Abstract

In this study, we demonstrate a polarization sensitive pixel for a complementary metal-oxide-semiconductor (CMOS) image sensor based on 65-nm standard CMOS technology. Using such a deep-submicron CMOS technology, it is possible to design fine metal patterns smaller than the wavelengths of visible light by using a metal wire layer. We designed and fabricated a metal wire grid polarizer on a 20 × 20 μm2 pixel for image sensor. An extinction ratio of 19.7 dB was observed at a wavelength 750 nm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett.45(4), 228–230 (2009).
    [CrossRef]
  2. T. Tokuda, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS image sensor with monolithically embedded polarizer for microchemistry systems,” IEEE Trans. Biomed. Circuits Syst.3(5), 259–266 (2009).
    [CrossRef]
  3. M. Ikeda and Y. Kim, “Measurement and analysis on characteristics of transmission and polarization for 12ML 65nm CMOS,” in Proceedings of the IEEE Sensors (Institute of Electrical and Electronics Engineers, New York, 2010), pp. 548–551.
  4. M. Sarkar, S. Member, D. San, S. Bello, C. V. Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sensors J.11(8), 1692–1703 (2011).
    [CrossRef]
  5. S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65-nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys.50(4), 04DL01 (2011).
    [CrossRef]
  6. P. B. Catrysse and B. A. Wandell, “Integrated color pixels in 0.18-μm complementary metal oxide semiconductor technology,” J. Opt. Soc. Am. A20(12), 2293–2306 (2003).
    [CrossRef]
  7. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express18(18), 19087–19094 (2010).
    [CrossRef] [PubMed]
  8. V. Gruev, “Fabrication of a dual-layer aluminum nanowire polarization filter array,” Opt. Express19(24), 24361–24369 (2011).
    [CrossRef] [PubMed]
  9. M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett.94(19), 193503 (2009).
    [CrossRef]
  10. F. Boussaid, A Bermak, and V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Tech. Lett.21(12), 805–807 (2009).
    [CrossRef]
  11. X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express18(17), 17776–17787 (2010).
    [CrossRef] [PubMed]
  12. X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “High-resolution thin “guest-host” Micropolarizer arrays for visible imaging polarimetry,” Opt. Express19(6), 5565–5573 (2011).
    [CrossRef] [PubMed]
  13. V. Gruev, J. Van der Spiegel, and N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express18(18), 19292–19303 (2010).
    [CrossRef] [PubMed]
  14. T. Sato, T. Araki, Y. Sasaki, T. Tsuru, T. Tadokoro, and S. Kawakami, “Compact ellipsometer employing a static polarimeter module with arrayed polarizer and wave-plate elements,” Appl. Opt.46(22), 4963–4967 (2007).
    [CrossRef] [PubMed]
  15. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express14(6), 2323–2334 (2006).
    [CrossRef] [PubMed]
  16. Y. Watanabe, Y. Hayasaka, M. Sato, and N. Tanno, “Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer,” Appl. Opt.44(8), 1387–1392 (2005).
    [CrossRef] [PubMed]
  17. M. Akiba, K. P. Chan, and N. Tanno, “Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras,” Opt. Lett.28(10), 816–818 (2003).
    [CrossRef] [PubMed]
  18. Z. Jiang and X.-C. Zhang, “Terahertz imaging via electrooptic effect,” IEEE Trans. Microwave Theory Tech.47(12), 2644–2650 (1999).
    [CrossRef]
  19. M. Usami, M. Yamashita, K. Fukushima, C. Otani, and K. Kawase, “Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique,” Appl. Phys. Lett.86(14), 141109 (2005).
    [CrossRef]
  20. K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electrooptic imaging system based on ultra-parallel photonic heterodyne for microwave near-fields,” IEEE Trans. Microwave Theory Tech.55(12), 2782–2791 (2007).
    [CrossRef]
  21. K. Sasagawa, A. Kanno, and M. Tsuchiya, “Instantaneous visualization of K-Band electric near-fields by a live electrooptic imaging system based on double sideband suppressed carrier modulation,” J. Lightwave Technol.26(15), 2782–2788 (2008).
    [CrossRef]

2011 (4)

