Abstract

A hybrid analysis of a continuous-wave terahertz photomixer source structure with plasmonic nano-grating electrodes is presented. Using the hybrid analysis, the enhancement of the optical power absorption due to the presence of the one-dimensional metallic nano-grating is investigated by defining an absorption enhancement factor. We show that the proposed absorption enhancement factor can be used as a design tool, whose maximization provides the optimum geometrical parameters of the nano-grating. Based on drift-diffusion model, the photocurrent enhancement due to the nano-grating electrodes is studied under three different bias configurations. Moreover, the dependence of the photocurrent on the physical parameters of the photomixer is analyzed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
    [CrossRef]
  2. D. Crouse and P. Keshavareddy, “A method for designing electromagnetic resonance enhanced silicon-on-insulator metal–semiconductor–metal photodetectors,” J. Opt. A: Pure Appl. Opt.8, 175 (2006).
    [CrossRef]
  3. P. Zilio, D. Sammito, G. Zacco, and F. Romanato, “Absorption profile modulation by means of 1D digital plasmonic gratings,” Opt. Express18, 19558–19565 (2010).
    [CrossRef] [PubMed]
  4. S. H. Kim, C. M. Lee, S. B. Sim, J. H. Kim, J. H. Choi, W. S. Han, K. J. Ahn, and K. J. Y., “Enhanced in and out-coupling of InGaAs slab waveguides by periodic metal slit arrays,” Opt. Express20(6), 6365–6374 (2012).
    [CrossRef] [PubMed]
  5. C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).
    [CrossRef]
  6. C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nature Commun.4, 1622 (2013).
    [CrossRef]
  7. C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys.14, 105029 (2012).
    [CrossRef]
  8. B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. M. Shirazi, R. B. Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Letters12(12), 6255–6259 (2012).
    [CrossRef] [PubMed]
  9. S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS nano6(3), 2026–2031 (2012).
    [CrossRef] [PubMed]
  10. S. G. Park, Y. Choi, Y. J. Oh, and K. H. Jeong, “Terahertz photoconductive antenna with metal nanoislands,” Opt. Express20(23), 25530–25535 (2012).
    [CrossRef] [PubMed]
  11. S. Jafarlou, M. Neshat, and S. Safavi-Naeini, “A fast method for analysis of guided waves and radiation from a nano-scale slit loaded waveguide for a THz photoconductive source,” IEEE Trans. Terahertz Sci. Technol.2(6), 652–658 (2012).
    [CrossRef]
  12. V. N. Truchin, A. V. Andrianov, and N. N. Zinovev, “Generation of terahertz radiation by a moving bunch of nonequilibrium electron-hole plasma,” Phys. Rev. B78(15), 155325 (2008).
    [CrossRef]
  13. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B.13(11), 2424–2436 (1996).
    [CrossRef]
  14. T. Dekorsy, T. Pfeifer, W. Kütt, and H. Kurz, “Subpicosecond carrier transport in GaAs surface-space-charge fields,” Phys. Rev. B47(7), 3842 (1993).
    [CrossRef]
  15. M. Neshat, D. Saeedkia, L. Rezaee, and S. Safavi-Naeini, “A global approach for modeling and analysis of edge-coupled traveling-wave terahertz photoconductive sources,” IEEE Trans. Microw. Theory Tech.58(7), 1952–1966 (2010).
    [CrossRef]
  16. M. Khabiri, M. Neshat, and S. Safavi-Naeini, “Hybrid computational simulation and study of continuous wave terahertz photomixers,” IEEE Trans. Terahertz Sci. Technol.2(6), 605–616 (2012).
    [CrossRef]
  17. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
    [CrossRef]
  18. P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B26(6), 2907 (1982).
    [CrossRef]
  19. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt.2(1), 48 (1999).
    [CrossRef]
  20. A. T. M. Rahman, K. Vasilev, and P. Majewski, “Analytical solution of the fundamental waveguide mode of one-dimensional transmission grating for tm polarization,” J. Opt. Soc. Am. B.28(12), 2919–2924 (2011).
    [CrossRef]
  21. TCAD Sentaurus, http://www.synopsys.com (access date Nov. 2012).
  22. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.3722, 5271–5283 (1998).
    [CrossRef]
  23. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  24. H. Engan, “Excitation of elastic surface waves by spatial harmonics of interdigital transducers,” IEEE Trans. Electron Dev.16(12), 1014–1017 (1969).
    [CrossRef]
  25. S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B63(3), 033107 (2001).
    [CrossRef]
  26. M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett.12(6), 2894–2900 (2012).
    [CrossRef] [PubMed]
  27. S. L. Chuang, Physics of optoelectronic devices (Series in pure & applied optics) (Wiley, 2009).
  28. H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys.90(3), 1303–1306 (2001).
    [CrossRef]
  29. D. Liu and J. Qin, “Carrier Dynamics of Terahertz Emission from Low-Temperature-Grown GaAs,” Appl. Opt.42, 3678–3683 (2003).
    [CrossRef] [PubMed]
  30. S. Preu, G.H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys.109, 061301 (2011).
    [CrossRef]

