Abstract

We demonstrate the optical measurements of heart-beat pulse rate and also elasticity of a polymeric tube, using a tapered fiber Mach-Zehnder interferometer. This device has two abrupt tapers in the Er/Yb codoped fiber and thus fractional amount of core mode is converted into cladding modes at the first abrupt taper. The core and cladding modes propagate through different optical paths and meet again at the second abrupt taper to produce interferences. The mechanical vibration signals generated by the blood vessels and by an inflated polymeric tube can perturb the optical paths of resonant modes to move around the resonant wavelengths. Thus, the cw laser signal is modulated to become pulses to reflect the heart-beat pulse rate and the elasticity of a polymeric tube, respectively.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. V. Kuranov, S. Kazmi, A. B. McElroy, J. W. Kiel, A. K. Dunn, T. E. Milner, and T. Q. Duong, “In vivo depth-resolved oxygen saturation by dual-wavelength photothermal (DWP) OCT,” Opt. Express19(24), 23831–23844 (2011).
    [CrossRef] [PubMed]
  2. A. Amelink, T. Christiaanse, and H. J. C. M. Sterenborg, “Effect of hemoglobin extinction spectra on optical spectroscopic measurements of blood oxygen saturation,” Opt. Lett.34(10), 1525–1527 (2009).
    [CrossRef] [PubMed]
  3. J. Yi and X. Li, “Estimation of oxygen saturation from erythrocytes by high-resolution spectroscopic optical coherence tomography,” Opt. Lett.35(12), 2094–2096 (2010).
    [CrossRef] [PubMed]
  4. J. Kottmann, J. M. Rey, J. Luginbühl, E. Reichmann, and M. W. Sigrist, “Glucose sensing in human epidermis using mid-infrared photoacoustic detection,” Biomed. Opt. Express3(4), 667–680 (2012).
    [CrossRef] [PubMed]
  5. R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett.26(13), 992–994 (2001).
    [CrossRef] [PubMed]
  6. M. Rothmaier, B. Selm, S. Spichtig, D. Haensse, and M. Wolf, “Photonic textiles for pulse oximetry,” Opt. Express16(17), 12973–12986 (2008).
    [CrossRef] [PubMed]
  7. S. Liang, C. Zhang, W. Lin, L. Li, C. Li, X. Feng, and B. Lin, “Fiber-optic intrinsic distributed acoustic emission sensor for large structure health monitoring,” Opt. Lett.34(12), 1858–1860 (2009).
    [CrossRef] [PubMed]
  8. J. R. Guzman-Sepulveda, I. Hernandez-Romano, M. Torres-Cisneros, and D. A. May-Arrioja, “Fiber optic vibration sensor based on multimode interference effects,” in Proc. of CLEO 2012, JW2A (2012).
    [CrossRef]
  9. B. P. B. Downing, A. van der Horst, M. Miao, F. W. Keeley, and N. R. Forde, “Probing the elasticity of short proteins with optical tweezers,” in Proc. of OTA 2009, OTuA3 (2009).
    [CrossRef]
  10. M. Delgado-Pinar, D. Zalvidea, A. Diez, P. Perez-Millan, and M. Andres, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express14(3), 1106–1112 (2006).
    [CrossRef] [PubMed]
  11. T. Guo, A. Ivanov, C. Chen, and J. Albert, “Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling,” Opt. Lett.33(9), 1004–1006 (2008).
    [CrossRef] [PubMed]
  12. T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express16(8), 5764–5769 (2008).
    [CrossRef] [PubMed]
  13. K. Sohn and J. Song, “Thermooptically tunable side-polished fiber comb filter and its application,” IEEE Photon. Technol. Lett.14(11), 1575–1577 (2002).
    [CrossRef]
  14. N. K. Chen, T. H. Yang, Z. Z. Feng, Y. N. Chen, and C. Lin, “Cellular-dimension picoliter-volume index microsensing using micro-abrupt-tapered fiber Mach–Zehnder interferometers,” IEEE Photon. Technol. Lett.24, 842–844 (2012).
  15. L. Li, L. Xia, Z. Xie, and D. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Opt. Express20(10), 11109–11120 (2012).
    [CrossRef] [PubMed]
  16. M. Wang, M. Yang, J. Cheng, J. Dai, M. Yang, and D. N. Wang, “Femtosecond laser fabricated micro Mach-Zehnder interferometer with Pd film as sensing materials for hydrogen sensing,” Opt. Lett.37(11), 1940–1942 (2012).
    [CrossRef] [PubMed]
  17. S. Zhang, W. Zhang, S. Gao, P. Geng, and X. Xue, “Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper,” Opt. Lett.37(21), 4480–4482 (2012).
    [CrossRef] [PubMed]
  18. Y. Xu, P. Lu, Z. Qin, J. Harris, F. Baset, P. Lu, V. R. Bhardwaj, and X. Bao, “Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer,” Opt. Express21(3), 3031–3042 (2013).
    [CrossRef] [PubMed]
  19. B. Li, L. Jiang, S. Wang, J. Yang, M. Wang, and Q. Chen, “High sensitivity Mach–Zehnder interferometer sensors based on concatenated ultra-abrupt tapers on thinned fibers,” Opt. Laser Technol.44(3), 640–645 (2012).
    [CrossRef]
  20. Z. Tian and S. S. H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett.21(3), 161–163 (2009).
    [CrossRef]
  21. N. K. Chen and Z. Z. Feng, “Effect of gain-dependent phase shift for tunable abrupt-tapered Mach-Zehnder interferometers,” Opt. Lett.35(12), 2109–2111 (2010).
    [CrossRef] [PubMed]
  22. L. Su and S. R. Elliott, “All-fiber microcantilever sensor monitored by a low-cost fiber-to-tip structure with subnanometer resolution,” Opt. Lett.35(8), 1212–1214 (2010).
    [CrossRef] [PubMed]
  23. A. I. Azmi, D. Sen, W. Sheng, J. Canning, and G. D. Peng, “Performance enhancement of vibration sensing employing multiple phase-shifted fiber Bragg grating,” IEEE/OSA J. Lightwave Technol.29(22), 3453–3460 (2011).
    [CrossRef]
  24. L. Gao, S. Liu, Z. Yin, L. Zhang, L. Chen, and X. Chen, “Fiber-optic vibration sensor based on beat frequency and frequency-modulation demodulation techniques,” IEEE Photon. Technol. Lett.23(1), 18–20 (2011).
    [CrossRef]
  25. Z. Z. Feng, Y. H. Hsieh, and N. K. Chen, “Successive asymmetric abrupt tapers for tunable narrowband fiber comb filters,” IEEE Photon. Technol. Lett.23(7), 438–440 (2011).
    [CrossRef]
  26. N. K. Chen, Z. Z. Feng, J. J. Wang, S. K. Liaw, and H. C. Chui, “Interferometric interrogation of inclination and displacement based on tapered fiber Mach-Zehnder interferometers,” revised to IEEE Sensors Journal.

