Abstract

A significant challenge in the development of chip-scale cavity-optomechanical devices as testbeds for quantum experiments and classical metrology lies in the coupling of light from nanoscale optical mode volumes to conventional optical components such as lenses and fibers. In this work we demonstrate a high-efficiency, single-sided fiber-optic coupling platform for optomechanical cavities. By utilizing an adiabatic waveguide taper to transform a single optical mode between a photonic crystal zipper cavity and a permanently mounted fiber, we achieve a collection efficiency for intracavity photons of 52% at the cavity resonance wavelength of λ ≈ 1538 nm. An optical balanced homodyne measurement of the displacement fluctuations of the fundamental in-plane mechanical resonance at 3.3 MHz reveals that the imprecision noise floor lies a factor of 2.8 above the standard quantum limit (SQL) for continuous position measurement, with a predicted total added noise of 1.4 phonons at the optimal probe power. The combination of extremely low measurement noise and robust fiber alignment presents significant progress towards single-phonon sensitivity for these sorts of integrated micro-optomechanical cavities.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462, 78–82 (2009).
    [CrossRef] [PubMed]
  2. J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Siroi, J. Whittaker, K. Lehnert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature475, 359–363 (2011).
    [CrossRef] [PubMed]
  3. J. Chan, T. Mayer-Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478, 89–92 (2011).
    [CrossRef] [PubMed]
  4. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. J. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009).
    [CrossRef] [PubMed]
  5. A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, “Introduction to quantum noise, measurement and amplification,” Rev. Mod. Phys.82, 1155–1208 (2010).
    [CrossRef]
  6. J. Teufel, T. Donner, M. Castellanos-Beltran, J. Harlow, and K. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nature Nanotech.4, 820–823 (2009).
    [CrossRef]
  7. G. Anetsberger, E. Gavartin, O. Arcizet, Q. Unterreithmeier, E. Weig, M. Gorodetsky, J. Kotthaus, and T. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A82, 061804 (2010).
    [CrossRef]
  8. R. Rivière, S. Deléglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, and T. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A83, 063835 (2011).
    [CrossRef]
  9. S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nature Phys.5, 485–488 (2009).
    [CrossRef]
  10. C. Michael, M. Borselli, T. Johnson, C. Chrystal, and O. Painter, “An optical fiber-taper probe for wafer-scale microphotonic device characterization,” Opt. Express15, 4745–4752 (2007).
    [CrossRef] [PubMed]
  11. S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
    [CrossRef] [PubMed]
  12. O. Mitomi, K. Kasaya, and H. Miyazawa, “Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling,” IEEE J. Quantum Electron.30, 1787–1793 (1994).
    [CrossRef]
  13. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett.28, 1302–1304 (2003).
    [CrossRef] [PubMed]
  14. S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguids,” Opt. Express11, 2927–2939 (2003).
    [CrossRef] [PubMed]
  15. L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett.22, 1744–1746 (2010).
    [CrossRef]
  16. COMSOL Multiphysics http://www.comsol.com/ .
  17. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, 1983).
  18. Lumerical Solutions Inc., http://www.lumerical.com/tcad-products/fdtd/ .
  19. Potentially, the use of a lensed or small-mode-field-diameter fiber could allow for a larger initial waveguide width, correspondingly shorter tapering region, and the ability to eliminate the support tether. However such an approach would be less robust to slight fiber misalignments arising from fabrication variability of the V-groove size on the order of 100 – 200 nm. These misalignments are small relative to the 10 μm mode diameter used in the reported device, but would cause substantial mode-mismatch in any scheme with a short waveguide taper. The optimal mode-matching of the junction would also likely be diminished, as increased mode confinement in the waveguide tip would render the profile less circularly symmetric.
  20. Q. Lin, J. Rosenberg, X. Jiang, K. Vahala, and O. Painter, “Mechanical Oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett.103, 10360 (2009).
    [CrossRef]
  21. While in principle both intensity and phase noise of the laser can contribute to the heating of the mechanical mode, for an optically resonant measurement of position in the sideband unresolved regime the phase noise does not contribute to backaction and only intensity noise affects the mechanics. In this regime the phase noise adds a small component to the imprecision noise floor. Measurements of the phase and intensity noise of our laser reveal no excess intensity noise and a flat frequency NPSD of Sωω= 5 × 103rad2Hz in the frequency range of interest. Consequently, for the probe powers used in this work, the excess back-action due to technical laser noise is negligible, and the phase noise contribution to the noise floor lies roughly 60 dB below the shot noise.
  22. P. Rabl, C. Genes, K. Hammerer, and M. Aspelmeyer, “Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems,” Phys. Rev. A80, 063819 (2009).
    [CrossRef]
  23. A. H. Safavi-Naeini, J. Chan, J. T. Hill, S. Gröblacher, H. Miao, Y. Chen, M. Aspelmeyer, and O. Painter, “Laser noise in cavity-optomechanical cooling and thermometry,” New J. Phys.15, 035007 (2013).
    [CrossRef]
  24. A. M. Jayich, J. C. Sankey, K. Bjorke, D. Lee, C. Yang, M. Underwood, L. Childress, A. Petrenko, S. M. Girvin, and J. G. E. Harris, “Cryogenic optomechanics with a Si3N4 membrane and classical laser noise,” New J. Phys.14, 115018 (2012).
    [CrossRef]
  25. T. P. Purdy, R. W. Peterson, and C. A. Regal, “Observation of radiation pressure shot noise on a macroscopic object,” Science339, 801–804 (2013).
    [CrossRef] [PubMed]
  26. C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A77, 033804 (2008).
    [CrossRef]
  27. K. D. Bouwmeester and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature444, 75–78 (2006).
    [CrossRef] [PubMed]

