M. Sarkar, S. Member, D. San, S. Bello, C. V. Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sensors J. 11(8), 1692–1703 (2011).
[Crossref]
S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65-nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys. 50(4), 04DL01 (2011).
[Crossref]
V. Gruev, “Fabrication of a dual-layer aluminum nanowire polarization filter array,” Opt. Express 19(24), 24361–24369 (2011).
[Crossref]
[PubMed]
X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “High-resolution thin “guest-host” Micropolarizer arrays for visible imaging polarimetry,” Opt. Express 19(6), 5565–5573 (2011).
[Crossref]
[PubMed]
V. Gruev, J. Van der Spiegel, and N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express 18(18), 19292–19303 (2010).
[Crossref]
[PubMed]
V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
[Crossref]
[PubMed]
X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776–17787 (2010).
[Crossref]
[PubMed]
M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[Crossref]
F. Boussaid, A Bermak, and V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Tech. Lett. 21(12), 805–807 (2009).
[Crossref]
T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett. 45(4), 228–230 (2009).
[Crossref]
T. Tokuda, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS image sensor with monolithically embedded polarizer for microchemistry systems,” IEEE Trans. Biomed. Circuits Syst. 3(5), 259–266 (2009).
[Crossref]
K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electrooptic imaging system based on ultra-parallel photonic heterodyne for microwave near-fields,” IEEE Trans. Microwave Theory Tech. 55(12), 2782–2791 (2007).
[Crossref]
T. Sato, T. Araki, Y. Sasaki, T. Tsuru, T. Tadokoro, and S. Kawakami, “Compact ellipsometer employing a static polarimeter module with arrayed polarizer and wave-plate elements,” Appl. Opt. 46(22), 4963–4967 (2007).
[Crossref]
[PubMed]
Y. Watanabe, Y. Hayasaka, M. Sato, and N. Tanno, “Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer,” Appl. Opt. 44(8), 1387–1392 (2005).
[Crossref]
[PubMed]
M. Usami, M. Yamashita, K. Fukushima, C. Otani, and K. Kawase, “Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique,” Appl. Phys. Lett. 86(14), 141109 (2005).
[Crossref]
Z. Jiang and X.-C. Zhang, “Terahertz imaging via electrooptic effect,” IEEE Trans. Microwave Theory Tech. 47(12), 2644–2650 (1999).
[Crossref]
M. Sarkar, S. Member, D. San, S. Bello, C. V. Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sensors J. 11(8), 1692–1703 (2011).
[Crossref]
F. Boussaid, A Bermak, and V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Tech. Lett. 21(12), 805–807 (2009).
[Crossref]
X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “High-resolution thin “guest-host” Micropolarizer arrays for visible imaging polarimetry,” Opt. Express 19(6), 5565–5573 (2011).
[Crossref]
[PubMed]
X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776–17787 (2010).
[Crossref]
[PubMed]
X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “High-resolution thin “guest-host” Micropolarizer arrays for visible imaging polarimetry,” Opt. Express 19(6), 5565–5573 (2011).
[Crossref]
[PubMed]
X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776–17787 (2010).
[Crossref]
[PubMed]
F. Boussaid, A Bermak, and V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Tech. Lett. 21(12), 805–807 (2009).
[Crossref]
X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “High-resolution thin “guest-host” Micropolarizer arrays for visible imaging polarimetry,” Opt. Express 19(6), 5565–5573 (2011).
[Crossref]
[PubMed]
X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776–17787 (2010).
[Crossref]
[PubMed]
F. Boussaid, A Bermak, and V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Tech. Lett. 21(12), 805–807 (2009).
[Crossref]
M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[Crossref]
M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[Crossref]
M. Usami, M. Yamashita, K. Fukushima, C. Otani, and K. Kawase, “Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique,” Appl. Phys. Lett. 86(14), 141109 (2005).
[Crossref]
M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[Crossref]
V. Gruev, “Fabrication of a dual-layer aluminum nanowire polarization filter array,” Opt. Express 19(24), 24361–24369 (2011).
[Crossref]
[PubMed]
V. Gruev, J. Van der Spiegel, and N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express 18(18), 19292–19303 (2010).
[Crossref]
[PubMed]
V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
[Crossref]
[PubMed]
M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[Crossref]
M. Sarkar, S. Member, D. San, S. Bello, C. V. Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sensors J. 11(8), 1692–1703 (2011).