2013 (1)

2012 (6)

2011 (4)

A. I. Azmi, D. Sen, W. Sheng, J. Canning, and G. D. Peng, “Performance enhancement of vibration sensing employing multiple phase-shifted fiber Bragg grating,” IEEE/OSA J. Lightwave Technol.29(22), 3453–3460 (2011).
[CrossRef]

L. Gao, S. Liu, Z. Yin, L. Zhang, L. Chen, and X. Chen, “Fiber-optic vibration sensor based on beat frequency and frequency-modulation demodulation techniques,” IEEE Photon. Technol. Lett.23(1), 18–20 (2011).
[CrossRef]

Z. Z. Feng, Y. H. Hsieh, and N. K. Chen, “Successive asymmetric abrupt tapers for tunable narrowband fiber comb filters,” IEEE Photon. Technol. Lett.23(7), 438–440 (2011).
[CrossRef]

R. V. Kuranov, S. Kazmi, A. B. McElroy, J. W. Kiel, A. K. Dunn, T. E. Milner, and T. Q. Duong, “In vivo depth-resolved oxygen saturation by dual-wavelength photothermal (DWP) OCT,” Opt. Express19(24), 23831–23844 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (3)

2008 (3)

2006 (1)

2002 (1)

K. Sohn and J. Song, “Thermooptically tunable side-polished fiber comb filter and its application,” IEEE Photon. Technol. Lett.14(11), 1575–1577 (2002).
[CrossRef]

2001 (1)

Albert, J.