2013 (1)

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nature Commun.4, 1622 (2013).
[CrossRef]

2012 (8)

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys.14, 105029 (2012).
[CrossRef]

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. M. Shirazi, R. B. Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Letters12(12), 6255–6259 (2012).
[CrossRef] [PubMed]

S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS nano6(3), 2026–2031 (2012).
[CrossRef] [PubMed]

S. G. Park, Y. Choi, Y. J. Oh, and K. H. Jeong, “Terahertz photoconductive antenna with metal nanoislands,” Opt. Express20(23), 25530–25535 (2012).
[CrossRef] [PubMed]

S. Jafarlou, M. Neshat, and S. Safavi-Naeini, “A fast method for analysis of guided waves and radiation from a nano-scale slit loaded waveguide for a THz photoconductive source,” IEEE Trans. Terahertz Sci. Technol.2(6), 652–658 (2012).
[CrossRef]

S. H. Kim, C. M. Lee, S. B. Sim, J. H. Kim, J. H. Choi, W. S. Han, K. J. Ahn, and K. J. Y., “Enhanced in and out-coupling of InGaAs slab waveguides by periodic metal slit arrays,” Opt. Express20(6), 6365–6374 (2012).
[CrossRef] [PubMed]

M. Khabiri, M. Neshat, and S. Safavi-Naeini, “Hybrid computational simulation and study of continuous wave terahertz photomixers,” IEEE Trans. Terahertz Sci. Technol.2(6), 605–616 (2012).
[CrossRef]

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett.12(6), 2894–2900 (2012).
[CrossRef] [PubMed]

2011 (2)

S. Preu, G.H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys.109, 061301 (2011).
[CrossRef]

A. T. M. Rahman, K. Vasilev, and P. Majewski, “Analytical solution of the fundamental waveguide mode of one-dimensional transmission grating for tm polarization,” J. Opt. Soc. Am. B.28(12), 2919–2924 (2011).
[CrossRef]

2010 (3)

P. Zilio, D. Sammito, G. Zacco, and F. Romanato, “Absorption profile modulation by means of 1D digital plasmonic gratings,” Opt. Express18, 19558–19565 (2010).
[CrossRef] [PubMed]

M. Neshat, D. Saeedkia, L. Rezaee, and S. Safavi-Naeini, “A global approach for modeling and analysis of edge-coupled traveling-wave terahertz photoconductive sources,” IEEE Trans. Microw. Theory Tech.58(7), 1952–1966 (2010).
[CrossRef]

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).
[CrossRef]

2008 (1)

V. N. Truchin, A. V. Andrianov, and N. N. Zinovev, “Generation of terahertz radiation by a moving bunch of nonequilibrium electron-hole plasma,” Phys. Rev. B78(15), 155325 (2008).
[CrossRef]