[Crossref]
M. Ikeda and Y. Kim, “Measurement and analysis on characteristics of transmission and polarization for 12ML 65nm CMOS,” in Proceedings of the IEEE Sensors (Institute of Electrical and Electronics Engineers, New York, 2010), pp. 548–551.
Z. Jiang and X.-C. Zhang, “Terahertz imaging via electrooptic effect,” IEEE Trans. Microwave Theory Tech. 47(12), 2644–2650 (1999).
[Crossref]
K. Sasagawa, A. Kanno, and M. Tsuchiya, “Instantaneous visualization of K-Band electric near-fields by a live electrooptic imaging system based on double sideband suppressed carrier modulation,” J. Lightwave Technol. 26(15), 2782–2788 (2008).
[Crossref]
K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electrooptic imaging system based on ultra-parallel photonic heterodyne for microwave near-fields,” IEEE Trans. Microwave Theory Tech. 55(12), 2782–2791 (2007).
[Crossref]
K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electrooptic imaging system based on ultra-parallel photonic heterodyne for microwave near-fields,” IEEE Trans. Microwave Theory Tech. 55(12), 2782–2791 (2007).
[Crossref]
M. Usami, M. Yamashita, K. Fukushima, C. Otani, and K. Kawase, “Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique,” Appl. Phys. Lett. 86(14), 141109 (2005).
[Crossref]
M. Ikeda and Y. Kim, “Measurement and analysis on characteristics of transmission and polarization for 12ML 65nm CMOS,” in Proceedings of the IEEE Sensors (Institute of Electrical and Electronics Engineers, New York, 2010), pp. 548–551.
M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[Crossref]
M. Sarkar, S. Member, D. San, S. Bello, C. V. Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sensors J. 11(8), 1692–1703 (2011).
[Crossref]
S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65-nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys. 50(4), 04DL01 (2011).
[Crossref]
S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65-nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys. 50(4), 04DL01 (2011).
[Crossref]
T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett. 45(4), 228–230 (2009).
[Crossref]
T. Tokuda, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS image sensor with monolithically embedded polarizer for microchemistry systems,” IEEE Trans. Biomed. Circuits Syst. 3(5), 259–266 (2009).
[Crossref]
M. Usami, M. Yamashita, K. Fukushima, C. Otani, and K. Kawase, “Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique,” Appl. Phys. Lett. 86(14), 141109 (2005).
[Crossref]
M. Sarkar, S. Member, D. San, S. Bello, C. V. Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sensors J. 11(8), 1692–1703 (2011).
[Crossref]
M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[Crossref]
M. Sarkar, S. Member, D. San, S. Bello, C. V. Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sensors J. 11(8), 1692–1703 (2011).
[Crossref]
S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65-nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys. 50(4), 04DL01 (2011).
[Crossref]
T. Tokuda, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS image sensor with monolithically embedded polarizer for microchemistry systems,” IEEE Trans. Biomed. Circuits Syst. 3(5), 259–266 (2009).
[Crossref]
T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett. 45(4), 228–230 (2009).
[Crossref]
K. Sasagawa, A. Kanno, and M. Tsuchiya, “Instantaneous visualization of K-Band electric near-fields by a live electrooptic imaging system based on double sideband suppressed carrier modulation,” J. Lightwave Technol. 26(15), 2782–2788 (2008).
[Crossref]
K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electrooptic imaging system based on ultra-parallel photonic heterodyne for microwave near-fields,” IEEE Trans. Microwave Theory Tech. 55(12), 2782–2791 (2007).
[Crossref]
T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett. 45(4), 228–230 (2009).
[Crossref]
S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65-nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys. 50(4), 04DL01 (2011).
[Crossref]
M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[Crossref]
Y. Watanabe, Y. Hayasaka, M. Sato, and N. Tanno, “Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer,” Appl. Opt. 44(8), 1387–1392 (2005).
[Crossref]
[PubMed]
M. Akiba, K. P. Chan, and N. Tanno, “Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras,” Opt. Lett. 28(10), 816–818 (2003).
[Crossref]
[PubMed]
M. Sarkar, S. Member, D. San, S. Bello, C. V. Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sensors J. 11(8), 1692–1703 (2011).
[Crossref]
S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65-nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys. 50(4), 04DL01 (2011).
[Crossref]
T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett. 45(4), 228–230 (2009).