M. Sarkar, S. Member, D. San, S. Bello, C. V. Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sensors J.11(8), 1692–1703 (2011).
[CrossRef]

S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65-nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys.50(4), 04DL01 (2011).
[CrossRef]

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “High-resolution thin “guest-host” Micropolarizer arrays for visible imaging polarimetry,” Opt. Express19(6), 5565–5573 (2011).
[CrossRef] [PubMed]

V. Gruev, “Fabrication of a dual-layer aluminum nanowire polarization filter array,” Opt. Express19(24), 24361–24369 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (4)

M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett.94(19), 193503 (2009).
[CrossRef]

F. Boussaid, A Bermak, and V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Tech. Lett.21(12), 805–807 (2009).
[CrossRef]

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett.45(4), 228–230 (2009).
[CrossRef]

T. Tokuda, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS image sensor with monolithically embedded polarizer for microchemistry systems,” IEEE Trans. Biomed. Circuits Syst.3(5), 259–266 (2009).
[CrossRef]

2008 (1)

2007 (2)

K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electrooptic imaging system based on ultra-parallel photonic heterodyne for microwave near-fields,” IEEE Trans. Microwave Theory Tech.55(12), 2782–2791 (2007).
[CrossRef]

T. Sato, T. Araki, Y. Sasaki, T. Tsuru, T. Tadokoro, and S. Kawakami, “Compact ellipsometer employing a static polarimeter module with arrayed polarizer and wave-plate elements,” Appl. Opt.46(22), 4963–4967 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (2)

M. Usami, M. Yamashita, K. Fukushima, C. Otani, and K. Kawase, “Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique,” Appl. Phys. Lett.86(14), 141109 (2005).
[CrossRef]

Y. Watanabe, Y. Hayasaka, M. Sato, and N. Tanno, “Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer,” Appl. Opt.44(8), 1387–1392 (2005).
[CrossRef] [PubMed]

2003 (2)

1999 (1)

Z. Jiang and X.-C. Zhang, “Terahertz imaging via electrooptic effect,” IEEE Trans. Microwave Theory Tech.47(12), 2644–2650 (1999).
[CrossRef]

Akiba, M.

Araki, T.

Bello, S.

M. Sarkar, S. Member, D. San, S. Bello, C. V. Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sensors J.11(8), 1692–1703 (2011).
[CrossRef]

Bermak, A

F. Boussaid, A Bermak, and V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Tech. Lett.21(12), 805–807 (2009).
[CrossRef]

Bermak, A.

Boussaid, F.

Catrysse, P. B.

Chan, K. P.

Chigrinov, V. G.

David, C.

Dunbar, L. A.

M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett.94(19), 193503 (2009).
[CrossRef]

Eckert, R.

M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett.94(19), 193503 (2009).
[CrossRef]

Ekinci, Y.

Engheta, N.

Fukushima, K.

M. Usami, M. Yamashita, K. Fukushima, C. Otani, and K. Kawase, “Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique,” Appl. Phys. Lett.86(14), 141109 (2005).
[CrossRef]

Grenet, E.

M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett.94(19), 193503 (2009).
[CrossRef]

Gruev, V.

Guillaumée, M.

M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett.94(19), 193503 (2009).
[CrossRef]

Hayasaka, Y.

Hoof, C. V.

M. Sarkar, S. Member, D. San, S. Bello, C. V. Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sensors J.11(8), 1692–1703 (2011).
[CrossRef]

Ikeda, M.

M. Ikeda and Y. Kim, “Measurement and analysis on characteristics of transmission and polarization for 12ML 65nm CMOS,” in Proceedings of the IEEE Sensors (Institute of Electrical and Electronics Engineers, New York, 2010), pp. 548–551.

Jiang, Z.

Z. Jiang and X.-C. Zhang, “Terahertz imaging via electrooptic effect,” IEEE Trans. Microwave Theory Tech.47(12), 2644–2650 (1999).
[CrossRef]

Kanno, A.

K. Sasagawa, A. Kanno, and M. Tsuchiya, “Instantaneous visualization of K-Band electric near-fields by a live electrooptic imaging system based on double sideband suppressed carrier modulation,” J. Lightwave Technol.26(15), 2782–2788 (2008).
[CrossRef]

K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electrooptic imaging system based on ultra-parallel photonic heterodyne for microwave near-fields,” IEEE Trans. Microwave Theory Tech.55(12), 2782–2791 (2007).
[CrossRef]

Kawakami, S.