2013 (2)

A. H. Safavi-Naeini, J. Chan, J. T. Hill, S. Gröblacher, H. Miao, Y. Chen, M. Aspelmeyer, and O. Painter, “Laser noise in cavity-optomechanical cooling and thermometry,” New J. Phys.15, 035007 (2013).
[CrossRef]

T. P. Purdy, R. W. Peterson, and C. A. Regal, “Observation of radiation pressure shot noise on a macroscopic object,” Science339, 801–804 (2013).
[CrossRef] [PubMed]

2012 (1)

A. M. Jayich, J. C. Sankey, K. Bjorke, D. Lee, C. Yang, M. Underwood, L. Childress, A. Petrenko, S. M. Girvin, and J. G. E. Harris, “Cryogenic optomechanics with a Si3N4 membrane and classical laser noise,” New J. Phys.14, 115018 (2012).
[CrossRef]

2011 (3)

J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Siroi, J. Whittaker, K. Lehnert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature475, 359–363 (2011).
[CrossRef] [PubMed]

J. Chan, T. Mayer-Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478, 89–92 (2011).
[CrossRef] [PubMed]

R. Rivière, S. Deléglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, and T. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A83, 063835 (2011).
[CrossRef]

2010 (3)

G. Anetsberger, E. Gavartin, O. Arcizet, Q. Unterreithmeier, E. Weig, M. Gorodetsky, J. Kotthaus, and T. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A82, 061804 (2010).
[CrossRef]

A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, “Introduction to quantum noise, measurement and amplification,” Rev. Mod. Phys.82, 1155–1208 (2010).
[CrossRef]

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett.22, 1744–1746 (2010).
[CrossRef]

2009 (6)

Q. Lin, J. Rosenberg, X. Jiang, K. Vahala, and O. Painter, “Mechanical Oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett.103, 10360 (2009).
[CrossRef]

P. Rabl, C. Genes, K. Hammerer, and M. Aspelmeyer, “Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems,” Phys. Rev. A80, 063819 (2009).
[CrossRef]

J. Teufel, T. Donner, M. Castellanos-Beltran, J. Harlow, and K. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nature Nanotech.4, 820–823 (2009).
[CrossRef]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. J. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009).
[CrossRef] [PubMed]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462, 78–82 (2009).
[CrossRef] [PubMed]

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nature Phys.5, 485–488 (2009).
[CrossRef]

2008 (1)

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A77, 033804 (2008).
[CrossRef]

2007 (1)

2006 (1)

K. D. Bouwmeester and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature444, 75–78 (2006).
[CrossRef] [PubMed]

2003 (3)

1994 (1)

O. Mitomi, K. Kasaya, and H. Miyazawa, “Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling,” IEEE J. Quantum Electron.30, 1787–1793 (1994).
[CrossRef]

Allman, M.

