Abstract

Three-dimensional (3D) micro/nano structures made of narrow electronic bandgap semiconductor materials have important applications in a wide range of disciplines. Direct laser writing (DLW) provides the unparalleled advantage to fabricate 3D arbitrary geometric structures at the micro and nano meter scale. The fabrication of 3D structures within bulk narrow electronic bandgap semiconductor materials by DLW is challenged for the top-down strategy due to their narrow bandgap and high refractive index. Here, we report on the bottom-up strategy for the fabrication of 3D micro/nano structures made from PbSe with an electronic bandgap as narrow as 0.27 eV and a refractive index as high as 4.82 in a solution.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett.27(20), 1824–1826 (2002).
    [CrossRef] [PubMed]
  2. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
    [CrossRef] [PubMed]
  3. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett.78(2), 249–251 (2001).
    [CrossRef]
  4. K. Ohlinger, Y. Lin, Z. Poole, and K. P. Chen, “Undistorted 3D microstructures in SU8 formed through two-photon polymerization,” AIP Advances1(3), 032163 (2011).
    [CrossRef]
  5. J. Serbin and M. Gu, “Superprism phenomena in waveguide-coupled woodpile structures fabricated by two-photon polymerization,” Opt. Express14(8), 3563–3568 (2006).
    [CrossRef] [PubMed]
  6. M. D. Turner, G. E. Schröder-Turk, and M. Gu, “Fabrication and characterization of three-dimensional biomimetic chiral composites,” Opt. Express19(10), 10001–10008 (2011).
    [CrossRef] [PubMed]
  7. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
    [CrossRef]
  8. E. Nicoletti, D. Bulla, B. Luther-Davies, and M. Gu, “Generation of λ/12 nanowires in chalcogenide glasses,” Nano Lett.11(10), 4218–4221 (2011).
    [CrossRef] [PubMed]
  9. A. Rodenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater.21(34), 3526–3530 (2009).
    [CrossRef]
  10. M. Bass, Handbook of Optics, 2nd ed., Vol. 2 (McGraw-Hill 1994). This can also be found at http://refractiveindex.info/?group=CRYSTALS&material .
  11. I. Moreels, Z. Hens, P. Kockaert, J. Loicq, and D. Van Thourhout, “Spectroscopy of the nonlinear refractive index of colloidal PbSe nanocrystals,” Appl. Phys. Lett.89(19), 193106 (2006).
    [CrossRef]
  12. H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third‐order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys.74(6), 3683–3687 (1993).
    [CrossRef]
  13. R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots,” Nano Lett.5(5), 865–871 (2005).
    [CrossRef] [PubMed]
  14. D. Parker and D. J. Singh, “High-temperature thermoelectric performance of heavily doped PbSe,” Phys. Rev. B82(3), 035204 (2010).
    [CrossRef]
  15. B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express19(10), 9419–9425 (2011).
    [CrossRef] [PubMed]
  16. H. I. De Lasa and B. S. Rosales, Advances in Chemical Engineering (Academic Press, 2009) pp. 37–67.
  17. J. Ouyang, C. Schuurmans, Y. Zhang, R. Nagelkerke, X. Wu, D. Kingston, Z. Y. Wang, D. Wilkinson, C. Li, D. M. Leek, Y. Tao, and K. Yu, “Low-temperature approach to high-yield and reproducible syntheses of high-quality small-sized PbSe colloidal nanocrystals for photovoltaic applications,” ACS Appl. Mater. Interfaces3(2), 553–565 (2011).
    [CrossRef] [PubMed]
  18. W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent,” Chem. Mater.16(17), 3318–3322 (2004).
    [CrossRef]
  19. J. Joo, J. M. Pietryga, J. A. McGuire, S. H. Jeon, D. J. Williams, H. L. Wang, and V. I. Klimov, “A reduction pathway in the synthesis of PbSe nanocrystal quantum dots,” J. Am. Chem. Soc.131(30), 10620–10628 (2009).
    [CrossRef] [PubMed]
  20. T. Rajh, D. M. Tiede, and M. C. Thurnauer, “Surface modification of TiO2 nanoparticles with bidentate ligands studied by EPR spectroscopy,” J. Non-Cryst. Solids207, 815–820 (1996).
    [CrossRef]
  21. M. C. Thurnauer, T. Rajh, D. M. Tiede, P. S. Lakkaraju, A. Sousa, A. D. Garnovskii, D. A. Garnovskii, B. O. Roos, C. Vallance, and B. R. Wood, “Surface modification of TiO2: correlation between structure, charge separation, and reduction properties,” Acta Chem. Scand. A51, 610–618 (1997).
    [CrossRef]
  22. L. Murruni, F. Conde, G. Leyva, and M. I. Litter, “Photocatalytic reduction of Pb(II) over TiO2: New insights on the effect of different electron donors,” Appl. Catal. B84(3-4), 563–569 (2008).
    [CrossRef]
  23. L. Murruni, G. Leyva, and M. I. Litter, “Photocatalytic removal of Pb(II) over TiO2 and Pt–TiO2 powders,” Catal. Today129(1-2), 127–135 (2007).
    [CrossRef]
  24. A. M. Smith and S. Nie, “Semiconductor nanocrystals: Structure, properties, and band gap engineering,” Acc. Chem. Res.43(2), 190–200 (2010).
    [CrossRef] [PubMed]
  25. M. Nirmal and L. Brus, “Luminescence photophysics in semiconductor nanocrystals,” Acc. Chem. Res.32(5), 407–414 (1999).
    [CrossRef]