2006 (1)

D. Crouse and P. Keshavareddy, “A method for designing electromagnetic resonance enhanced silicon-on-insulator metal–semiconductor–metal photodetectors,” J. Opt. A: Pure Appl. Opt.8, 175 (2006).
[CrossRef]

2003 (1)

2001 (2)

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys.90(3), 1303–1306 (2001).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B63(3), 033107 (2001).
[CrossRef]

1999 (2)

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt.2(1), 48 (1999).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.3722, 5271–5283 (1998).
[CrossRef]

1996 (1)

P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B.13(11), 2424–2436 (1996).
[CrossRef]

1993 (1)

T. Dekorsy, T. Pfeifer, W. Kütt, and H. Kurz, “Subpicosecond carrier transport in GaAs surface-space-charge fields,” Phys. Rev. B47(7), 3842 (1993).
[CrossRef]

1982 (1)

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B26(6), 2907 (1982).
[CrossRef]

1969 (1)

H. Engan, “Excitation of elastic surface waves by spatial harmonics of interdigital transducers,” IEEE Trans. Electron Dev.16(12), 1014–1017 (1969).
[CrossRef]

Ahn, J.

S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS nano6(3), 2026–2031 (2012).
[CrossRef] [PubMed]

Ahn, K. J.

Alivisatos, A. P.

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett.12(6), 2894–2900 (2012).
[CrossRef] [PubMed]

Andrianov, A. V.

V. N. Truchin, A. V. Andrianov, and N. N. Zinovev, “Generation of terahertz radiation by a moving bunch of nonequilibrium electron-hole plasma,” Phys. Rev. B78(15), 155325 (2008).
[CrossRef]

Astilean, S.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt.2(1), 48 (1999).
[CrossRef]

Atwater, H. A.

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett.12(6), 2894–2900 (2012).
[CrossRef] [PubMed]

Berry, C. W.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nature Commun.4, 1622 (2013).
[CrossRef]

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys.14, 105029 (2012).
[CrossRef]

Choi, J. H.

Choi, Y.

Chuang, S. L.

S. L. Chuang, Physics of optoelectronic devices (Series in pure & applied optics) (Wiley, 2009).

Collin, S.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B63(3), 033107 (2001).
[CrossRef]

Crouse, D.

D. Crouse and P. Keshavareddy, “A method for designing electromagnetic resonance enhanced silicon-on-insulator metal–semiconductor–metal photodetectors,” J. Opt. A: Pure Appl. Opt.8, 175 (2006).
[CrossRef]

Darcie, T. E.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. M. Shirazi, R. B. Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Letters12(12), 6255–6259 (2012).
[CrossRef] [PubMed]

Deceglie, M. G.

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett.12(6), 2894–2900 (2012).
[CrossRef] [PubMed]

Dekorsy, T.

T. Dekorsy, T. Pfeifer, W. Kütt, and H. Kurz, “Subpicosecond carrier transport in GaAs surface-space-charge fields,” Phys. Rev. B47(7), 3842 (1993).
[CrossRef]

Djurišic, A. B.

A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.3722, 5271–5283 (1998).
[CrossRef]

Döhler, G.H.

S. Preu, G.H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys.109, 061301 (2011).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Elazar, J. M.

A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.3722, 5271–5283 (1998).
[CrossRef]

Engan, H.

H. Engan, “Excitation of elastic surface waves by spatial harmonics of interdigital transducers,” IEEE Trans. Electron Dev.16(12), 1014–1017 (1969).
[CrossRef]

Fan, S.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).
[CrossRef]

Ferry, V. E.

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett.12(6), 2894–2900 (2012).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Gordon, R.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. M. Shirazi, R. B. Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Letters12(12), 6255–6259 (2012).
[CrossRef] [PubMed]

Gossard, A. C.

S. Preu, G.H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys.109, 061301 (2011).
[CrossRef]

Han, W. S.