J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Siroi, J. Whittaker, K. Lehnert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature475, 359–363 (2011).
[CrossRef] [PubMed]

Almeida, V. R.

Anetsberger, G.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. Unterreithmeier, E. Weig, M. Gorodetsky, J. Kotthaus, and T. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A82, 061804 (2010).
[CrossRef]

Arcizet, O.

R. Rivière, S. Deléglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, and T. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A83, 063835 (2011).
[CrossRef]

G. Anetsberger, E. Gavartin, O. Arcizet, Q. Unterreithmeier, E. Weig, M. Gorodetsky, J. Kotthaus, and T. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A82, 061804 (2010).
[CrossRef]

Aspelmeyer, M.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, S. Gröblacher, H. Miao, Y. Chen, M. Aspelmeyer, and O. Painter, “Laser noise in cavity-optomechanical cooling and thermometry,” New J. Phys.15, 035007 (2013).
[CrossRef]

J. Chan, T. Mayer-Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478, 89–92 (2011).
[CrossRef] [PubMed]

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nature Phys.5, 485–488 (2009).
[CrossRef]

P. Rabl, C. Genes, K. Hammerer, and M. Aspelmeyer, “Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems,” Phys. Rev. A80, 063819 (2009).
[CrossRef]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A77, 033804 (2008).
[CrossRef]

Bjorke, K.

A. M. Jayich, J. C. Sankey, K. Bjorke, D. Lee, C. Yang, M. Underwood, L. Childress, A. Petrenko, S. M. Girvin, and J. G. E. Harris, “Cryogenic optomechanics with a Si3N4 membrane and classical laser noise,” New J. Phys.14, 115018 (2012).
[CrossRef]

Borselli, M.

Bouwmeester, D.

K. D. Bouwmeester and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature444, 75–78 (2006).
[CrossRef] [PubMed]

Bouwmeester, K. D.

K. D. Bouwmeester and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature444, 75–78 (2006).
[CrossRef] [PubMed]

Camacho, R.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. J. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009).
[CrossRef] [PubMed]

Camacho, R. M.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462, 78–82 (2009).
[CrossRef] [PubMed]

Castellanos-Beltran, M.

J. Teufel, T. Donner, M. Castellanos-Beltran, J. Harlow, and K. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nature Nanotech.4, 820–823 (2009).
[CrossRef]

Chan, J.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, S. Gröblacher, H. Miao, Y. Chen, M. Aspelmeyer, and O. Painter, “Laser noise in cavity-optomechanical cooling and thermometry,” New J. Phys.15, 035007 (2013).
[CrossRef]

J. Chan, T. Mayer-Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478, 89–92 (2011).
[CrossRef] [PubMed]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462, 78–82 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. J. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009).
[CrossRef] [PubMed]

Chen, L.

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett.22, 1744–1746 (2010).
[CrossRef]

Chen, Y.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, S. Gröblacher, H. Miao, Y. Chen, M. Aspelmeyer, and O. Painter, “Laser noise in cavity-optomechanical cooling and thermometry,” New J. Phys.15, 035007 (2013).
[CrossRef]

Chen, Y.-K.

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett.22, 1744–1746 (2010).
[CrossRef]

Childress, L.

A. M. Jayich, J. C. Sankey, K. Bjorke, D. Lee, C. Yang, M. Underwood, L. Childress, A. Petrenko, S. M. Girvin, and J. G. E. Harris, “Cryogenic optomechanics with a Si3N4 membrane and classical laser noise,” New J. Phys.14, 115018 (2012).
[CrossRef]

Chrystal, C.

Cicak, K.

J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Siroi, J. Whittaker, K. Lehnert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature475, 359–363 (2011).
[CrossRef] [PubMed]

Clerk, A. A.

A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, “Introduction to quantum noise, measurement and amplification,” Rev. Mod. Phys.82, 1155–1208 (2010).
[CrossRef]

Cole, G. D.

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nature Phys.5, 485–488 (2009).
[CrossRef]

Deléglise, S.