2011 (5)

K. Ohlinger, Y. Lin, Z. Poole, and K. P. Chen, “Undistorted 3D microstructures in SU8 formed through two-photon polymerization,” AIP Advances1(3), 032163 (2011).
[CrossRef]

E. Nicoletti, D. Bulla, B. Luther-Davies, and M. Gu, “Generation of λ/12 nanowires in chalcogenide glasses,” Nano Lett.11(10), 4218–4221 (2011).
[CrossRef] [PubMed]

M. D. Turner, G. E. Schröder-Turk, and M. Gu, “Fabrication and characterization of three-dimensional biomimetic chiral composites,” Opt. Express19(10), 10001–10008 (2011).
[CrossRef] [PubMed]

B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express19(10), 9419–9425 (2011).
[CrossRef] [PubMed]

J. Ouyang, C. Schuurmans, Y. Zhang, R. Nagelkerke, X. Wu, D. Kingston, Z. Y. Wang, D. Wilkinson, C. Li, D. M. Leek, Y. Tao, and K. Yu, “Low-temperature approach to high-yield and reproducible syntheses of high-quality small-sized PbSe colloidal nanocrystals for photovoltaic applications,” ACS Appl. Mater. Interfaces3(2), 553–565 (2011).
[CrossRef] [PubMed]

2010 (2)

D. Parker and D. J. Singh, “High-temperature thermoelectric performance of heavily doped PbSe,” Phys. Rev. B82(3), 035204 (2010).
[CrossRef]

A. M. Smith and S. Nie, “Semiconductor nanocrystals: Structure, properties, and band gap engineering,” Acc. Chem. Res.43(2), 190–200 (2010).
[CrossRef] [PubMed]

2009 (2)

J. Joo, J. M. Pietryga, J. A. McGuire, S. H. Jeon, D. J. Williams, H. L. Wang, and V. I. Klimov, “A reduction pathway in the synthesis of PbSe nanocrystal quantum dots,” J. Am. Chem. Soc.131(30), 10620–10628 (2009).
[CrossRef] [PubMed]

A. Rodenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater.21(34), 3526–3530 (2009).
[CrossRef]

2008 (2)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

L. Murruni, F. Conde, G. Leyva, and M. I. Litter, “Photocatalytic reduction of Pb(II) over TiO2: New insights on the effect of different electron donors,” Appl. Catal. B84(3-4), 563–569 (2008).
[CrossRef]

2007 (1)

L. Murruni, G. Leyva, and M. I. Litter, “Photocatalytic removal of Pb(II) over TiO2 and Pt–TiO2 powders,” Catal. Today129(1-2), 127–135 (2007).
[CrossRef]

2006 (3)

J. Serbin and M. Gu, “Superprism phenomena in waveguide-coupled woodpile structures fabricated by two-photon polymerization,” Opt. Express14(8), 3563–3568 (2006).
[CrossRef] [PubMed]

I. Moreels, Z. Hens, P. Kockaert, J. Loicq, and D. Van Thourhout, “Spectroscopy of the nonlinear refractive index of colloidal PbSe nanocrystals,” Appl. Phys. Lett.89(19), 193106 (2006).
[CrossRef]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

2005 (1)

R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots,” Nano Lett.5(5), 865–871 (2005).
[CrossRef] [PubMed]

2004 (1)

W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent,” Chem. Mater.16(17), 3318–3322 (2004).
[CrossRef]

2002 (1)

2001 (1)

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett.78(2), 249–251 (2001).
[CrossRef]

1999 (1)

M. Nirmal and L. Brus, “Luminescence photophysics in semiconductor nanocrystals,” Acc. Chem. Res.32(5), 407–414 (1999).
[CrossRef]

1997 (1)

M. C. Thurnauer, T. Rajh, D. M. Tiede, P. S. Lakkaraju, A. Sousa, A. D. Garnovskii, D. A. Garnovskii, B. O. Roos, C. Vallance, and B. R. Wood, “Surface modification of TiO2: correlation between structure, charge separation, and reduction properties,” Acta Chem. Scand. A51, 610–618 (1997).
[CrossRef]

1996 (1)

T. Rajh, D. M. Tiede, and M. C. Thurnauer, “Surface modification of TiO2 nanoparticles with bidentate ligands studied by EPR spectroscopy,” J. Non-Cryst. Solids207, 815–820 (1996).
[CrossRef]

1993 (1)

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third‐order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys.74(6), 3683–3687 (1993).
[CrossRef]

Beard, M. C.