Amelink, A.

Andres, M.

Azmi, A. I.

A. I. Azmi, D. Sen, W. Sheng, J. Canning, and G. D. Peng, “Performance enhancement of vibration sensing employing multiple phase-shifted fiber Bragg grating,” IEEE/OSA J. Lightwave Technol.29(22), 3453–3460 (2011).
[CrossRef]

Bao, X.

Baset, F.

Bhardwaj, V. R.

Canning, J.

A. I. Azmi, D. Sen, W. Sheng, J. Canning, and G. D. Peng, “Performance enhancement of vibration sensing employing multiple phase-shifted fiber Bragg grating,” IEEE/OSA J. Lightwave Technol.29(22), 3453–3460 (2011).
[CrossRef]

Chen, C.

Chen, L.

L. Gao, S. Liu, Z. Yin, L. Zhang, L. Chen, and X. Chen, “Fiber-optic vibration sensor based on beat frequency and frequency-modulation demodulation techniques,” IEEE Photon. Technol. Lett.23(1), 18–20 (2011).
[CrossRef]

Chen, N. K.

N. K. Chen, T. H. Yang, Z. Z. Feng, Y. N. Chen, and C. Lin, “Cellular-dimension picoliter-volume index microsensing using micro-abrupt-tapered fiber Mach–Zehnder interferometers,” IEEE Photon. Technol. Lett.24, 842–844 (2012).

Z. Z. Feng, Y. H. Hsieh, and N. K. Chen, “Successive asymmetric abrupt tapers for tunable narrowband fiber comb filters,” IEEE Photon. Technol. Lett.23(7), 438–440 (2011).
[CrossRef]

N. K. Chen and Z. Z. Feng, “Effect of gain-dependent phase shift for tunable abrupt-tapered Mach-Zehnder interferometers,” Opt. Lett.35(12), 2109–2111 (2010).
[CrossRef] [PubMed]

Chen, Q.

B. Li, L. Jiang, S. Wang, J. Yang, M. Wang, and Q. Chen, “High sensitivity Mach–Zehnder interferometer sensors based on concatenated ultra-abrupt tapers on thinned fibers,” Opt. Laser Technol.44(3), 640–645 (2012).
[CrossRef]

Chen, X.

L. Gao, S. Liu, Z. Yin, L. Zhang, L. Chen, and X. Chen, “Fiber-optic vibration sensor based on beat frequency and frequency-modulation demodulation techniques,” IEEE Photon. Technol. Lett.23(1), 18–20 (2011).
[CrossRef]

Chen, Y. N.

N. K. Chen, T. H. Yang, Z. Z. Feng, Y. N. Chen, and C. Lin, “Cellular-dimension picoliter-volume index microsensing using micro-abrupt-tapered fiber Mach–Zehnder interferometers,” IEEE Photon. Technol. Lett.24, 842–844 (2012).

Cheng, J.

Christiaanse, T.

Dai, J.

Delgado-Pinar, M.

Diez, A.

Dunn, A. K.

Duong, T. Q.

Elliott, S. R.

Esenaliev, R. O.

Feng, X.

Feng, Z. Z.

N. K. Chen, T. H. Yang, Z. Z. Feng, Y. N. Chen, and C. Lin, “Cellular-dimension picoliter-volume index microsensing using micro-abrupt-tapered fiber Mach–Zehnder interferometers,” IEEE Photon. Technol. Lett.24, 842–844 (2012).

Z. Z. Feng, Y. H. Hsieh, and N. K. Chen, “Successive asymmetric abrupt tapers for tunable narrowband fiber comb filters,” IEEE Photon. Technol. Lett.23(7), 438–440 (2011).
[CrossRef]

N. K. Chen and Z. Z. Feng, “Effect of gain-dependent phase shift for tunable abrupt-tapered Mach-Zehnder interferometers,” Opt. Lett.35(12), 2109–2111 (2010).
[CrossRef] [PubMed]

Gao, L.

