Abstract

We demonstrate a fiber Bragg grating (FBG) strain sensor with optical frequency combs. To precisely characterize the optical response of the FBG when strain is applied, dual-comb spectroscopy is used. Highly sensitive dual-comb spectroscopy of the FBG enabled strain measurements with a resolution of 34 nε. The optical spectral bandwidth of the measurement exceeds 1 THz. Compared with conventional FBG strain sensor using a continuous-wave laser that requires rather slow frequency scanning with a limited range, the dynamic range and multiplexing capability are significantly improved by using broadband dual-comb spectroscopy.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overviews,” J. Lightwave Technol.15, 1263–1276 (1997).
    [CrossRef]
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Woo, C. G. Askins, M. A. Putnum, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15, 1442–1463 (1997).
    [CrossRef]
  3. M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring - Present status and applications,” Sens. Actuators A.147, 150–164 (2008).
    [CrossRef]
  4. Z. He, Q. Liu, and T. Tokunaga, “Realization of nano-strain-resolution fiber optic static strain sensor for geoscience applications,” CLEO 2012, CM4B (2012).
  5. A. D. Kersey, T. A. Berkoff, and W. M. Morsey, “Multiplexed fiber Bragg grating strain sensor system with a fiber Fabry-Perot wavelength fiber,” Opt. Lett.18, 1370–1372 (1993).
    [CrossRef] [PubMed]
  6. K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol.13, 1243–1249 (1995).
    [CrossRef]
  7. J. H. Chow, D. E. McClelland, and M. B. Gray, “Demonstration of a passive subpicostrain fiber strain sensor,” Opt. Lett.30, 1923–1925 (2005).
    [CrossRef] [PubMed]
  8. T. T. Y. Lam, J. H. Chow, D. A. Shaddock, I. C. M. Littler, G. Gagliardi, M. B. Gray, and D. E. McClelland, “High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing,” Appl. Opt.49, 4029–4033 (2010).
    [CrossRef] [PubMed]
  9. G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330, 1081–1084 (2010).
    [CrossRef] [PubMed]
  10. S. Avino, J. A. Barnes, G. Gagliardi, X. Gu, D. Gutstein, J. R. Mester, C. Nicholaou, and H. P. Loock, “Musical instrument pickup based on a laser locked to an optical fiber resonator,” Opt. Express19, 25057–25065 (2011).
    [CrossRef]
  11. T. T. Y. Lam, G. Gagliardi, M. Salza, J. H. Chow, and P. De Natale, “Optical fiber three-axis accelerometer based on laser locked to π phase-shifted Bragg gratings,” Meas. Sci. Technol.21, 094010 (2010).
    [CrossRef]
  12. T. Udem, R. Holzwarth, and T. Hänsch, “Femtosecond optical frequency combs,” Eur. Phys. J. Special Topics172, 69–79 (2009).
    [CrossRef]
  13. S. Schiller, “Spectrimetry with frequency combs,” Opt. Lett.27, 766–768 (2002)
    [CrossRef]
  14. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency comb spectrometer,” Opt. Lett.29, 1542–1544 (2004).
    [CrossRef] [PubMed]
  15. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A82, 043817 (2010).
    [CrossRef]
  16. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100, 013902 (2008).
    [CrossRef] [PubMed]
  17. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachivili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nature Photon.4, 55–57 (2010).
    [CrossRef]
  18. J. D. Deschênes, P. Giaccari, and J. Genest, “Optical referencing technique with CW laser as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express18, 23358–23370 (2010).
    [CrossRef] [PubMed]
  19. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics3, 351–356 (2009).
    [CrossRef]
  20. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett.34, 2153–2155 (2009).
    [CrossRef] [PubMed]
  21. G. Taurand, P. Giaccari, J. D. Deschênes, and J. Genest, “Time-domain optical reflectometry measurements using a frequency comb interferometer,” Appl. Opt.49, 4413–4419 (2010).
    [CrossRef] [PubMed]
  22. T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Tereaherz frequency comb by multi resolution terahertz spectroscopy,” Appl. Phys. Lett.88, 241104 (2006).
    [CrossRef]
  23. N. Kuse, A. Ozawa, and Y. Kobayashi, “Comb-resolved dual-comb spectroscopy stabilized by free-running continuous-wave lasers,” Appl. Phys. Express5, 112402 (2012).
    [CrossRef]
  24. Q. Liu, T. Tokunaga, and Z. He, “Sub-nano resolution fiber-optic static strain sensor using a sideband interrogation technique,” Opt. Lett.37, 434–436 (2012).
    [CrossRef] [PubMed]
  25. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jrgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett.29, 250–252 (2004)
    [CrossRef] [PubMed]

2012 (3)

Z. He, Q. Liu, and T. Tokunaga, “Realization of nano-strain-resolution fiber optic static strain sensor for geoscience applications,” CLEO 2012, CM4B (2012).