R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots,” Nano Lett.5(5), 865–871 (2005).
[CrossRef] [PubMed]

Booth, M. J.

Brus, L.

M. Nirmal and L. Brus, “Luminescence photophysics in semiconductor nanocrystals,” Acc. Chem. Res.32(5), 407–414 (1999).
[CrossRef]

Bulla, D.

E. Nicoletti, D. Bulla, B. Luther-Davies, and M. Gu, “Generation of λ/12 nanowires in chalcogenide glasses,” Nano Lett.11(10), 4218–4221 (2011).
[CrossRef] [PubMed]

Chen, K. P.

K. Ohlinger, Y. Lin, Z. Poole, and K. P. Chen, “Undistorted 3D microstructures in SU8 formed through two-photon polymerization,” AIP Advances1(3), 032163 (2011).
[CrossRef]

Colvin, V. L.

W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent,” Chem. Mater.16(17), 3318–3322 (2004).
[CrossRef]

Conde, F.

L. Murruni, F. Conde, G. Leyva, and M. I. Litter, “Photocatalytic reduction of Pb(II) over TiO2: New insights on the effect of different electron donors,” Appl. Catal. B84(3-4), 563–569 (2008).
[CrossRef]

Cumming, B. P.

Deubel, M.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

Efros, A. L.

R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots,” Nano Lett.5(5), 865–871 (2005).
[CrossRef] [PubMed]

Ellingson, R. J.

R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots,” Nano Lett.5(5), 865–871 (2005).
[CrossRef] [PubMed]

Falkner, J. C.

W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent,” Chem. Mater.16(17), 3318–3322 (2004).
[CrossRef]

Galajda, P.

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett.78(2), 249–251 (2001).
[CrossRef]

Garnovskii, A. D.

M. C. Thurnauer, T. Rajh, D. M. Tiede, P. S. Lakkaraju, A. Sousa, A. D. Garnovskii, D. A. Garnovskii, B. O. Roos, C. Vallance, and B. R. Wood, “Surface modification of TiO2: correlation between structure, charge separation, and reduction properties,” Acta Chem. Scand. A51, 610–618 (1997).
[CrossRef]

Garnovskii, D. A.

M. C. Thurnauer, T. Rajh, D. M. Tiede, P. S. Lakkaraju, A. Sousa, A. D. Garnovskii, D. A. Garnovskii, B. O. Roos, C. Vallance, and B. R. Wood, “Surface modification of TiO2: correlation between structure, charge separation, and reduction properties,” Acta Chem. Scand. A51, 610–618 (1997).
[CrossRef]

Gu, M.

Hens, Z.

I. Moreels, Z. Hens, P. Kockaert, J. Loicq, and D. Van Thourhout, “Spectroscopy of the nonlinear refractive index of colloidal PbSe nanocrystals,” Appl. Phys. Lett.89(19), 193106 (2006).
[CrossRef]

Jaque, D.

A. Rodenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater.21(34), 3526–3530 (2009).
[CrossRef]

Jeon, S. H.

J. Joo, J. M. Pietryga, J. A. McGuire, S. H. Jeon, D. J. Williams, H. L. Wang, and V. I. Klimov, “A reduction pathway in the synthesis of PbSe nanocrystal quantum dots,” J. Am. Chem. Soc.131(30), 10620–10628 (2009).
[CrossRef] [PubMed]

Jesacher, A.

John, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

Johnson, J. C.

R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots,” Nano Lett.5(5), 865–871 (2005).
[CrossRef] [PubMed]

Joo, J.

J. Joo, J. M. Pietryga, J. A. McGuire, S. H. Jeon, D. J. Williams, H. L. Wang, and V. I. Klimov, “A reduction pathway in the synthesis of PbSe nanocrystal quantum dots,” J. Am. Chem. Soc.131(30), 10620–10628 (2009).
[CrossRef] [PubMed]

Kanbara, H.

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third‐order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys.74(6), 3683–3687 (1993).
[CrossRef]

Kingston, D.

J. Ouyang, C. Schuurmans, Y. Zhang, R. Nagelkerke, X. Wu, D. Kingston, Z. Y. Wang, D. Wilkinson, C. Li, D. M. Leek, Y. Tao, and K. Yu, “Low-temperature approach to high-yield and reproducible syntheses of high-quality small-sized PbSe colloidal nanocrystals for photovoltaic applications,” ACS Appl. Mater. Interfaces3(2), 553–565 (2011).
[CrossRef] [PubMed]

Klimov, V. I.