L. Gao, S. Liu, Z. Yin, L. Zhang, L. Chen, and X. Chen, “Fiber-optic vibration sensor based on beat frequency and frequency-modulation demodulation techniques,” IEEE Photon. Technol. Lett.23(1), 18–20 (2011).
[CrossRef]

Gao, S.

Geng, P.

Guo, T.

Haensse, D.

Han, Y.

Harris, J.

Hsieh, Y. H.

Z. Z. Feng, Y. H. Hsieh, and N. K. Chen, “Successive asymmetric abrupt tapers for tunable narrowband fiber comb filters,” IEEE Photon. Technol. Lett.23(7), 438–440 (2011).
[CrossRef]

Ivanov, A.

Jiang, L.

B. Li, L. Jiang, S. Wang, J. Yang, M. Wang, and Q. Chen, “High sensitivity Mach–Zehnder interferometer sensors based on concatenated ultra-abrupt tapers on thinned fibers,” Opt. Laser Technol.44(3), 640–645 (2012).
[CrossRef]

Kazmi, S.

Kiel, J. W.

Kottmann, J.

Kuranov, R. V.

Larin, K. V.

Larina, I. V.

Li, B.

B. Li, L. Jiang, S. Wang, J. Yang, M. Wang, and Q. Chen, “High sensitivity Mach–Zehnder interferometer sensors based on concatenated ultra-abrupt tapers on thinned fibers,” Opt. Laser Technol.44(3), 640–645 (2012).
[CrossRef]

Li, C.

Li, L.

Li, X.

Li, Y.

Liang, S.

Lin, B.

Lin, C.

N. K. Chen, T. H. Yang, Z. Z. Feng, Y. N. Chen, and C. Lin, “Cellular-dimension picoliter-volume index microsensing using micro-abrupt-tapered fiber Mach–Zehnder interferometers,” IEEE Photon. Technol. Lett.24, 842–844 (2012).

Lin, W.

Liu, D.

Liu, S.

L. Gao, S. Liu, Z. Yin, L. Zhang, L. Chen, and X. Chen, “Fiber-optic vibration sensor based on beat frequency and frequency-modulation demodulation techniques,” IEEE Photon. Technol. Lett.23(1), 18–20 (2011).
[CrossRef]

Lu, P.

Luginbühl, J.

McElroy, A. B.

Milner, T. E.

Motamedi, M.

Peng, G. D.

A. I. Azmi, D. Sen, W. Sheng, J. Canning, and G. D. Peng, “Performance enhancement of vibration sensing employing multiple phase-shifted fiber Bragg grating,” IEEE/OSA J. Lightwave Technol.29(22), 3453–3460 (2011).
[CrossRef]

Perez-Millan, P.

Qin, Z.

Reichmann, E.

Rey, J. M.

Rothmaier, M.

Selm, B.

Sen, D.

A. I. Azmi, D. Sen, W. Sheng, J. Canning, and G. D. Peng, “Performance enhancement of vibration sensing employing multiple phase-shifted fiber Bragg grating,” IEEE/OSA J. Lightwave Technol.29(22), 3453–3460 (2011).
[CrossRef]

Sheng, W.

A. I. Azmi, D. Sen, W. Sheng, J. Canning, and G. D. Peng, “Performance enhancement of vibration sensing employing multiple phase-shifted fiber Bragg grating,” IEEE/OSA J. Lightwave Technol.29(22), 3453–3460 (2011).
[CrossRef]

Sigrist, M. W.

Sohn, K.

K. Sohn and J. Song, “Thermooptically tunable side-polished fiber comb filter and its application,” IEEE Photon. Technol. Lett.14(11), 1575–1577 (2002).
[CrossRef]

Song, J.

K. Sohn and J. Song, “Thermooptically tunable side-polished fiber comb filter and its application,” IEEE Photon. Technol. Lett.14(11), 1575–1577 (2002).
[CrossRef]

Spichtig, S.

Sterenborg, H. J. C. M.

Su, L.

Tian, Z.

Z. Tian and S. S. H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett.21(3), 161–163 (2009).
[CrossRef]

Tsai, H. L.

Wang, D. N.

Wang, M.