R. Rivière, S. Deléglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, and T. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A83, 063835 (2011).
[CrossRef]

Devoret, M. H.

A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, “Introduction to quantum noise, measurement and amplification,” Rev. Mod. Phys.82, 1155–1208 (2010).
[CrossRef]

Doerr, C. R.

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett.22, 1744–1746 (2010).
[CrossRef]

Donner, T.

J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Siroi, J. Whittaker, K. Lehnert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature475, 359–363 (2011).
[CrossRef] [PubMed]

J. Teufel, T. Donner, M. Castellanos-Beltran, J. Harlow, and K. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nature Nanotech.4, 820–823 (2009).
[CrossRef]

Eichenfield, M.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. J. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009).
[CrossRef] [PubMed]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462, 78–82 (2009).
[CrossRef] [PubMed]

Gavartin, E.

R. Rivière, S. Deléglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, and T. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A83, 063835 (2011).
[CrossRef]

G. Anetsberger, E. Gavartin, O. Arcizet, Q. Unterreithmeier, E. Weig, M. Gorodetsky, J. Kotthaus, and T. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A82, 061804 (2010).
[CrossRef]

Genes, C.

P. Rabl, C. Genes, K. Hammerer, and M. Aspelmeyer, “Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems,” Phys. Rev. A80, 063819 (2009).
[CrossRef]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A77, 033804 (2008).
[CrossRef]

Gigan, S.

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nature Phys.5, 485–488 (2009).
[CrossRef]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A77, 033804 (2008).
[CrossRef]

Girvin, S. M.

A. M. Jayich, J. C. Sankey, K. Bjorke, D. Lee, C. Yang, M. Underwood, L. Childress, A. Petrenko, S. M. Girvin, and J. G. E. Harris, “Cryogenic optomechanics with a Si3N4 membrane and classical laser noise,” New J. Phys.14, 115018 (2012).
[CrossRef]

A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, “Introduction to quantum noise, measurement and amplification,” Rev. Mod. Phys.82, 1155–1208 (2010).
[CrossRef]

Gorodetsky, M.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. Unterreithmeier, E. Weig, M. Gorodetsky, J. Kotthaus, and T. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A82, 061804 (2010).
[CrossRef]

Gröblacher, S.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, S. Gröblacher, H. Miao, Y. Chen, M. Aspelmeyer, and O. Painter, “Laser noise in cavity-optomechanical cooling and thermometry,” New J. Phys.15, 035007 (2013).
[CrossRef]

J. Chan, T. Mayer-Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478, 89–92 (2011).
[CrossRef] [PubMed]

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nature Phys.5, 485–488 (2009).
[CrossRef]

Hammerer, K.

P. Rabl, C. Genes, K. Hammerer, and M. Aspelmeyer, “Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems,” Phys. Rev. A80, 063819 (2009).
[CrossRef]

Harlow, J.

J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Siroi, J. Whittaker, K. Lehnert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature475, 359–363 (2011).
[CrossRef] [PubMed]

J. Teufel, T. Donner, M. Castellanos-Beltran, J. Harlow, and K. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nature Nanotech.4, 820–823 (2009).
[CrossRef]

Harris, J. G. E.

A. M. Jayich, J. C. Sankey, K. Bjorke, D. Lee, C. Yang, M. Underwood, L. Childress, A. Petrenko, S. M. Girvin, and J. G. E. Harris, “Cryogenic optomechanics with a Si3N4 membrane and classical laser noise,” New J. Phys.14, 115018 (2012).
[CrossRef]

Hertzberg, J. B.

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nature Phys.5, 485–488 (2009).
[CrossRef]

Hill, J. T.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, S. Gröblacher, H. Miao, Y. Chen, M. Aspelmeyer, and O. Painter, “Laser noise in cavity-optomechanical cooling and thermometry,” New J. Phys.15, 035007 (2013).
[CrossRef]

J. Chan, T. Mayer-Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478, 89–92 (2011).
[CrossRef] [PubMed]

Jayich, A. M.

A. M. Jayich, J. C. Sankey, K. Bjorke, D. Lee, C. Yang, M. Underwood, L. Childress, A. Petrenko, S. M. Girvin, and J. G. E. Harris, “Cryogenic optomechanics with a Si3N4 membrane and classical laser noise,” New J. Phys.14, 115018 (2012).
[CrossRef]

Jiang, X.