J. Joo, J. M. Pietryga, J. A. McGuire, S. H. Jeon, D. J. Williams, H. L. Wang, and V. I. Klimov, “A reduction pathway in the synthesis of PbSe nanocrystal quantum dots,” J. Am. Chem. Soc.131(30), 10620–10628 (2009).
[CrossRef] [PubMed]

Kobayashi, H.

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third‐order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys.74(6), 3683–3687 (1993).
[CrossRef]

Kockaert, P.

I. Moreels, Z. Hens, P. Kockaert, J. Loicq, and D. Van Thourhout, “Spectroscopy of the nonlinear refractive index of colloidal PbSe nanocrystals,” Appl. Phys. Lett.89(19), 193106 (2006).
[CrossRef]

Koga, M.

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third‐order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys.74(6), 3683–3687 (1993).
[CrossRef]

Kubodera, K.

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third‐order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys.74(6), 3683–3687 (1993).
[CrossRef]

Lakkaraju, P. S.

M. C. Thurnauer, T. Rajh, D. M. Tiede, P. S. Lakkaraju, A. Sousa, A. D. Garnovskii, D. A. Garnovskii, B. O. Roos, C. Vallance, and B. R. Wood, “Surface modification of TiO2: correlation between structure, charge separation, and reduction properties,” Acta Chem. Scand. A51, 610–618 (1997).
[CrossRef]

Leek, D. M.

J. Ouyang, C. Schuurmans, Y. Zhang, R. Nagelkerke, X. Wu, D. Kingston, Z. Y. Wang, D. Wilkinson, C. Li, D. M. Leek, Y. Tao, and K. Yu, “Low-temperature approach to high-yield and reproducible syntheses of high-quality small-sized PbSe colloidal nanocrystals for photovoltaic applications,” ACS Appl. Mater. Interfaces3(2), 553–565 (2011).
[CrossRef] [PubMed]

Leyva, G.

L. Murruni, F. Conde, G. Leyva, and M. I. Litter, “Photocatalytic reduction of Pb(II) over TiO2: New insights on the effect of different electron donors,” Appl. Catal. B84(3-4), 563–569 (2008).
[CrossRef]

L. Murruni, G. Leyva, and M. I. Litter, “Photocatalytic removal of Pb(II) over TiO2 and Pt–TiO2 powders,” Catal. Today129(1-2), 127–135 (2007).
[CrossRef]

Li, C.

J. Ouyang, C. Schuurmans, Y. Zhang, R. Nagelkerke, X. Wu, D. Kingston, Z. Y. Wang, D. Wilkinson, C. Li, D. M. Leek, Y. Tao, and K. Yu, “Low-temperature approach to high-yield and reproducible syntheses of high-quality small-sized PbSe colloidal nanocrystals for photovoltaic applications,” ACS Appl. Mater. Interfaces3(2), 553–565 (2011).
[CrossRef] [PubMed]

Lin, Y.

K. Ohlinger, Y. Lin, Z. Poole, and K. P. Chen, “Undistorted 3D microstructures in SU8 formed through two-photon polymerization,” AIP Advances1(3), 032163 (2011).
[CrossRef]

Linden, S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

Litter, M. I.

L. Murruni, F. Conde, G. Leyva, and M. I. Litter, “Photocatalytic reduction of Pb(II) over TiO2: New insights on the effect of different electron donors,” Appl. Catal. B84(3-4), 563–569 (2008).
[CrossRef]

L. Murruni, G. Leyva, and M. I. Litter, “Photocatalytic removal of Pb(II) over TiO2 and Pt–TiO2 powders,” Catal. Today129(1-2), 127–135 (2007).
[CrossRef]

Loicq, J.

I. Moreels, Z. Hens, P. Kockaert, J. Loicq, and D. Van Thourhout, “Spectroscopy of the nonlinear refractive index of colloidal PbSe nanocrystals,” Appl. Phys. Lett.89(19), 193106 (2006).
[CrossRef]

Luther-Davies, B.

E. Nicoletti, D. Bulla, B. Luther-Davies, and M. Gu, “Generation of λ/12 nanowires in chalcogenide glasses,” Nano Lett.11(10), 4218–4221 (2011).
[CrossRef] [PubMed]

McGuire, J. A.

J. Joo, J. M. Pietryga, J. A. McGuire, S. H. Jeon, D. J. Williams, H. L. Wang, and V. I. Klimov, “A reduction pathway in the synthesis of PbSe nanocrystal quantum dots,” J. Am. Chem. Soc.131(30), 10620–10628 (2009).
[CrossRef] [PubMed]

Micic, O. I.

