteristics of the heterograting are investigated both theoretically and experimentally. The unique physical features potentially enable the development of new polarization elements and optical devices.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett.97(7), 073901 (2006).
    [CrossRef] [PubMed]
  2. C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett.91(11), 111111 (2007).
    [CrossRef]
  3. F. Romanato, K. Lee, G. Ruffato, and C. Wong, “The role of polarization on surface plasmon polariton excitation on metallic gratings in the conical mounting,” Appl. Phys. Lett.96(11), 111103 (2010).
    [CrossRef]
  4. T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett.106(13), 133901 (2011).
    [CrossRef] [PubMed]
  5. K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, and H. Ming, “Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity,” Opt. Express16(23), 18599–18604 (2008).
    [CrossRef] [PubMed]
  6. X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater.21(22), 4219–4227 (2011).
    [CrossRef]
  7. X. Zhang, H. Liu, J. Tian, Y. Song, and L. Wang, “Band-selective optical polarizer based on gold-nanowire plasmonic diffraction gratings,” Nano Lett.8(9), 2653–2658 (2008).
    [CrossRef] [PubMed]
  8. X. Zhang, H. Liu, J. Tian, Y. Song, L. Wang, J. Song, and G. Zhang, “Optical polarizers based on gold nanowires fabricated using colloidal gold nanoparticles,” Nanotechnology19(28), 285202 (2008).
    [CrossRef] [PubMed]
  9. C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett.33(8), 869–871 (2008).
    [CrossRef] [PubMed]
  10. X. Zhang, B. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater.20(23), 4455–4459 (2008).
    [CrossRef]
  11. H. Caglayan and E. Ozbay, “Surface wave splitter based on metallic gratings with sub-wavelength aperture,” Opt. Express16(23), 19091–19096 (2008).
    [CrossRef] [PubMed]
  12. H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express15(23), 15457–15463 (2007).
    [CrossRef] [PubMed]
  13. X. Zhang, S. Feng, and T. Zhai, “Energy transfer channels at the diffraction-anomaly in transparent gratings and applications in sensors,” Photonics Nanostruct. Fundam. Appl.11(2), 109–114 (2013).
    [CrossRef]
  14. X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
    [CrossRef] [PubMed]
  15. V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys.82(1), 60–64 (1997).
    [CrossRef]
  16. M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray, “Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size,” Langmuir14(1), 17–30 (1998).
    [CrossRef]

2013

X. Zhang, S. Feng, and T. Zhai, “Energy transfer channels at the diffraction-anomaly in transparent gratings and applications in sensors,” Photonics Nanostruct. Fundam. Appl.11(2), 109–114 (2013).
[CrossRef]

2011

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett.106(13), 133901 (2011).
[CrossRef] [PubMed]

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater.21(22), 4219–4227 (2011).
[CrossRef]

2010

F. Romanato, K. Lee, G. Ruffato, and C. Wong, “The role of polarization on surface plasmon polariton excitation on metallic gratings in the conical mounting,” Appl. Phys. Lett.96(11), 111103 (2010).
[CrossRef]

2008

X. Zhang, H. Liu, J. Tian, Y. Song, and L. Wang, “Band-selective optical polarizer based on gold-nanowire plasmonic diffraction gratings,” Nano Lett.8(9), 2653–2658 (2008).
[CrossRef] [PubMed]

X. Zhang, H. Liu, J. Tian, Y. Song, L. Wang, J. Song, and G. Zhang, “Optical polarizers based on gold nanowires fabricated using colloidal gold nanoparticles,” Nanotechnology19(28), 285202 (2008).
[CrossRef] [PubMed]

C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett.33(8), 869–871 (2008).
[CrossRef] [PubMed]

X. Zhang, B. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater.20(23), 4455–4459 (2008).
[CrossRef]

H. Caglayan and E. Ozbay, “Surface wave splitter based on metallic gratings with sub-wavelength aperture,” Opt. Express16(23), 19091–19096 (2008).
[CrossRef] [PubMed]