Hashemi, M. R.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nature Commun.4, 1622 (2013).
[CrossRef]

Heshmat, B.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. M. Shirazi, R. B. Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Letters12(12), 6255–6259 (2012).
[CrossRef] [PubMed]

Hugonin, J. P.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt.2(1), 48 (1999).
[CrossRef]

Jacobsen, R. H.

P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B.13(11), 2424–2436 (1996).
[CrossRef]

Jafarlou, S.

S. Jafarlou, M. Neshat, and S. Safavi-Naeini, “A fast method for analysis of guided waves and radiation from a nano-scale slit loaded waveguide for a THz photoconductive source,” IEEE Trans. Terahertz Sci. Technol.2(6), 652–658 (2012).
[CrossRef]

Jarrahi, M.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nature Commun.4, 1622 (2013).
[CrossRef]

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys.14, 105029 (2012).
[CrossRef]

Jeong, K. H.

S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS nano6(3), 2026–2031 (2012).
[CrossRef] [PubMed]

S. G. Park, Y. Choi, Y. J. Oh, and K. H. Jeong, “Terahertz photoconductive antenna with metal nanoislands,” Opt. Express20(23), 25530–25535 (2012).
[CrossRef] [PubMed]

Jepsen, P. U.

P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B.13(11), 2424–2436 (1996).
[CrossRef]

Jin, K. H.

S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS nano6(3), 2026–2031 (2012).
[CrossRef] [PubMed]

Keiding, S. R.

P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B.13(11), 2424–2436 (1996).
[CrossRef]

Keshavareddy, P.

D. Crouse and P. Keshavareddy, “A method for designing electromagnetic resonance enhanced silicon-on-insulator metal–semiconductor–metal photodetectors,” J. Opt. A: Pure Appl. Opt.8, 175 (2006).
[CrossRef]

Khabiri, M.

M. Khabiri, M. Neshat, and S. Safavi-Naeini, “Hybrid computational simulation and study of continuous wave terahertz photomixers,” IEEE Trans. Terahertz Sci. Technol.2(6), 605–616 (2012).
[CrossRef]

Khazan, M.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys.90(3), 1303–1306 (2001).
[CrossRef]

Kim, J. H.

Kim, S. H.

Kurz, H.

T. Dekorsy, T. Pfeifer, W. Kütt, and H. Kurz, “Subpicosecond carrier transport in GaAs surface-space-charge fields,” Phys. Rev. B47(7), 3842 (1993).
[CrossRef]

Kütt, W.

T. Dekorsy, T. Pfeifer, W. Kütt, and H. Kurz, “Subpicosecond carrier transport in GaAs surface-space-charge fields,” Phys. Rev. B47(7), 3842 (1993).
[CrossRef]

Kuzel, P.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys.90(3), 1303–1306 (2001).
[CrossRef]

Lalanne, P.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt.2(1), 48 (1999).
[CrossRef]

Lee, C. M.

Lee, J. Y.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).
[CrossRef]

Lewis, R. B.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. M. Shirazi, R. B. Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Letters12(12), 6255–6259 (2012).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Li, J.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).
[CrossRef]

Liu, D.

Majewski, M. L.

A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.3722, 5271–5283 (1998).
[CrossRef]

Majewski, P.

A. T. M. Rahman, K. Vasilev, and P. Majewski, “Analytical solution of the fundamental waveguide mode of one-dimensional transmission grating for tm polarization,” J. Opt. Soc. Am. B.28(12), 2919–2924 (2011).
[CrossRef]

Malzer, S.

S. Preu, G.H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys.109, 061301 (2011).
[CrossRef]

Min, C.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).
[CrossRef]

Möller, K. D.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt.2(1), 48 (1999).
[CrossRef]

Nemec, H.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys.90(3), 1303–1306 (2001).
[CrossRef]

Neshat, M.