R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots,” Nano Lett.5(5), 865–871 (2005).
[CrossRef] [PubMed]

Moreels, I.

I. Moreels, Z. Hens, P. Kockaert, J. Loicq, and D. Van Thourhout, “Spectroscopy of the nonlinear refractive index of colloidal PbSe nanocrystals,” Appl. Phys. Lett.89(19), 193106 (2006).
[CrossRef]

Murruni, L.

L. Murruni, F. Conde, G. Leyva, and M. I. Litter, “Photocatalytic reduction of Pb(II) over TiO2: New insights on the effect of different electron donors,” Appl. Catal. B84(3-4), 563–569 (2008).
[CrossRef]

L. Murruni, G. Leyva, and M. I. Litter, “Photocatalytic removal of Pb(II) over TiO2 and Pt–TiO2 powders,” Catal. Today129(1-2), 127–135 (2007).
[CrossRef]

Nagelkerke, R.

J. Ouyang, C. Schuurmans, Y. Zhang, R. Nagelkerke, X. Wu, D. Kingston, Z. Y. Wang, D. Wilkinson, C. Li, D. M. Leek, Y. Tao, and K. Yu, “Low-temperature approach to high-yield and reproducible syntheses of high-quality small-sized PbSe colloidal nanocrystals for photovoltaic applications,” ACS Appl. Mater. Interfaces3(2), 553–565 (2011).
[CrossRef] [PubMed]

Nicoletti, E.

E. Nicoletti, D. Bulla, B. Luther-Davies, and M. Gu, “Generation of λ/12 nanowires in chalcogenide glasses,” Nano Lett.11(10), 4218–4221 (2011).
[CrossRef] [PubMed]

Nie, S.

A. M. Smith and S. Nie, “Semiconductor nanocrystals: Structure, properties, and band gap engineering,” Acc. Chem. Res.43(2), 190–200 (2010).
[CrossRef] [PubMed]

Nirmal, M.

M. Nirmal and L. Brus, “Luminescence photophysics in semiconductor nanocrystals,” Acc. Chem. Res.32(5), 407–414 (1999).
[CrossRef]

Nozik, A. J.

R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots,” Nano Lett.5(5), 865–871 (2005).
[CrossRef] [PubMed]

Ohlinger, K.

K. Ohlinger, Y. Lin, Z. Poole, and K. P. Chen, “Undistorted 3D microstructures in SU8 formed through two-photon polymerization,” AIP Advances1(3), 032163 (2011).
[CrossRef]

Ormos, P.

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett.78(2), 249–251 (2001).
[CrossRef]

Ouyang, J.

J. Ouyang, C. Schuurmans, Y. Zhang, R. Nagelkerke, X. Wu, D. Kingston, Z. Y. Wang, D. Wilkinson, C. Li, D. M. Leek, Y. Tao, and K. Yu, “Low-temperature approach to high-yield and reproducible syntheses of high-quality small-sized PbSe colloidal nanocrystals for photovoltaic applications,” ACS Appl. Mater. Interfaces3(2), 553–565 (2011).
[CrossRef] [PubMed]

Ozin, G. A.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

Parker, D.

D. Parker and D. J. Singh, “High-temperature thermoelectric performance of heavily doped PbSe,” Phys. Rev. B82(3), 035204 (2010).
[CrossRef]

Pérez-Willard, F.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

Pietryga, J. M.

J. Joo, J. M. Pietryga, J. A. McGuire, S. H. Jeon, D. J. Williams, H. L. Wang, and V. I. Klimov, “A reduction pathway in the synthesis of PbSe nanocrystal quantum dots,” J. Am. Chem. Soc.131(30), 10620–10628 (2009).
[CrossRef] [PubMed]

Plet, C.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

Poole, Z.

K. Ohlinger, Y. Lin, Z. Poole, and K. P. Chen, “Undistorted 3D microstructures in SU8 formed through two-photon polymerization,” AIP Advances1(3), 032163 (2011).
[CrossRef]

Rajh, T.

M. C. Thurnauer, T. Rajh, D. M. Tiede, P. S. Lakkaraju, A. Sousa, A. D. Garnovskii, D. A. Garnovskii, B. O. Roos, C. Vallance, and B. R. Wood, “Surface modification of TiO2: correlation between structure, charge separation, and reduction properties,” Acta Chem. Scand. A51, 610–618 (1997).
[CrossRef]

T. Rajh, D. M. Tiede, and M. C. Thurnauer, “Surface modification of TiO2 nanoparticles with bidentate ligands studied by EPR spectroscopy,” J. Non-Cryst. Solids207, 815–820 (1996).
[CrossRef]

Rill, M. S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

Rodenas, A.

A. Rodenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater.21(34), 3526–3530 (2009).
[CrossRef]

Roos, B. O.