K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, and H. Ming, “Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity,” Opt. Express16(23), 18599–18604 (2008).
[CrossRef] [PubMed]

2007

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett.91(11), 111111 (2007).
[CrossRef]

H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express15(23), 15457–15463 (2007).
[CrossRef] [PubMed]

2006

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett.97(7), 073901 (2006).
[CrossRef] [PubMed]

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
[CrossRef] [PubMed]

1998

M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray, “Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size,” Langmuir14(1), 17–30 (1998).
[CrossRef]

1997

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys.82(1), 60–64 (1997).
[CrossRef]

Berger, V.

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys.82(1), 60–64 (1997).
[CrossRef]

Caglayan, H.

Chan, C. T.

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett.97(7), 073901 (2006).
[CrossRef] [PubMed]

Chen, C.

Chen, J.

K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, and H. Ming, “Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity,” Opt. Express16(23), 18599–18604 (2008).
[CrossRef] [PubMed]

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett.91(11), 111111 (2007).
[CrossRef]

Cheng, C.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett.91(11), 111111 (2007).
[CrossRef]

Clark, M. R.

M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray, “Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size,” Langmuir14(1), 17–30 (1998).
[CrossRef]

Costard, E.

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys.82(1), 60–64 (1997).
[CrossRef]

Deng, Y.

Dou, F.

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater.21(22), 4219–4227 (2011).
[CrossRef]

Evans, N. D.

M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray, “Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size,” Langmuir14(1), 17–30 (1998).
[CrossRef]

Fan, X.

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett.97(7), 073901 (2006).
[CrossRef] [PubMed]

Fan, Y. X.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett.91(11), 111111 (2007).
[CrossRef]

Feng, S.

X. Zhang, S. Feng, and T. Zhai, “Energy transfer channels at the diffraction-anomaly in transparent gratings and applications in sensors,” Photonics Nanostruct. Fundam. Appl.11(2), 109–114 (2013).
[CrossRef]

Friend, R. H.

X. Zhang, B. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater.20(23), 4455–4459 (2008).
[CrossRef]

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
[CrossRef] [PubMed]

Gauthier-Lafaye, O.

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys.82(1), 60–64 (1997).
[CrossRef]

Giessen, H.

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett.106(13), 133901 (2011).
[CrossRef] [PubMed]

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
[CrossRef] [PubMed]

Glish, G. L.

M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray, “Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size,” Langmuir14(1), 17–30 (1998).
[CrossRef]

Green, S. J.

M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray, “Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size,” Langmuir14(1), 17–30 (1998).
[CrossRef]

Guo, H.

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
[CrossRef] [PubMed]

Harris, J. E.

M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray, “Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size,” Langmuir14(1), 17–30 (1998).
[CrossRef]

Hodgkiss, J. M.

X. Zhang, B. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater.20(23), 4455–4459 (2008).
[CrossRef]

Hostetler, M. J.

M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray, “Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size,” Langmuir14(1), 17–30 (1998).
[CrossRef]

Kim, S. H.

Lederer, F.

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett.106(13), 133901 (2011).
[CrossRef] [PubMed]

Lee, H. S.

Lee, J. C. W.

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett.97(7), 073901 (2006).
[CrossRef] [PubMed]

Lee, K.

F. Romanato, K. Lee, G. Ruffato, and C. Wong, “The role of polarization on surface plasmon polariton excitation on metallic gratings in the conical mounting,” Appl. Phys. Lett.96(11), 111103 (2010).
[CrossRef]

Lee, K. D.

Lee, S. S.

Lin, K.

Lippitz, M.

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett.106(13), 133901 (2011).
[CrossRef] [PubMed]

Liu, H.