N. Kuse, A. Ozawa, and Y. Kobayashi, “Comb-resolved dual-comb spectroscopy stabilized by free-running continuous-wave lasers,” Appl. Phys. Express5, 112402 (2012).
[CrossRef]

Q. Liu, T. Tokunaga, and Z. He, “Sub-nano resolution fiber-optic static strain sensor using a sideband interrogation technique,” Opt. Lett.37, 434–436 (2012).
[CrossRef] [PubMed]

2011 (1)

2010 (7)

T. T. Y. Lam, G. Gagliardi, M. Salza, J. H. Chow, and P. De Natale, “Optical fiber three-axis accelerometer based on laser locked to π phase-shifted Bragg gratings,” Meas. Sci. Technol.21, 094010 (2010).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A82, 043817 (2010).
[CrossRef]

T. T. Y. Lam, J. H. Chow, D. A. Shaddock, I. C. M. Littler, G. Gagliardi, M. B. Gray, and D. E. McClelland, “High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing,” Appl. Opt.49, 4029–4033 (2010).
[CrossRef] [PubMed]

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330, 1081–1084 (2010).
[CrossRef] [PubMed]

G. Taurand, P. Giaccari, J. D. Deschênes, and J. Genest, “Time-domain optical reflectometry measurements using a frequency comb interferometer,” Appl. Opt.49, 4413–4419 (2010).
[CrossRef] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachivili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nature Photon.4, 55–57 (2010).
[CrossRef]

J. D. Deschênes, P. Giaccari, and J. Genest, “Optical referencing technique with CW laser as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express18, 23358–23370 (2010).
[CrossRef] [PubMed]

2009 (3)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics3, 351–356 (2009).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett.34, 2153–2155 (2009).
[CrossRef] [PubMed]

T. Udem, R. Holzwarth, and T. Hänsch, “Femtosecond optical frequency combs,” Eur. Phys. J. Special Topics172, 69–79 (2009).
[CrossRef]

2008 (2)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100, 013902 (2008).
[CrossRef] [PubMed]

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring - Present status and applications,” Sens. Actuators A.147, 150–164 (2008).
[CrossRef]

2006 (1)

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Tereaherz frequency comb by multi resolution terahertz spectroscopy,” Appl. Phys. Lett.88, 241104 (2006).
[CrossRef]

2005 (1)

2004 (2)

2002 (1)

1997 (2)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overviews,” J. Lightwave Technol.15, 1263–1276 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Woo, C. G. Askins, M. A. Putnum, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15, 1442–1463 (1997).
[CrossRef]

1995 (1)

K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol.13, 1243–1249 (1995).
[CrossRef]

1993 (1)

Araki, T.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Tereaherz frequency comb by multi resolution terahertz spectroscopy,” Appl. Phys. Lett.88, 241104 (2006).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Woo, C. G. Askins, M. A. Putnum, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15, 1442–1463 (1997).
[CrossRef]

Avino, S.

Barnes, J. A.

Berkoff, T. A.

Bernhardt, B.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachivili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nature Photon.4, 55–57 (2010).
[CrossRef]

Bhattacharya, D. K.

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring - Present status and applications,” Sens. Actuators A.147, 150–164 (2008).
[CrossRef]

Chakraborty, A. K.

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring - Present status and applications,” Sens. Actuators A.147, 150–164 (2008).
[CrossRef]

Chow, J. H.

Coddington, I.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A82, 043817 (2010).
[CrossRef]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics3, 351–356 (2009).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett.34, 2153–2155 (2009).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100, 013902 (2008).
[CrossRef] [PubMed]

Dasgupta, K.

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring - Present status and applications,” Sens. Actuators A.147, 150–164 (2008).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Woo, C. G. Askins, M. A. Putnum, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15, 1442–1463 (1997).
[CrossRef]

De Natale, P.

T. T. Y. Lam, G. Gagliardi, M. Salza, J. H. Chow, and P. De Natale, “Optical fiber three-axis accelerometer based on laser locked to π phase-shifted Bragg gratings,” Meas. Sci. Technol.21, 094010 (2010).
[CrossRef]

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330, 1081–1084 (2010).
[CrossRef] [PubMed]

Deschênes, J. D.