M. C. Thurnauer, T. Rajh, D. M. Tiede, P. S. Lakkaraju, A. Sousa, A. D. Garnovskii, D. A. Garnovskii, B. O. Roos, C. Vallance, and B. R. Wood, “Surface modification of TiO2: correlation between structure, charge separation, and reduction properties,” Acta Chem. Scand. A51, 610–618 (1997).
[CrossRef]

Schröder-Turk, G. E.

Schuurmans, C.

J. Ouyang, C. Schuurmans, Y. Zhang, R. Nagelkerke, X. Wu, D. Kingston, Z. Y. Wang, D. Wilkinson, C. Li, D. M. Leek, Y. Tao, and K. Yu, “Low-temperature approach to high-yield and reproducible syntheses of high-quality small-sized PbSe colloidal nanocrystals for photovoltaic applications,” ACS Appl. Mater. Interfaces3(2), 553–565 (2011).
[CrossRef] [PubMed]

Serbin, J.

Shabaev, A.

R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots,” Nano Lett.5(5), 865–871 (2005).
[CrossRef] [PubMed]

Shih, B. S.

W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent,” Chem. Mater.16(17), 3318–3322 (2004).
[CrossRef]

Singh, D. J.

D. Parker and D. J. Singh, “High-temperature thermoelectric performance of heavily doped PbSe,” Phys. Rev. B82(3), 035204 (2010).
[CrossRef]

Smith, A. M.

A. M. Smith and S. Nie, “Semiconductor nanocrystals: Structure, properties, and band gap engineering,” Acc. Chem. Res.43(2), 190–200 (2010).
[CrossRef] [PubMed]

Sousa, A.

M. C. Thurnauer, T. Rajh, D. M. Tiede, P. S. Lakkaraju, A. Sousa, A. D. Garnovskii, D. A. Garnovskii, B. O. Roos, C. Vallance, and B. R. Wood, “Surface modification of TiO2: correlation between structure, charge separation, and reduction properties,” Acta Chem. Scand. A51, 610–618 (1997).
[CrossRef]

Staude, I.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

Straub, M.

Tao, Y.

J. Ouyang, C. Schuurmans, Y. Zhang, R. Nagelkerke, X. Wu, D. Kingston, Z. Y. Wang, D. Wilkinson, C. Li, D. M. Leek, Y. Tao, and K. Yu, “Low-temperature approach to high-yield and reproducible syntheses of high-quality small-sized PbSe colloidal nanocrystals for photovoltaic applications,” ACS Appl. Mater. Interfaces3(2), 553–565 (2011).
[CrossRef] [PubMed]

Thiel, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

Thurnauer, M. C.

M. C. Thurnauer, T. Rajh, D. M. Tiede, P. S. Lakkaraju, A. Sousa, A. D. Garnovskii, D. A. Garnovskii, B. O. Roos, C. Vallance, and B. R. Wood, “Surface modification of TiO2: correlation between structure, charge separation, and reduction properties,” Acta Chem. Scand. A51, 610–618 (1997).
[CrossRef]

T. Rajh, D. M. Tiede, and M. C. Thurnauer, “Surface modification of TiO2 nanoparticles with bidentate ligands studied by EPR spectroscopy,” J. Non-Cryst. Solids207, 815–820 (1996).
[CrossRef]

Tiede, D. M.

M. C. Thurnauer, T. Rajh, D. M. Tiede, P. S. Lakkaraju, A. Sousa, A. D. Garnovskii, D. A. Garnovskii, B. O. Roos, C. Vallance, and B. R. Wood, “Surface modification of TiO2: correlation between structure, charge separation, and reduction properties,” Acta Chem. Scand. A51, 610–618 (1997).
[CrossRef]

T. Rajh, D. M. Tiede, and M. C. Thurnauer, “Surface modification of TiO2 nanoparticles with bidentate ligands studied by EPR spectroscopy,” J. Non-Cryst. Solids207, 815–820 (1996).
[CrossRef]

Turner, M. D.

Vallance, C.

M. C. Thurnauer, T. Rajh, D. M. Tiede, P. S. Lakkaraju, A. Sousa, A. D. Garnovskii, D. A. Garnovskii, B. O. Roos, C. Vallance, and B. R. Wood, “Surface modification of TiO2: correlation between structure, charge separation, and reduction properties,” Acta Chem. Scand. A51, 610–618 (1997).
[CrossRef]

Van Thourhout, D.

I. Moreels, Z. Hens, P. Kockaert, J. Loicq, and D. Van Thourhout, “Spectroscopy of the nonlinear refractive index of colloidal PbSe nanocrystals,” Appl. Phys. Lett.89(19), 193106 (2006).
[CrossRef]

von Freymann, G.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

Wang, H. L.