Q. Lin, J. Rosenberg, X. Jiang, K. Vahala, and O. Painter, “Mechanical Oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett.103, 10360 (2009).
[CrossRef]

Johnson, T.

Kasaya, K.

O. Mitomi, K. Kasaya, and H. Miyazawa, “Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling,” IEEE J. Quantum Electron.30, 1787–1793 (1994).
[CrossRef]

Kippenberg, T.

R. Rivière, S. Deléglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, and T. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A83, 063835 (2011).
[CrossRef]

G. Anetsberger, E. Gavartin, O. Arcizet, Q. Unterreithmeier, E. Weig, M. Gorodetsky, J. Kotthaus, and T. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A82, 061804 (2010).
[CrossRef]

S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
[CrossRef] [PubMed]

Kotthaus, J.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. Unterreithmeier, E. Weig, M. Gorodetsky, J. Kotthaus, and T. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A82, 061804 (2010).
[CrossRef]

Krause, A.

J. Chan, T. Mayer-Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478, 89–92 (2011).
[CrossRef] [PubMed]

Lee, D.

A. M. Jayich, J. C. Sankey, K. Bjorke, D. Lee, C. Yang, M. Underwood, L. Childress, A. Petrenko, S. M. Girvin, and J. G. E. Harris, “Cryogenic optomechanics with a Si3N4 membrane and classical laser noise,” New J. Phys.14, 115018 (2012).
[CrossRef]

Lehnert, K.

J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Siroi, J. Whittaker, K. Lehnert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature475, 359–363 (2011).
[CrossRef] [PubMed]

J. Teufel, T. Donner, M. Castellanos-Beltran, J. Harlow, and K. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nature Nanotech.4, 820–823 (2009).
[CrossRef]

Li, D.

J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Siroi, J. Whittaker, K. Lehnert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature475, 359–363 (2011).
[CrossRef] [PubMed]

Lin, Q.

Q. Lin, J. Rosenberg, X. Jiang, K. Vahala, and O. Painter, “Mechanical Oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett.103, 10360 (2009).
[CrossRef]

Liow, T.-Y.

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett.22, 1744–1746 (2010).
[CrossRef]

Lipson, M.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, 1983).

Marquardt, F.

A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, “Introduction to quantum noise, measurement and amplification,” Rev. Mod. Phys.82, 1155–1208 (2010).
[CrossRef]

Mayer-Alegre, T.

J. Chan, T. Mayer-Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478, 89–92 (2011).
[CrossRef] [PubMed]

McNab, S. J.

Miao, H.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, S. Gröblacher, H. Miao, Y. Chen, M. Aspelmeyer, and O. Painter, “Laser noise in cavity-optomechanical cooling and thermometry,” New J. Phys.15, 035007 (2013).
[CrossRef]

Michael, C.

Mitomi, O.

O. Mitomi, K. Kasaya, and H. Miyazawa, “Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling,” IEEE J. Quantum Electron.30, 1787–1793 (1994).
[CrossRef]

Miyazawa, H.

O. Mitomi, K. Kasaya, and H. Miyazawa, “Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling,” IEEE J. Quantum Electron.30, 1787–1793 (1994).
[CrossRef]

Moll, N.

Painter, O.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, S. Gröblacher, H. Miao, Y. Chen, M. Aspelmeyer, and O. Painter, “Laser noise in cavity-optomechanical cooling and thermometry,” New J. Phys.15, 035007 (2013).
[CrossRef]

J. Chan, T. Mayer-Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478, 89–92 (2011).
[CrossRef] [PubMed]

Q. Lin, J. Rosenberg, X. Jiang, K. Vahala, and O. Painter, “Mechanical Oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett.103, 10360 (2009).
[CrossRef]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462, 78–82 (2009).
[CrossRef] [PubMed]

C. Michael, M. Borselli, T. Johnson, C. Chrystal, and O. Painter, “An optical fiber-taper probe for wafer-scale microphotonic device characterization,” Opt. Express15, 4745–4752 (2007).
[CrossRef] [PubMed]

S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
[CrossRef] [PubMed]

Painter, O. J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. J. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009).
[CrossRef] [PubMed]

Panepucci, R. R.