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater.21(22), 4219–4227 (2011).
[CrossRef]

X. Zhang, H. Liu, J. Tian, Y. Song, and L. Wang, “Band-selective optical polarizer based on gold-nanowire plasmonic diffraction gratings,” Nano Lett.8(9), 2653–2658 (2008).
[CrossRef] [PubMed]

X. Zhang, H. Liu, J. Tian, Y. Song, L. Wang, J. Song, and G. Zhang, “Optical polarizers based on gold nanowires fabricated using colloidal gold nanoparticles,” Nanotechnology19(28), 285202 (2008).
[CrossRef] [PubMed]

Londono, J. D.

M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray, “Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size,” Langmuir14(1), 17–30 (1998).
[CrossRef]

Lu, Y.

Ma, X.

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater.21(22), 4219–4227 (2011).
[CrossRef]

Min, C.

Ming, H.

Murray, R. W.

M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray, “Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size,” Langmuir14(1), 17–30 (1998).
[CrossRef]

Nau, D.

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
[CrossRef] [PubMed]

Ning, T.

Ozbay, E.

Paul, T.

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett.106(13), 133901 (2011).
[CrossRef] [PubMed]

Porter, M. D.

M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray, “Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size,” Langmuir14(1), 17–30 (1998).
[CrossRef]

Ren, F. F.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett.91(11), 111111 (2007).
[CrossRef]

Rockstuhl, C.

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett.106(13), 133901 (2011).
[CrossRef] [PubMed]

Romanato, F.

F. Romanato, K. Lee, G. Ruffato, and C. Wong, “The role of polarization on surface plasmon polariton excitation on metallic gratings in the conical mounting,” Appl. Phys. Lett.96(11), 111103 (2010).
[CrossRef]

Ruffato, G.

F. Romanato, K. Lee, G. Ruffato, and C. Wong, “The role of polarization on surface plasmon polariton excitation on metallic gratings in the conical mounting,” Appl. Phys. Lett.96(11), 111103 (2010).
[CrossRef]

Song, J.

X. Zhang, H. Liu, J. Tian, Y. Song, L. Wang, J. Song, and G. Zhang, “Optical polarizers based on gold nanowires fabricated using colloidal gold nanoparticles,” Nanotechnology19(28), 285202 (2008).
[CrossRef] [PubMed]

Song, Y.

X. Zhang, H. Liu, J. Tian, Y. Song, L. Wang, J. Song, and G. Zhang, “Optical polarizers based on gold nanowires fabricated using colloidal gold nanoparticles,” Nanotechnology19(28), 285202 (2008).
[CrossRef] [PubMed]

X. Zhang, H. Liu, J. Tian, Y. Song, and L. Wang, “Band-selective optical polarizer based on gold-nanowire plasmonic diffraction gratings,” Nano Lett.8(9), 2653–2658 (2008).
[CrossRef] [PubMed]

Stokes, J. J.

M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray, “Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size,” Langmuir14(1), 17–30 (1998).
[CrossRef]

Sun, B.

X. Zhang, B. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater.20(23), 4455–4459 (2008).
[CrossRef]

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
[CrossRef] [PubMed]

Tian, J.

X. Zhang, H. Liu, J. Tian, Y. Song, and L. Wang, “Band-selective optical polarizer based on gold-nanowire plasmonic diffraction gratings,” Nano Lett.8(9), 2653–2658 (2008).
[CrossRef] [PubMed]

X. Zhang, H. Liu, J. Tian, Y. Song, L. Wang, J. Song, and G. Zhang, “Optical polarizers based on gold nanowires fabricated using colloidal gold nanoparticles,” Nanotechnology19(28), 285202 (2008).
[CrossRef] [PubMed]

Utikal, T.

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett.106(13), 133901 (2011).
[CrossRef] [PubMed]

Vachet, R. W.

M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray, “Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size,” Langmuir14(1), 17–30 (1998).
[CrossRef]

Wang, G. P.

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett.97(7), 073901 (2006).
[CrossRef] [PubMed]

Wang, H. T.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett.91(11), 111111 (2007).
[CrossRef]

Wang, L.