J. Joo, J. M. Pietryga, J. A. McGuire, S. H. Jeon, D. J. Williams, H. L. Wang, and V. I. Klimov, “A reduction pathway in the synthesis of PbSe nanocrystal quantum dots,” J. Am. Chem. Soc.131(30), 10620–10628 (2009).
[CrossRef] [PubMed]

Wang, Z. Y.

J. Ouyang, C. Schuurmans, Y. Zhang, R. Nagelkerke, X. Wu, D. Kingston, Z. Y. Wang, D. Wilkinson, C. Li, D. M. Leek, Y. Tao, and K. Yu, “Low-temperature approach to high-yield and reproducible syntheses of high-quality small-sized PbSe colloidal nanocrystals for photovoltaic applications,” ACS Appl. Mater. Interfaces3(2), 553–565 (2011).
[CrossRef] [PubMed]

Wegener, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

Wilkinson, D.

J. Ouyang, C. Schuurmans, Y. Zhang, R. Nagelkerke, X. Wu, D. Kingston, Z. Y. Wang, D. Wilkinson, C. Li, D. M. Leek, Y. Tao, and K. Yu, “Low-temperature approach to high-yield and reproducible syntheses of high-quality small-sized PbSe colloidal nanocrystals for photovoltaic applications,” ACS Appl. Mater. Interfaces3(2), 553–565 (2011).
[CrossRef] [PubMed]

Williams, D. J.

J. Joo, J. M. Pietryga, J. A. McGuire, S. H. Jeon, D. J. Williams, H. L. Wang, and V. I. Klimov, “A reduction pathway in the synthesis of PbSe nanocrystal quantum dots,” J. Am. Chem. Soc.131(30), 10620–10628 (2009).
[CrossRef] [PubMed]

Wilson, T.

Wong, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

Wood, B. R.

M. C. Thurnauer, T. Rajh, D. M. Tiede, P. S. Lakkaraju, A. Sousa, A. D. Garnovskii, D. A. Garnovskii, B. O. Roos, C. Vallance, and B. R. Wood, “Surface modification of TiO2: correlation between structure, charge separation, and reduction properties,” Acta Chem. Scand. A51, 610–618 (1997).
[CrossRef]

Wu, X.

J. Ouyang, C. Schuurmans, Y. Zhang, R. Nagelkerke, X. Wu, D. Kingston, Z. Y. Wang, D. Wilkinson, C. Li, D. M. Leek, Y. Tao, and K. Yu, “Low-temperature approach to high-yield and reproducible syntheses of high-quality small-sized PbSe colloidal nanocrystals for photovoltaic applications,” ACS Appl. Mater. Interfaces3(2), 553–565 (2011).
[CrossRef] [PubMed]

Yu, K.

J. Ouyang, C. Schuurmans, Y. Zhang, R. Nagelkerke, X. Wu, D. Kingston, Z. Y. Wang, D. Wilkinson, C. Li, D. M. Leek, Y. Tao, and K. Yu, “Low-temperature approach to high-yield and reproducible syntheses of high-quality small-sized PbSe colloidal nanocrystals for photovoltaic applications,” ACS Appl. Mater. Interfaces3(2), 553–565 (2011).
[CrossRef] [PubMed]

Yu, P.

R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots,” Nano Lett.5(5), 865–871 (2005).
[CrossRef] [PubMed]

Yu, W. W.

W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent,” Chem. Mater.16(17), 3318–3322 (2004).
[CrossRef]

Zhang, Y.

J. Ouyang, C. Schuurmans, Y. Zhang, R. Nagelkerke, X. Wu, D. Kingston, Z. Y. Wang, D. Wilkinson, C. Li, D. M. Leek, Y. Tao, and K. Yu, “Low-temperature approach to high-yield and reproducible syntheses of high-quality small-sized PbSe colloidal nanocrystals for photovoltaic applications,” ACS Appl. Mater. Interfaces3(2), 553–565 (2011).
[CrossRef] [PubMed]

Zhou, G.

A. Rodenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater.21(34), 3526–3530 (2009).
[CrossRef]

Acc. Chem. Res. (2)

A. M. Smith and S. Nie, “Semiconductor nanocrystals: Structure, properties, and band gap engineering,” Acc. Chem. Res.43(2), 190–200 (2010).
[CrossRef] [PubMed]

M. Nirmal and L. Brus, “Luminescence photophysics in semiconductor nanocrystals,” Acc. Chem. Res.32(5), 407–414 (1999).
[CrossRef]

ACS Appl. Mater. Interfaces (1)