Peterson, R. W.

T. P. Purdy, R. W. Peterson, and C. A. Regal, “Observation of radiation pressure shot noise on a macroscopic object,” Science339, 801–804 (2013).
[CrossRef] [PubMed]

Petrenko, A.

A. M. Jayich, J. C. Sankey, K. Bjorke, D. Lee, C. Yang, M. Underwood, L. Childress, A. Petrenko, S. M. Girvin, and J. G. E. Harris, “Cryogenic optomechanics with a Si3N4 membrane and classical laser noise,” New J. Phys.14, 115018 (2012).
[CrossRef]

Purdy, T. P.

T. P. Purdy, R. W. Peterson, and C. A. Regal, “Observation of radiation pressure shot noise on a macroscopic object,” Science339, 801–804 (2013).
[CrossRef] [PubMed]

Rabl, P.

P. Rabl, C. Genes, K. Hammerer, and M. Aspelmeyer, “Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems,” Phys. Rev. A80, 063819 (2009).
[CrossRef]

Regal, C. A.

T. P. Purdy, R. W. Peterson, and C. A. Regal, “Observation of radiation pressure shot noise on a macroscopic object,” Science339, 801–804 (2013).
[CrossRef] [PubMed]

Rivière, R.

R. Rivière, S. Deléglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, and T. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A83, 063835 (2011).
[CrossRef]

Rosenberg, J.

Q. Lin, J. Rosenberg, X. Jiang, K. Vahala, and O. Painter, “Mechanical Oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett.103, 10360 (2009).
[CrossRef]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, S. Gröblacher, H. Miao, Y. Chen, M. Aspelmeyer, and O. Painter, “Laser noise in cavity-optomechanical cooling and thermometry,” New J. Phys.15, 035007 (2013).
[CrossRef]

J. Chan, T. Mayer-Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478, 89–92 (2011).
[CrossRef] [PubMed]

Sankey, J. C.

A. M. Jayich, J. C. Sankey, K. Bjorke, D. Lee, C. Yang, M. Underwood, L. Childress, A. Petrenko, S. M. Girvin, and J. G. E. Harris, “Cryogenic optomechanics with a Si3N4 membrane and classical laser noise,” New J. Phys.14, 115018 (2012).
[CrossRef]

Schliesser, A.

R. Rivière, S. Deléglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, and T. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A83, 063835 (2011).
[CrossRef]

Schoelkopf, R. J.

A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, “Introduction to quantum noise, measurement and amplification,” Rev. Mod. Phys.82, 1155–1208 (2010).
[CrossRef]

Schwab, K. C.

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nature Phys.5, 485–488 (2009).
[CrossRef]

Simmonds, R.

J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Siroi, J. Whittaker, K. Lehnert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature475, 359–363 (2011).
[CrossRef] [PubMed]

Siroi, A.

J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Siroi, J. Whittaker, K. Lehnert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature475, 359–363 (2011).
[CrossRef] [PubMed]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, 1983).

Spillane, S.

S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
[CrossRef] [PubMed]

Teufel, J.

J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Siroi, J. Whittaker, K. Lehnert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature475, 359–363 (2011).
[CrossRef] [PubMed]

J. Teufel, T. Donner, M. Castellanos-Beltran, J. Harlow, and K. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nature Nanotech.4, 820–823 (2009).
[CrossRef]

Tombesi, P.

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A77, 033804 (2008).
[CrossRef]

Underwood, M.

A. M. Jayich, J. C. Sankey, K. Bjorke, D. Lee, C. Yang, M. Underwood, L. Childress, A. Petrenko, S. M. Girvin, and J. G. E. Harris, “Cryogenic optomechanics with a Si3N4 membrane and classical laser noise,” New J. Phys.14, 115018 (2012).
[CrossRef]

Unterreithmeier, Q.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. Unterreithmeier, E. Weig, M. Gorodetsky, J. Kotthaus, and T. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A82, 061804 (2010).
[CrossRef]

Vahala, K.