X. Zhang, H. Liu, J. Tian, Y. Song, L. Wang, J. Song, and G. Zhang, “Optical polarizers based on gold nanowires fabricated using colloidal gold nanoparticles,” Nanotechnology19(28), 285202 (2008).
[CrossRef] [PubMed]

X. Zhang, H. Liu, J. Tian, Y. Song, and L. Wang, “Band-selective optical polarizer based on gold-nanowire plasmonic diffraction gratings,” Nano Lett.8(9), 2653–2658 (2008).
[CrossRef] [PubMed]

Wang, P.

Wignall, G. D.

M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray, “Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size,” Langmuir14(1), 17–30 (1998).
[CrossRef]

Wingate, J. E.

M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray, “Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size,” Langmuir14(1), 17–30 (1998).
[CrossRef]

Wong, C.

F. Romanato, K. Lee, G. Ruffato, and C. Wong, “The role of polarization on surface plasmon polariton excitation on metallic gratings in the conical mounting,” Appl. Phys. Lett.96(11), 111103 (2010).
[CrossRef]

Wu, Q. Y.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett.91(11), 111111 (2007).
[CrossRef]

Xu, J.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett.91(11), 111111 (2007).
[CrossRef]

Yang, G.

Yoon, Y. T.

Zentgraf, T.

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett.106(13), 133901 (2011).
[CrossRef] [PubMed]

Zhai, T.

X. Zhang, S. Feng, and T. Zhai, “Energy transfer channels at the diffraction-anomaly in transparent gratings and applications in sensors,” Photonics Nanostruct. Fundam. Appl.11(2), 109–114 (2013).
[CrossRef]

Zhang, G.

X. Zhang, H. Liu, J. Tian, Y. Song, L. Wang, J. Song, and G. Zhang, “Optical polarizers based on gold nanowires fabricated using colloidal gold nanoparticles,” Nanotechnology19(28), 285202 (2008).
[CrossRef] [PubMed]

Zhang, X.

X. Zhang, S. Feng, and T. Zhai, “Energy transfer channels at the diffraction-anomaly in transparent gratings and applications in sensors,” Photonics Nanostruct. Fundam. Appl.11(2), 109–114 (2013).
[CrossRef]

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater.21(22), 4219–4227 (2011).
[CrossRef]

X. Zhang, H. Liu, J. Tian, Y. Song, and L. Wang, “Band-selective optical polarizer based on gold-nanowire plasmonic diffraction gratings,” Nano Lett.8(9), 2653–2658 (2008).
[CrossRef] [PubMed]

X. Zhang, B. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater.20(23), 4455–4459 (2008).
[CrossRef]

X. Zhang, H. Liu, J. Tian, Y. Song, L. Wang, J. Song, and G. Zhang, “Optical polarizers based on gold nanowires fabricated using colloidal gold nanoparticles,” Nanotechnology19(28), 285202 (2008).
[CrossRef] [PubMed]

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
[CrossRef] [PubMed]

Zhao, P.

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater.21(22), 4219–4227 (2011).
[CrossRef]

Zheng, R.

Zhong, C. J.

M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray, “Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size,” Langmuir14(1), 17–30 (1998).
[CrossRef]

Zhou, Y.

Adv. Funct. Mater.

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater.21(22), 4219–4227 (2011).
[CrossRef]

Adv. Mater.

X. Zhang, B. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater.20(23), 4455–4459 (2008).
[CrossRef]

Appl. Phys. Lett.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett.91(11), 111111 (2007).
[CrossRef]

F. Romanato, K. Lee, G. Ruffato, and C. Wong, “The role of polarization on surface plasmon polariton excitation on metallic gratings in the conical mounting,” Appl. Phys. Lett.96(11), 111103 (2010).
[CrossRef]

J. Appl. Phys.

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys.82(1), 60–64 (1997).
[CrossRef]

Langmuir

M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray, “Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size,” Langmuir14(1), 17–30 (1998).
[CrossRef]

Nano Lett.