J. Ouyang, C. Schuurmans, Y. Zhang, R. Nagelkerke, X. Wu, D. Kingston, Z. Y. Wang, D. Wilkinson, C. Li, D. M. Leek, Y. Tao, and K. Yu, “Low-temperature approach to high-yield and reproducible syntheses of high-quality small-sized PbSe colloidal nanocrystals for photovoltaic applications,” ACS Appl. Mater. Interfaces3(2), 553–565 (2011).
[CrossRef] [PubMed]

Acta Chem. Scand. A (1)

M. C. Thurnauer, T. Rajh, D. M. Tiede, P. S. Lakkaraju, A. Sousa, A. D. Garnovskii, D. A. Garnovskii, B. O. Roos, C. Vallance, and B. R. Wood, “Surface modification of TiO2: correlation between structure, charge separation, and reduction properties,” Acta Chem. Scand. A51, 610–618 (1997).
[CrossRef]

Adv. Mater. (2)

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

A. Rodenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater.21(34), 3526–3530 (2009).
[CrossRef]

AIP Advances (1)

K. Ohlinger, Y. Lin, Z. Poole, and K. P. Chen, “Undistorted 3D microstructures in SU8 formed through two-photon polymerization,” AIP Advances1(3), 032163 (2011).
[CrossRef]

Appl. Catal. B (1)

L. Murruni, F. Conde, G. Leyva, and M. I. Litter, “Photocatalytic reduction of Pb(II) over TiO2: New insights on the effect of different electron donors,” Appl. Catal. B84(3-4), 563–569 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett.78(2), 249–251 (2001).
[CrossRef]

I. Moreels, Z. Hens, P. Kockaert, J. Loicq, and D. Van Thourhout, “Spectroscopy of the nonlinear refractive index of colloidal PbSe nanocrystals,” Appl. Phys. Lett.89(19), 193106 (2006).
[CrossRef]

Catal. Today (1)

L. Murruni, G. Leyva, and M. I. Litter, “Photocatalytic removal of Pb(II) over TiO2 and Pt–TiO2 powders,” Catal. Today129(1-2), 127–135 (2007).
[CrossRef]

Chem. Mater. (1)

W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent,” Chem. Mater.16(17), 3318–3322 (2004).
[CrossRef]

J. Am. Chem. Soc. (1)

J. Joo, J. M. Pietryga, J. A. McGuire, S. H. Jeon, D. J. Williams, H. L. Wang, and V. I. Klimov, “A reduction pathway in the synthesis of PbSe nanocrystal quantum dots,” J. Am. Chem. Soc.131(30), 10620–10628 (2009).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third‐order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys.74(6), 3683–3687 (1993).
[CrossRef]

J. Non-Cryst. Solids (1)

T. Rajh, D. M. Tiede, and M. C. Thurnauer, “Surface modification of TiO2 nanoparticles with bidentate ligands studied by EPR spectroscopy,” J. Non-Cryst. Solids207, 815–820 (1996).
[CrossRef]

Nano Lett. (2)

R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots,” Nano Lett.5(5), 865–871 (2005).
[CrossRef] [PubMed]

E. Nicoletti, D. Bulla, B. Luther-Davies, and M. Gu, “Generation of λ/12 nanowires in chalcogenide glasses,” Nano Lett.11(10), 4218–4221 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

D. Parker and D. J. Singh, “High-temperature thermoelectric performance of heavily doped PbSe,” Phys. Rev. B82(3), 035204 (2010).
[CrossRef]

Other (2)

M. Bass, Handbook of Optics, 2nd ed., Vol. 2 (McGraw-Hill 1994). This can also be found at http://refractiveindex.info/?group=CRYSTALS&material .

H. I. De Lasa and B. S. Rosales, Advances in Chemical Engineering (Academic Press, 2009) pp. 37–67.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

A comparison of the top-down strategy and the bottom-up strategy for the fabrication of PbSe material by two-photon DLW. From left to right, the excitation focal spot was moved deeper with an increment of 10 μm. (a) Top-down strategy in PbSe bulk material. (b) Bottom-up strategy in a photoresin. The insert shows a detailed view of the focal spot.

Fig. 2
Fig. 2

Synthesised photoresin for the PbSe material fabrication based on the bottom-up strategy via two-photon DLW. (a) A photograph shows that the photoresin is transparency and colorless. (b) The absorption spectrum of the photoresin, TOPSe precursor and PbOA precursor.

Fig. 3
Fig. 3

Fabrication of the PbSe structures by two-photon DLW in the photoresin. (a) A typical picture taken during the fabrication process from the CCD camera. (b) The SEM images of two dimensional lines. (c) The SEM images of pillars with a height of about 12 μm. (d) The SEM images of 3D structure with different layers. (e) The SEM images of the two dimensional structures after fabrication and annealing. All the scale bars are 1000 nm.

Fig. 4
Fig. 4

(a) Energy dispersive spectrum of the fabricated PbSe structures. (b) The HRTEM image of the fabricated PbSe structures.

Metrics