Kawanishi, T.

K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electrooptic imaging system based on ultra-parallel photonic heterodyne for microwave near-fields,” IEEE Trans. Microwave Theory Tech.55(12), 2782–2791 (2007).
[CrossRef]

Kawase, K.

M. Usami, M. Yamashita, K. Fukushima, C. Otani, and K. Kawase, “Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique,” Appl. Phys. Lett.86(14), 141109 (2005).
[CrossRef]

Kim, Y.

M. Ikeda and Y. Kim, “Measurement and analysis on characteristics of transmission and polarization for 12ML 65nm CMOS,” in Proceedings of the IEEE Sensors (Institute of Electrical and Electronics Engineers, New York, 2010), pp. 548–551.

Martin, O. J. F.

M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett.94(19), 193503 (2009).
[CrossRef]

Member, S.

M. Sarkar, S. Member, D. San, S. Bello, C. V. Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sensors J.11(8), 1692–1703 (2011).
[CrossRef]

Noda, T.

S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65-nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys.50(4), 04DL01 (2011).
[CrossRef]

Ohta, J.

S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65-nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys.50(4), 04DL01 (2011).
[CrossRef]

T. Tokuda, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS image sensor with monolithically embedded polarizer for microchemistry systems,” IEEE Trans. Biomed. Circuits Syst.3(5), 259–266 (2009).
[CrossRef]

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett.45(4), 228–230 (2009).
[CrossRef]

Otani, C.

M. Usami, M. Yamashita, K. Fukushima, C. Otani, and K. Kawase, “Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique,” Appl. Phys. Lett.86(14), 141109 (2005).
[CrossRef]

Perkins, R.

San, D.

M. Sarkar, S. Member, D. San, S. Bello, C. V. Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sensors J.11(8), 1692–1703 (2011).
[CrossRef]

Santschi, C.

M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett.94(19), 193503 (2009).
[CrossRef]

Sarkar, M.

M. Sarkar, S. Member, D. San, S. Bello, C. V. Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sensors J.11(8), 1692–1703 (2011).
[CrossRef]

Sasagawa, K.

S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65-nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys.50(4), 04DL01 (2011).
[CrossRef]

T. Tokuda, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS image sensor with monolithically embedded polarizer for microchemistry systems,” IEEE Trans. Biomed. Circuits Syst.3(5), 259–266 (2009).
[CrossRef]

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett.45(4), 228–230 (2009).
[CrossRef]

K. Sasagawa, A. Kanno, and M. Tsuchiya, “Instantaneous visualization of K-Band electric near-fields by a live electrooptic imaging system based on double sideband suppressed carrier modulation,” J. Lightwave Technol.26(15), 2782–2788 (2008).
[CrossRef]

K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electrooptic imaging system based on ultra-parallel photonic heterodyne for microwave near-fields,” IEEE Trans. Microwave Theory Tech.55(12), 2782–2791 (2007).
[CrossRef]

Sasaki, Y.

Sato, M.

Sato, S.

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett.45(4), 228–230 (2009).
[CrossRef]

Sato, T.

Shishido, S.

S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65-nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys.50(4), 04DL01 (2011).
[CrossRef]

Sigg, H.

Solak, H. H.

Stanley, R. P.

M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett.94(19), 193503 (2009).
[CrossRef]

Tadokoro, T.

Tanno, N.

Theuwissen, A.

M. Sarkar, S. Member, D. San, S. Bello, C. V. Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sensors J.11(8), 1692–1703 (2011).
[CrossRef]

Tokuda, T.

S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65-nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys.50(4), 04DL01 (2011).
[CrossRef]

T. Tokuda, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS image sensor with monolithically embedded polarizer for microchemistry systems,” IEEE Trans. Biomed. Circuits Syst.3(5), 259–266 (2009).
[CrossRef]

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett.45(4), 228–230 (2009).
[CrossRef]

Tsuchiya, M.