M. Wang, M. Yang, J. Cheng, J. Dai, M. Yang, and D. N. Wang, “Femtosecond laser fabricated micro Mach-Zehnder interferometer with Pd film as sensing materials for hydrogen sensing,” Opt. Lett.37(11), 1940–1942 (2012).
[CrossRef] [PubMed]

B. Li, L. Jiang, S. Wang, J. Yang, M. Wang, and Q. Chen, “High sensitivity Mach–Zehnder interferometer sensors based on concatenated ultra-abrupt tapers on thinned fibers,” Opt. Laser Technol.44(3), 640–645 (2012).
[CrossRef]

Wang, S.

B. Li, L. Jiang, S. Wang, J. Yang, M. Wang, and Q. Chen, “High sensitivity Mach–Zehnder interferometer sensors based on concatenated ultra-abrupt tapers on thinned fibers,” Opt. Laser Technol.44(3), 640–645 (2012).
[CrossRef]

Wei, T.

Wolf, M.

Xia, L.

Xiao, H.

Xie, Z.

Xu, Y.

Xue, X.

Yam, S. S. H.

Z. Tian and S. S. H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett.21(3), 161–163 (2009).
[CrossRef]

Yang, J.

B. Li, L. Jiang, S. Wang, J. Yang, M. Wang, and Q. Chen, “High sensitivity Mach–Zehnder interferometer sensors based on concatenated ultra-abrupt tapers on thinned fibers,” Opt. Laser Technol.44(3), 640–645 (2012).
[CrossRef]

Yang, M.

Yang, T. H.

N. K. Chen, T. H. Yang, Z. Z. Feng, Y. N. Chen, and C. Lin, “Cellular-dimension picoliter-volume index microsensing using micro-abrupt-tapered fiber Mach–Zehnder interferometers,” IEEE Photon. Technol. Lett.24, 842–844 (2012).

Yi, J.

Yin, Z.

L. Gao, S. Liu, Z. Yin, L. Zhang, L. Chen, and X. Chen, “Fiber-optic vibration sensor based on beat frequency and frequency-modulation demodulation techniques,” IEEE Photon. Technol. Lett.23(1), 18–20 (2011).
[CrossRef]

Zalvidea, D.

Zhang, C.

Zhang, L.

L. Gao, S. Liu, Z. Yin, L. Zhang, L. Chen, and X. Chen, “Fiber-optic vibration sensor based on beat frequency and frequency-modulation demodulation techniques,” IEEE Photon. Technol. Lett.23(1), 18–20 (2011).
[CrossRef]

Zhang, S.

Zhang, W.

Biomed. Opt. Express (1)

IEEE Photon. Technol. Lett. (5)

K. Sohn and J. Song, “Thermooptically tunable side-polished fiber comb filter and its application,” IEEE Photon. Technol. Lett.14(11), 1575–1577 (2002).
[CrossRef]

N. K. Chen, T. H. Yang, Z. Z. Feng, Y. N. Chen, and C. Lin, “Cellular-dimension picoliter-volume index microsensing using micro-abrupt-tapered fiber Mach–Zehnder interferometers,” IEEE Photon. Technol. Lett.24, 842–844 (2012).

Z. Tian and S. S. H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett.21(3), 161–163 (2009).
[CrossRef]

L. Gao, S. Liu, Z. Yin, L. Zhang, L. Chen, and X. Chen, “Fiber-optic vibration sensor based on beat frequency and frequency-modulation demodulation techniques,” IEEE Photon. Technol. Lett.23(1), 18–20 (2011).
[CrossRef]

Z. Z. Feng, Y. H. Hsieh, and N. K. Chen, “Successive asymmetric abrupt tapers for tunable narrowband fiber comb filters,” IEEE Photon. Technol. Lett.23(7), 438–440 (2011).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (1)

A. I. Azmi, D. Sen, W. Sheng, J. Canning, and G. D. Peng, “Performance enhancement of vibration sensing employing multiple phase-shifted fiber Bragg grating,” IEEE/OSA J. Lightwave Technol.29(22), 3453–3460 (2011).
[CrossRef]

Opt. Express (6)

Opt. Laser Technol. (1)

B. Li, L. Jiang, S. Wang, J. Yang, M. Wang, and Q. Chen, “High sensitivity Mach–Zehnder interferometer sensors based on concatenated ultra-abrupt tapers on thinned fibers,” Opt. Laser Technol.44(3), 640–645 (2012).
[CrossRef]