Q. Lin, J. Rosenberg, X. Jiang, K. Vahala, and O. Painter, “Mechanical Oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett.103, 10360 (2009).
[CrossRef]

S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
[CrossRef] [PubMed]

Vahala, K. J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. J. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009).
[CrossRef] [PubMed]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462, 78–82 (2009).
[CrossRef] [PubMed]

Vanner, M. R.

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nature Phys.5, 485–488 (2009).
[CrossRef]

Vitali, D.

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A77, 033804 (2008).
[CrossRef]

Vlasov, Y. A.

Weig, E.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. Unterreithmeier, E. Weig, M. Gorodetsky, J. Kotthaus, and T. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A82, 061804 (2010).
[CrossRef]

Weis, S.

R. Rivière, S. Deléglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, and T. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A83, 063835 (2011).
[CrossRef]

Whittaker, J.

J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Siroi, J. Whittaker, K. Lehnert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature475, 359–363 (2011).
[CrossRef] [PubMed]

Yang, C.

A. M. Jayich, J. C. Sankey, K. Bjorke, D. Lee, C. Yang, M. Underwood, L. Childress, A. Petrenko, S. M. Girvin, and J. G. E. Harris, “Cryogenic optomechanics with a Si3N4 membrane and classical laser noise,” New J. Phys.14, 115018 (2012).
[CrossRef]

IEEE J. Quantum Electron. (1)

O. Mitomi, K. Kasaya, and H. Miyazawa, “Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling,” IEEE J. Quantum Electron.30, 1787–1793 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett.22, 1744–1746 (2010).
[CrossRef]

Nature (5)

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462, 78–82 (2009).
[CrossRef] [PubMed]

J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Siroi, J. Whittaker, K. Lehnert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature475, 359–363 (2011).
[CrossRef] [PubMed]

J. Chan, T. Mayer-Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478, 89–92 (2011).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. J. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009).
[CrossRef] [PubMed]

K. D. Bouwmeester and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature444, 75–78 (2006).
[CrossRef] [PubMed]

Nature Nanotech. (1)

J. Teufel, T. Donner, M. Castellanos-Beltran, J. Harlow, and K. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nature Nanotech.4, 820–823 (2009).
[CrossRef]

Nature Phys. (1)

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nature Phys.5, 485–488 (2009).
[CrossRef]

New J. Phys. (2)

A. H. Safavi-Naeini, J. Chan, J. T. Hill, S. Gröblacher, H. Miao, Y. Chen, M. Aspelmeyer, and O. Painter, “Laser noise in cavity-optomechanical cooling and thermometry,” New J. Phys.15, 035007 (2013).
[CrossRef]

A. M. Jayich, J. C. Sankey, K. Bjorke, D. Lee, C. Yang, M. Underwood, L. Childress, A. Petrenko, S. M. Girvin, and J. G. E. Harris, “Cryogenic optomechanics with a Si3N4 membrane and classical laser noise,” New J. Phys.14, 115018 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (4)

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A77, 033804 (2008).
[CrossRef]

P. Rabl, C. Genes, K. Hammerer, and M. Aspelmeyer, “Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems,” Phys. Rev. A80, 063819 (2009).
[CrossRef]

G. Anetsberger, E. Gavartin, O. Arcizet, Q. Unterreithmeier, E. Weig, M. Gorodetsky, J. Kotthaus, and T. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A82, 061804 (2010).
[CrossRef]

R. Rivière, S. Deléglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, and T. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A83, 063835 (2011).
[CrossRef]

Phys. Rev. Lett. (2)

Q. Lin, J. Rosenberg, X. Jiang, K. Vahala, and O. Painter, “Mechanical Oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett.103, 10360 (2009).
[CrossRef]

S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, “Introduction to quantum noise, measurement and amplification,” Rev. Mod. Phys.82, 1155–1208 (2010).
[CrossRef]

Science (1)

T. P. Purdy, R. W. Peterson, and C. A. Regal, “Observation of radiation pressure shot noise on a macroscopic object,” Science339, 801–804 (2013).
[CrossRef] [PubMed]

Other (5)

While in principle both intensity and phase noise of the laser can contribute to the heating of the mechanical mode, for an optically resonant measurement of position in the sideband unresolved regime the phase noise does not contribute to backaction and only intensity noise affects the mechanics. In this regime the phase noise adds a small component to the imprecision noise floor. Measurements of the phase and intensity noise of our laser reveal no excess intensity noise and a flat frequency NPSD of Sωω= 5 × 103rad2Hz in the frequency range of interest. Consequently, for the probe powers used in this work, the excess back-action due to technical laser noise is negligible, and the phase noise contribution to the noise floor lies roughly 60 dB below the shot noise.