Diddams, S. A.

Ferraro, P.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330, 1081–1084 (2010).
[CrossRef] [PubMed]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Woo, C. G. Askins, M. A. Putnum, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15, 1442–1463 (1997).
[CrossRef]

Gagliardi, G.

S. Avino, J. A. Barnes, G. Gagliardi, X. Gu, D. Gutstein, J. R. Mester, C. Nicholaou, and H. P. Loock, “Musical instrument pickup based on a laser locked to an optical fiber resonator,” Opt. Express19, 25057–25065 (2011).
[CrossRef]

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330, 1081–1084 (2010).
[CrossRef] [PubMed]

T. T. Y. Lam, G. Gagliardi, M. Salza, J. H. Chow, and P. De Natale, “Optical fiber three-axis accelerometer based on laser locked to π phase-shifted Bragg gratings,” Meas. Sci. Technol.21, 094010 (2010).
[CrossRef]

T. T. Y. Lam, J. H. Chow, D. A. Shaddock, I. C. M. Littler, G. Gagliardi, M. B. Gray, and D. E. McClelland, “High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing,” Appl. Opt.49, 4029–4033 (2010).
[CrossRef] [PubMed]

Gangopadhyay, T. K.

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring - Present status and applications,” Sens. Actuators A.147, 150–164 (2008).
[CrossRef]

Genest, J.

Giaccari, P.

Gohle, C.

Gray, M. B.

Gu, X.

Guelachivili, G.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachivili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nature Photon.4, 55–57 (2010).
[CrossRef]

Gutstein, D.

Hänsch, T.

T. Udem, R. Holzwarth, and T. Hänsch, “Femtosecond optical frequency combs,” Eur. Phys. J. Special Topics172, 69–79 (2009).
[CrossRef]

Hänsch, T. W.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachivili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nature Photon.4, 55–57 (2010).
[CrossRef]

He, Z.

Q. Liu, T. Tokunaga, and Z. He, “Sub-nano resolution fiber-optic static strain sensor using a sideband interrogation technique,” Opt. Lett.37, 434–436 (2012).
[CrossRef] [PubMed]

Z. He, Q. Liu, and T. Tokunaga, “Realization of nano-strain-resolution fiber optic static strain sensor for geoscience applications,” CLEO 2012, CM4B (2012).

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overviews,” J. Lightwave Technol.15, 1263–1276 (1997).
[CrossRef]

Holzwarth, R.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachivili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nature Photon.4, 55–57 (2010).
[CrossRef]

T. Udem, R. Holzwarth, and T. Hänsch, “Femtosecond optical frequency combs,” Eur. Phys. J. Special Topics172, 69–79 (2009).
[CrossRef]

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency comb spectrometer,” Opt. Lett.29, 1542–1544 (2004).
[CrossRef] [PubMed]

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachivili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nature Photon.4, 55–57 (2010).
[CrossRef]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachivili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nature Photon.4, 55–57 (2010).
[CrossRef]

Jrgensen, C. G.

Kabetani, Y.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Tereaherz frequency comb by multi resolution terahertz spectroscopy,” Appl. Phys. Lett.88, 241104 (2006).
[CrossRef]

Keilmann, F.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Woo, C. G. Askins, M. A. Putnum, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15, 1442–1463 (1997).
[CrossRef]

K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol.13, 1243–1249 (1995).
[CrossRef]

A. D. Kersey, T. A. Berkoff, and W. M. Morsey, “Multiplexed fiber Bragg grating strain sensor system with a fiber Fabry-Perot wavelength fiber,” Opt. Lett.18, 1370–1372 (1993).
[CrossRef] [PubMed]

Kobayashi, Y.

N. Kuse, A. Ozawa, and Y. Kobayashi, “Comb-resolved dual-comb spectroscopy stabilized by free-running continuous-wave lasers,” Appl. Phys. Express5, 112402 (2012).
[CrossRef]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachivili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nature Photon.4, 55–57 (2010).
[CrossRef]

Koo, K. P.

K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol.13, 1243–1249 (1995).
[CrossRef]

Kuse, N.

N. Kuse, A. Ozawa, and Y. Kobayashi, “Comb-resolved dual-comb spectroscopy stabilized by free-running continuous-wave lasers,” Appl. Phys. Express5, 112402 (2012).
[CrossRef]

Lam, T. T. Y.