Opt. Lett. (9)

T. Guo, A. Ivanov, C. Chen, and J. Albert, “Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling,” Opt. Lett.33(9), 1004–1006 (2008).
[CrossRef] [PubMed]

M. Wang, M. Yang, J. Cheng, J. Dai, M. Yang, and D. N. Wang, “Femtosecond laser fabricated micro Mach-Zehnder interferometer with Pd film as sensing materials for hydrogen sensing,” Opt. Lett.37(11), 1940–1942 (2012).
[CrossRef] [PubMed]

S. Zhang, W. Zhang, S. Gao, P. Geng, and X. Xue, “Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper,” Opt. Lett.37(21), 4480–4482 (2012).
[CrossRef] [PubMed]

S. Liang, C. Zhang, W. Lin, L. Li, C. Li, X. Feng, and B. Lin, “Fiber-optic intrinsic distributed acoustic emission sensor for large structure health monitoring,” Opt. Lett.34(12), 1858–1860 (2009).
[CrossRef] [PubMed]

A. Amelink, T. Christiaanse, and H. J. C. M. Sterenborg, “Effect of hemoglobin extinction spectra on optical spectroscopic measurements of blood oxygen saturation,” Opt. Lett.34(10), 1525–1527 (2009).
[CrossRef] [PubMed]

J. Yi and X. Li, “Estimation of oxygen saturation from erythrocytes by high-resolution spectroscopic optical coherence tomography,” Opt. Lett.35(12), 2094–2096 (2010).
[CrossRef] [PubMed]

R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett.26(13), 992–994 (2001).
[CrossRef] [PubMed]

N. K. Chen and Z. Z. Feng, “Effect of gain-dependent phase shift for tunable abrupt-tapered Mach-Zehnder interferometers,” Opt. Lett.35(12), 2109–2111 (2010).
[CrossRef] [PubMed]

L. Su and S. R. Elliott, “All-fiber microcantilever sensor monitored by a low-cost fiber-to-tip structure with subnanometer resolution,” Opt. Lett.35(8), 1212–1214 (2010).
[CrossRef] [PubMed]

Other (3)

N. K. Chen, Z. Z. Feng, J. J. Wang, S. K. Liaw, and H. C. Chui, “Interferometric interrogation of inclination and displacement based on tapered fiber Mach-Zehnder interferometers,” revised to IEEE Sensors Journal.

J. R. Guzman-Sepulveda, I. Hernandez-Romano, M. Torres-Cisneros, and D. A. May-Arrioja, “Fiber optic vibration sensor based on multimode interference effects,” in Proc. of CLEO 2012, JW2A (2012).
[CrossRef]

B. P. B. Downing, A. van der Horst, M. Miao, F. W. Keeley, and N. R. Forde, “Probing the elasticity of short proteins with optical tweezers,” in Proc. of OTA 2009, OTuA3 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Experimental set-up of the acoustic-wave-sensitive AT-MZI. FG: function generator, OSA: optical spectrum analyzer, EA: electrostrictive actuator, ECDL: external cavity diode laser, OSW: optical switch, OS: oscilloscope. (b) Microphotograph of the EA attaching against the phase shifter of the AT-MZI under a 1000x CCD microscope. (c) Photo of the micro AT-MZI attaching against the wrist. (d) Experimental set-up of the micro AT-MZI for evaluating the elasticity of a gas-inflated polymeric tube.

Fig. 2
Fig. 2

(a) Spectral responses of the resonant dips at around 1497.05 nm when the actuator is operated at different driving voltages. (b) The AT-MZI-modulated ECDL with a contrast ratio of 17.31 dB. (c) Laser pulse trains of the AT-MZI-modulated ECDL at 1497.05 nm wavelength.

Fig. 3
Fig. 3

(a) The externally modulated ECDL with a contrast ratio of 4.54 dB between on state and off state. (b) Laser pulse trains of the AT-MZI-modulated ECDL at 1503.5 nm. (c) Pulse characteristics of the inflated polymeric tube when the end of the tube is blocked and opened.

Metrics