COMSOL Multiphysics http://www.comsol.com/ .

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, 1983).

Lumerical Solutions Inc., http://www.lumerical.com/tcad-products/fdtd/ .

Potentially, the use of a lensed or small-mode-field-diameter fiber could allow for a larger initial waveguide width, correspondingly shorter tapering region, and the ability to eliminate the support tether. However such an approach would be less robust to slight fiber misalignments arising from fabrication variability of the V-groove size on the order of 100 – 200 nm. These misalignments are small relative to the 10 μm mode diameter used in the reported device, but would cause substantial mode-mismatch in any scheme with a short waveguide taper. The optimal mode-matching of the junction would also likely be diminished, as increased mode confinement in the waveguide tip would render the profile less circularly symmetric.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Scanning electron microscope (SEM) images illustrating the optical coupling scheme and mode conversion junctions, with overlayed mode profiles simulated via Finite-Element-Method (FEM) of optical power in (c) and (d), and electric field in (e) and (f). (a) Fabricated device after fiber coupling via self-aligned v-groove placement. (b) Detailed view of the zipper cavity. (c) The optical-fiber/Si3N4-waveguide junction. (d) The waveguide with supporting tethers after adiabatically widening to 1.5 μm. (e) Photonic crystal taper section. (f) Photonic crystal defect cavity.

Fig. 2
Fig. 2

Optical response of the system. (a) A wide range reflection scan reveals Fabry-Perot interference fringes off-resonant from the photonic crystal cavity, and sharp dips on resonance. The visibility of the fringes reveals that ηcpl has the wavelength dependence shown in solid green in (b), with ηcpl = 74.6 % at the cavity resonance wavelength of λ ≈ 1538 nm. The dashed green line denotes the simulated ideal efficiency of the coupler. (c) By tuning the number of mirror-type-hole periods between the coupling section and cavity section of the photonic crystal, the total quality factor Qt (green points) of the resonance transitions from being limited by intrinsic loss Qi (blue points) to extrinsic loss Qe (red points) in good agreement with simulation (dashed red curve). (d) The ratio of extrinsic loss rate κe to total loss rate κ progresses from the strongly undercoupled regime to the strongly overcoupled regime with the mirror variation.

Fig. 3
Fig. 3

Experimental setup. FPC: fiber polarization controller. VOA: variable optical attenuator. VBS: variable beam splitter. LO: local oscillator. DUT: device under test. FS: fiber stretcher. PID: proportional-integral-derivative controller. BPD: balanced photodiode. ESA: electronic spectrum analyzer.

Fig. 4
Fig. 4

Photocurrent NPSD SII(ω) (solid black curve) measured on the ESA with 10 nW of input signal arm power. Optical shot noise (solid blue curve) sets the noise floor several dBm above electronic noise contributions (solid orange curve.) The two peaks at 3.14 MHz and 3.3 MHz correspond to the first order mechanical bending modes of the waveguide and test beams respectively. The dashed red and green curves display the calculated single-sided displacement NPSD of each mode, with the calculated imprecision noise floor shown in the dashed purple line. (insets) FEM simulated mechanical bending modes of each beam.

Fig. 5
Fig. 5

(a) Signal-to-noise ratio (SNR) of SII(ω) measured with 880 pW (magenta), 8.6 nW (cyan), and 76 nW (orange) probe power from which the imprecision point of corresponding color is extracted in (b). The dashed peak levels are referenced to the background level indicated by the gray shaded region. (b) Noise quanta versus probe power. Measurements of imprecision are plotted with calculated imprecision (blue), estimated back-action (red), and total (green) noise quanta are plotted in solid curves for the device under test and dashed curves for an ideal measurement.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N imp = κ 2 γ 64 n c g 2 κ e η cpl η meas , N BA = 4 n c g 2 κ γ ,
N min = ( N imp + N BA ) min = 1 2 η cpl η meas κ e / κ .

Metrics