T. T. Y. Lam, J. H. Chow, D. A. Shaddock, I. C. M. Littler, G. Gagliardi, M. B. Gray, and D. E. McClelland, “High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing,” Appl. Opt.49, 4029–4033 (2010).
[CrossRef] [PubMed]

T. T. Y. Lam, G. Gagliardi, M. Salza, J. H. Chow, and P. De Natale, “Optical fiber three-axis accelerometer based on laser locked to π phase-shifted Bragg gratings,” Meas. Sci. Technol.21, 094010 (2010).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Woo, C. G. Askins, M. A. Putnum, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15, 1442–1463 (1997).
[CrossRef]

Littler, I. C. M.

Liu, Q.

Z. He, Q. Liu, and T. Tokunaga, “Realization of nano-strain-resolution fiber optic static strain sensor for geoscience applications,” CLEO 2012, CM4B (2012).

Q. Liu, T. Tokunaga, and Z. He, “Sub-nano resolution fiber-optic static strain sensor using a sideband interrogation technique,” Opt. Lett.37, 434–436 (2012).
[CrossRef] [PubMed]

Loock, H. P.

Majumder, M.

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring - Present status and applications,” Sens. Actuators A.147, 150–164 (2008).
[CrossRef]

McClelland, D. E.

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overviews,” J. Lightwave Technol.15, 1263–1276 (1997).
[CrossRef]

Mester, J. R.

Morsey, W. M.

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics3, 351–356 (2009).
[CrossRef]

Newbury, N. R.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A82, 043817 (2010).
[CrossRef]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics3, 351–356 (2009).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett.34, 2153–2155 (2009).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100, 013902 (2008).
[CrossRef] [PubMed]

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jrgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett.29, 250–252 (2004)
[CrossRef] [PubMed]

Nicholaou, C.

Nicholson, J. W.

Ozawa, A.

N. Kuse, A. Ozawa, and Y. Kobayashi, “Comb-resolved dual-comb spectroscopy stabilized by free-running continuous-wave lasers,” Appl. Phys. Express5, 112402 (2012).
[CrossRef]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachivili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nature Photon.4, 55–57 (2010).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Woo, C. G. Askins, M. A. Putnum, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15, 1442–1463 (1997).
[CrossRef]

Picqué, N.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachivili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nature Photon.4, 55–57 (2010).
[CrossRef]

Putnum, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Woo, C. G. Askins, M. A. Putnum, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15, 1442–1463 (1997).
[CrossRef]

Salza, M.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330, 1081–1084 (2010).
[CrossRef] [PubMed]

T. T. Y. Lam, G. Gagliardi, M. Salza, J. H. Chow, and P. De Natale, “Optical fiber three-axis accelerometer based on laser locked to π phase-shifted Bragg gratings,” Meas. Sci. Technol.21, 094010 (2010).
[CrossRef]

Saneyoshi, E.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Tereaherz frequency comb by multi resolution terahertz spectroscopy,” Appl. Phys. Lett.88, 241104 (2006).
[CrossRef]

Schiller, S.

Shaddock, D. A.

Swann, W. C.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A82, 043817 (2010).
[CrossRef]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics3, 351–356 (2009).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett.34, 2153–2155 (2009).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100, 013902 (2008).
[CrossRef] [PubMed]

Taurand, G.

Tokunaga, T.

Q. Liu, T. Tokunaga, and Z. He, “Sub-nano resolution fiber-optic static strain sensor using a sideband interrogation technique,” Opt. Lett.37, 434–436 (2012).
[CrossRef] [PubMed]

Z. He, Q. Liu, and T. Tokunaga, “Realization of nano-strain-resolution fiber optic static strain sensor for geoscience applications,” CLEO 2012, CM4B (2012).

Udem, T.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachivili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nature Photon.4, 55–57 (2010).
[CrossRef]

T. Udem, R. Holzwarth, and T. Hänsch, “Femtosecond optical frequency combs,” Eur. Phys. J. Special Topics172, 69–79 (2009).
[CrossRef]

Washburn, B. R.

Woo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Woo, C. G. Askins, M. A. Putnum, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15, 1442–1463 (1997).
[CrossRef]

Yan, M. F.