[Crossref]
T. Tokuda, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS image sensor with monolithically embedded polarizer for microchemistry systems,” IEEE Trans. Biomed. Circuits Syst. 3(5), 259–266 (2009).
[Crossref]
K. Sasagawa, A. Kanno, and M. Tsuchiya, “Instantaneous visualization of K-Band electric near-fields by a live electrooptic imaging system based on double sideband suppressed carrier modulation,” J. Lightwave Technol. 26(15), 2782–2788 (2008).
[Crossref]
K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electrooptic imaging system based on ultra-parallel photonic heterodyne for microwave near-fields,” IEEE Trans. Microwave Theory Tech. 55(12), 2782–2791 (2007).
[Crossref]
M. Usami, M. Yamashita, K. Fukushima, C. Otani, and K. Kawase, “Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique,” Appl. Phys. Lett. 86(14), 141109 (2005).
[Crossref]
T. Tokuda, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS image sensor with monolithically embedded polarizer for microchemistry systems,” IEEE Trans. Biomed. Circuits Syst. 3(5), 259–266 (2009).
[Crossref]
T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett. 45(4), 228–230 (2009).
[Crossref]
M. Usami, M. Yamashita, K. Fukushima, C. Otani, and K. Kawase, “Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique,” Appl. Phys. Lett. 86(14), 141109 (2005).
[Crossref]
Z. Jiang and X.-C. Zhang, “Terahertz imaging via electrooptic effect,” IEEE Trans. Microwave Theory Tech. 47(12), 2644–2650 (1999).
[Crossref]
X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “High-resolution thin “guest-host” Micropolarizer arrays for visible imaging polarimetry,” Opt. Express 19(6), 5565–5573 (2011).
[Crossref]
[PubMed]
X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776–17787 (2010).
[Crossref]
[PubMed]
T. Sato, T. Araki, Y. Sasaki, T. Tsuru, T. Tadokoro, and S. Kawakami, “Compact ellipsometer employing a static polarimeter module with arrayed polarizer and wave-plate elements,” Appl. Opt. 46(22), 4963–4967 (2007).
[Crossref]
[PubMed]
Y. Watanabe, Y. Hayasaka, M. Sato, and N. Tanno, “Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer,” Appl. Opt. 44(8), 1387–1392 (2005).
[Crossref]
[PubMed]
M. Usami, M. Yamashita, K. Fukushima, C. Otani, and K. Kawase, “Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique,” Appl. Phys. Lett. 86(14), 141109 (2005).
[Crossref]
M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[Crossref]
T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett. 45(4), 228–230 (2009).
[Crossref]
F. Boussaid, A Bermak, and V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Tech. Lett. 21(12), 805–807 (2009).
[Crossref]
M. Sarkar, S. Member, D. San, S. Bello, C. V. Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sensors J. 11(8), 1692–1703 (2011).
[Crossref]
T. Tokuda, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS image sensor with monolithically embedded polarizer for microchemistry systems,” IEEE Trans. Biomed. Circuits Syst. 3(5), 259–266 (2009).
[Crossref]
K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electrooptic imaging system based on ultra-parallel photonic heterodyne for microwave near-fields,” IEEE Trans. Microwave Theory Tech. 55(12), 2782–2791 (2007).
[Crossref]
Z. Jiang and X.-C. Zhang, “Terahertz imaging via electrooptic effect,” IEEE Trans. Microwave Theory Tech. 47(12), 2644–2650 (1999).
[Crossref]
S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65-nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys. 50(4), 04DL01 (2011).
[Crossref]
X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776–17787 (2010).
[Crossref]
[PubMed]
X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “High-resolution thin “guest-host” Micropolarizer arrays for visible imaging polarimetry,” Opt. Express 19(6), 5565–5573 (2011).
[Crossref]
[PubMed]
V. Gruev, J. Van der Spiegel, and N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express 18(18), 19292–19303 (2010).
[Crossref]
[PubMed]
V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
[Crossref]
[PubMed]
V. Gruev, “Fabrication of a dual-layer aluminum nanowire polarization filter array,” Opt. Express 19(24), 24361–24369 (2011).
[Crossref]
[PubMed]
Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express 14(6), 2323–2334 (2006).
[Crossref]
[PubMed]
M. Ikeda and Y. Kim, “Measurement and analysis on characteristics of transmission and polarization for 12ML 65nm CMOS,” in Proceedings of the IEEE Sensors (Institute of Electrical and Electronics Engineers, New York, 2010), pp. 548–551.