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
[CrossRef] [PubMed]

X. Zhang, H. Liu, J. Tian, Y. Song, and L. Wang, “Band-selective optical polarizer based on gold-nanowire plasmonic diffraction gratings,” Nano Lett.8(9), 2653–2658 (2008).
[CrossRef] [PubMed]

Nanotechnology

X. Zhang, H. Liu, J. Tian, Y. Song, L. Wang, J. Song, and G. Zhang, “Optical polarizers based on gold nanowires fabricated using colloidal gold nanoparticles,” Nanotechnology19(28), 285202 (2008).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Photonics Nanostruct. Fundam. Appl.

X. Zhang, S. Feng, and T. Zhai, “Energy transfer channels at the diffraction-anomaly in transparent gratings and applications in sensors,” Photonics Nanostruct. Fundam. Appl.11(2), 109–114 (2013).
[CrossRef]

Phys. Rev. Lett.

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett.97(7), 073901 (2006).
[CrossRef] [PubMed]

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett.106(13), 133901 (2011).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the fabrication procedure of the plasmonic heterograting device. (a) One half of the PR film is exposed to a two-beam interference pattern with an included angle α1, forming a grating with period Λ1, and (b) the other half is exposed with a different angle α2, forming a grating (Λ2). A baffle is used to shield the appropriate half of the film from unnecessary exposure as shown in the inset. (c) The solution of the colloidal gold nanoparticles (100 mg/ml) is spin-coated onto the PR heterograting. (d) The plasmonic heterograting is formed by annealing. The grating ridge width is w; thicknesses of grating, ITO, and glass substrate are h, d1, and d2, respectively.

Fig. 2
Fig. 2

(a) Photograph identifying the two period-differing halves of the plasmonic heterograting device. Scale bar, 20 mm. (b) SEM image of the interface of the plasmonic heterograting marked by a square in (a). Scale bar, 1 μm. Λ1 = 420 nm; Λ2 = 480 nm.

Fig. 3
Fig. 3

(a) Schematic of the principles of the plasmonic heterograting as a polarization filter. ③ and ④ identify reflected (R) and secondarily diffracted beams, respectively. θ1 and θ2 are the respective angles of incidence and diffraction. T identifies the transmitted beam. (b) Light-propagation tailoring by a plasmonic heterograting. ⑤ and ⑥ identify the secondarily diffracted beam of the heterograting around the interface. θ3 and θ4 are the respective diffraction angles for the first and second time. (c) Spots from the incident (①) and secondary-diffracted (②) beams from the device, and the reflected (③) and secondary-diffracted (④) beams impinging on a sheet of white paper. (d) Similar spots from two secondary-diffracted beams (⑤, ⑥) of the plasmonic heterograting. Λ1 = 420 nm; Λ2 = 480 nm. The blue dots and arrows in (a) and (b) indicate the direction of polarization of the light. The green arrows indicate the light propagation direction.

Fig. 4
Fig. 4

The tunable spectral response of the plasmonic heterograting at different incidence angles from (a) theory and (c) experiment. (Here, Λ1 = 420 nm, Λ2 = 540 nm, and Λ21≈1.29.) The spectral response at different period ratios from (b) theory and (d) experiment. The incidence angle θ1 is 10°. The grey zones indicate the bandwidth of the device; the blue/red hashed zone denotes the diffraction bandwidth of the grating with a period of Λ12. The colors and spectral positions of the double-arrows in (a)/(b) correspond directly to the spectra in (c)/(d). The panels above (a) and (b) show the rotation axis and the measuring setup, respectively. F denotes the fiber optic spectrometer, L denotes the lens, B is the baffle, S is the sample, and R is the rotating stage.

Fig. 5
Fig. 5

(a) The standard bandwidth of the heterograting as a function of the incidence angle and the period ratio calculated by Eqs. (1) and (3). The color bar represents the value of the standard bandwidth (Δλ1). The horizontal/vertical white line indicates the case shown in Fig. 4(a)/(b).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Λsinθ+nΛ=λ
Δλ= λ 2 λ 1 =( n s 1 ) Λ 1
Δλ=min( λ 2 , λ 4 )max( λ 1 , λ 3 ),

Metrics