K. Sasagawa, A. Kanno, and M. Tsuchiya, “Instantaneous visualization of K-Band electric near-fields by a live electrooptic imaging system based on double sideband suppressed carrier modulation,” J. Lightwave Technol.26(15), 2782–2788 (2008).
[CrossRef]

K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electrooptic imaging system based on ultra-parallel photonic heterodyne for microwave near-fields,” IEEE Trans. Microwave Theory Tech.55(12), 2782–2791 (2007).
[CrossRef]

Tsuru, T.

Usami, M.

M. Usami, M. Yamashita, K. Fukushima, C. Otani, and K. Kawase, “Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique,” Appl. Phys. Lett.86(14), 141109 (2005).
[CrossRef]

Van der Spiegel, J.

Wandell, B. A.

Watanabe, Y.

Yamada, H.

T. Tokuda, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS image sensor with monolithically embedded polarizer for microchemistry systems,” IEEE Trans. Biomed. Circuits Syst.3(5), 259–266 (2009).
[CrossRef]

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett.45(4), 228–230 (2009).
[CrossRef]

Yamashita, M.

M. Usami, M. Yamashita, K. Fukushima, C. Otani, and K. Kawase, “Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique,” Appl. Phys. Lett.86(14), 141109 (2005).
[CrossRef]

York, T.

Zhang, X.-C.

Z. Jiang and X.-C. Zhang, “Terahertz imaging via electrooptic effect,” IEEE Trans. Microwave Theory Tech.47(12), 2644–2650 (1999).
[CrossRef]

Zhao, X.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett.94(19), 193503 (2009).
[CrossRef]

M. Usami, M. Yamashita, K. Fukushima, C. Otani, and K. Kawase, “Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique,” Appl. Phys. Lett.86(14), 141109 (2005).
[CrossRef]

Electron. Lett. (1)

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett.45(4), 228–230 (2009).
[CrossRef]

IEEE Photon. Tech. Lett. (1)

F. Boussaid, A Bermak, and V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Tech. Lett.21(12), 805–807 (2009).
[CrossRef]

IEEE Sensors J. (1)

M. Sarkar, S. Member, D. San, S. Bello, C. V. Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sensors J.11(8), 1692–1703 (2011).
[CrossRef]

IEEE Trans. Biomed. Circuits Syst. (1)

T. Tokuda, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS image sensor with monolithically embedded polarizer for microchemistry systems,” IEEE Trans. Biomed. Circuits Syst.3(5), 259–266 (2009).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

Z. Jiang and X.-C. Zhang, “Terahertz imaging via electrooptic effect,” IEEE Trans. Microwave Theory Tech.47(12), 2644–2650 (1999).
[CrossRef]

K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electrooptic imaging system based on ultra-parallel photonic heterodyne for microwave near-fields,” IEEE Trans. Microwave Theory Tech.55(12), 2782–2791 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65-nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys.50(4), 04DL01 (2011).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Other (1)

M. Ikeda and Y. Kim, “Measurement and analysis on characteristics of transmission and polarization for 12ML 65nm CMOS,” in Proceedings of the IEEE Sensors (Institute of Electrical and Electronics Engineers, New York, 2010), pp. 548–551.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of image sensor pixel with on-chip metal wire grid polarizer.

Fig. 2
Fig. 2

Simulation results of metal Cu wire grid polarizer characteristics. (a) Extinction ratio spectra for different line / space sets, and (b) transmittance for TE and TM polarization light and extinction spectra for the finest pitch grating that can be achieved using 65-nm technology.

Fig. 3
Fig. 3

Layout of the pixels with/without metal wire grid polarizer.

Fig. 4
Fig. 4

Micrographs of the pixels illuminated with polarized light.

Fig. 5
Fig. 5

Experimental setup for the measurement of pixel characteristics.

Fig. 6
Fig. 6

Normalized output from a gridless pixel as a function of incident wavelength.

Fig. 7
Fig. 7

Normalized outputs from the pixels with 0- and 90-degree wire grid polarizer as functions of the incident polarization angle. The wavelength of the incident light is 750 nm.

Fig. 8
Fig. 8

Normalized output for TE and TM polarization and extinction ratio of a pixel with wire grid polarizer.

Tables (1)

Tables Icon

Table 1 Specifications of the sensor pixel.

Metrics