Yasui, T.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Tereaherz frequency comb by multi resolution terahertz spectroscopy,” Appl. Phys. Lett.88, 241104 (2006).
[CrossRef]

Yokoyama, S.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Tereaherz frequency comb by multi resolution terahertz spectroscopy,” Appl. Phys. Lett.88, 241104 (2006).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Express (1)

N. Kuse, A. Ozawa, and Y. Kobayashi, “Comb-resolved dual-comb spectroscopy stabilized by free-running continuous-wave lasers,” Appl. Phys. Express5, 112402 (2012).
[CrossRef]

Appl. Phys. Lett. (1)

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Tereaherz frequency comb by multi resolution terahertz spectroscopy,” Appl. Phys. Lett.88, 241104 (2006).
[CrossRef]

CLEO 2012 (1)

Z. He, Q. Liu, and T. Tokunaga, “Realization of nano-strain-resolution fiber optic static strain sensor for geoscience applications,” CLEO 2012, CM4B (2012).

Eur. Phys. J. Special Topics (1)

T. Udem, R. Holzwarth, and T. Hänsch, “Femtosecond optical frequency combs,” Eur. Phys. J. Special Topics172, 69–79 (2009).
[CrossRef]

J. Lightwave Technol. (3)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overviews,” J. Lightwave Technol.15, 1263–1276 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Woo, C. G. Askins, M. A. Putnum, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15, 1442–1463 (1997).
[CrossRef]

K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol.13, 1243–1249 (1995).
[CrossRef]

Meas. Sci. Technol. (1)

T. T. Y. Lam, G. Gagliardi, M. Salza, J. H. Chow, and P. De Natale, “Optical fiber three-axis accelerometer based on laser locked to π phase-shifted Bragg gratings,” Meas. Sci. Technol.21, 094010 (2010).
[CrossRef]

Nat. Photonics (1)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics3, 351–356 (2009).
[CrossRef]

Nature Photon. (1)

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachivili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nature Photon.4, 55–57 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (7)

Phys. Rev. A (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A82, 043817 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100, 013902 (2008).
[CrossRef] [PubMed]

Science (1)

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330, 1081–1084 (2010).
[CrossRef] [PubMed]

Sens. Actuators A. (1)

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring - Present status and applications,” Sens. Actuators A.147, 150–164 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Dual-comb spectroscopy and its application to FBG strain sensor. (a) Description of dual-comb spectroscopy in the frequency domain. Dotted black curve denotes time-dependent transmission spectrum of FBG. (b) RF combs obtained by interfering two combs. (c) Description of dual-comb spectroscopy in time domain. (d) Interferometric signals between two combs. Dotted black line denotes moving Fourier window. (e) Instantaneous transmission frequency of FBG.

Fig. 2
Fig. 2

Schematic of experimental setup. BPF, band-pass filter. Both frequency combs are relatively phase locked to each other. A half-wave plate is inserted to balance the power at two detectors.

Fig. 3
Fig. 3

Transmitted spectrum of FBG sensor without applying strain, 150-ms time window was used for Fourier transformation of time-domain interferogram. The result is shown in spans of approximately 1 THz (a), and in approximately 4 GHz (b), which is an expansion of gAh in (a).

Fig. 4
Fig. 4

(a) Instantaneous transmission spectra of FBG when linearly increasing strain is applied. The result is shown in a span of approximately 1 GHz, which corresponds to region gAh in Fig 3(a). (b) Retrieved instantaneous transmission frequency of FBG.

Fig. 5
Fig. 5

(a) Instantaneous transmission spectra of FBG when no strain is applied. The result is shown in a span of approximately 1 GHz, which corresponds to region gAh in Fig 3(a). (b) Retrieved instantaneous transmission frequency of FBG. See text for details.

Fig. 6
Fig. 6

(a) Power contained in the comb-mode (combpower(fn, t)). (b) Transmission spectrum of FBG (the same as the one shown in Fig. 3(a)).

Fig. 7
Fig. 7

(a) Power contained in the comb mode in region B of Fig. 6(b). (b) Blue curves denote combpower(fn, t) for several n’s in between n B + and n B . Red curve denotes coherencefunction(t).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

combpower ( f n , t ) = f n Δ f 2 f n + Δ f 2 experiment ( f , t ) d f
coherencefunction ( t ) = n = n B n B + combpower ( f n , t ) n B + n B
combpower 2 ( f n , t ) = combpower ( f n , t ) coherencefunction ( t )
combpower 3 ( f n , t ) = combpower 2 ( f n , t ) combpower 2 ( f n , t max , n )
Totalerror = n [ FBG ( f n f offset ( t ) ) combpower 3 ( f n , t ) ] 2 d t

Metrics