S. Jafarlou, M. Neshat, and S. Safavi-Naeini, “A fast method for analysis of guided waves and radiation from a nano-scale slit loaded waveguide for a THz photoconductive source,” IEEE Trans. Terahertz Sci. Technol.2(6), 652–658 (2012).
[CrossRef]

M. Khabiri, M. Neshat, and S. Safavi-Naeini, “Hybrid computational simulation and study of continuous wave terahertz photomixers,” IEEE Trans. Terahertz Sci. Technol.2(6), 605–616 (2012).
[CrossRef]

M. Neshat, D. Saeedkia, L. Rezaee, and S. Safavi-Naeini, “A global approach for modeling and analysis of edge-coupled traveling-wave terahertz photoconductive sources,” IEEE Trans. Microw. Theory Tech.58(7), 1952–1966 (2010).
[CrossRef]

Oh, Y. J.

Pahlevaninezhad, H.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. M. Shirazi, R. B. Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Letters12(12), 6255–6259 (2012).
[CrossRef] [PubMed]

Palamaru, M.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt.2(1), 48 (1999).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Pang, Y.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. M. Shirazi, R. B. Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Letters12(12), 6255–6259 (2012).
[CrossRef] [PubMed]

Pardo, F.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B63(3), 033107 (2001).
[CrossRef]

Park, S. G.

S. G. Park, Y. Choi, Y. J. Oh, and K. H. Jeong, “Terahertz photoconductive antenna with metal nanoislands,” Opt. Express20(23), 25530–25535 (2012).
[CrossRef] [PubMed]

S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS nano6(3), 2026–2031 (2012).
[CrossRef] [PubMed]

Pashkin, A.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys.90(3), 1303–1306 (2001).
[CrossRef]

Pelouard, J. L.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B63(3), 033107 (2001).
[CrossRef]

Pendry, J. B.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

Peumans, P.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).
[CrossRef]

Pfeifer, T.

T. Dekorsy, T. Pfeifer, W. Kütt, and H. Kurz, “Subpicosecond carrier transport in GaAs surface-space-charge fields,” Phys. Rev. B47(7), 3842 (1993).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

Preu, S.

S. Preu, G.H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys.109, 061301 (2011).
[CrossRef]

Qin, J.

Rahman, A. T. M.

A. T. M. Rahman, K. Vasilev, and P. Majewski, “Analytical solution of the fundamental waveguide mode of one-dimensional transmission grating for tm polarization,” J. Opt. Soc. Am. B.28(12), 2919–2924 (2011).
[CrossRef]

Rakic, A. D.

A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.3722, 5271–5283 (1998).
[CrossRef]

Rezaee, L.

M. Neshat, D. Saeedkia, L. Rezaee, and S. Safavi-Naeini, “A global approach for modeling and analysis of edge-coupled traveling-wave terahertz photoconductive sources,” IEEE Trans. Microw. Theory Tech.58(7), 1952–1966 (2010).
[CrossRef]

Romanato, F.

Saeedkia, D.

M. Neshat, D. Saeedkia, L. Rezaee, and S. Safavi-Naeini, “A global approach for modeling and analysis of edge-coupled traveling-wave terahertz photoconductive sources,” IEEE Trans. Microw. Theory Tech.58(7), 1952–1966 (2010).
[CrossRef]

Safavi-Naeini, S.

M. Khabiri, M. Neshat, and S. Safavi-Naeini, “Hybrid computational simulation and study of continuous wave terahertz photomixers,” IEEE Trans. Terahertz Sci. Technol.2(6), 605–616 (2012).
[CrossRef]

S. Jafarlou, M. Neshat, and S. Safavi-Naeini, “A fast method for analysis of guided waves and radiation from a nano-scale slit loaded waveguide for a THz photoconductive source,” IEEE Trans. Terahertz Sci. Technol.2(6), 652–658 (2012).
[CrossRef]

M. Neshat, D. Saeedkia, L. Rezaee, and S. Safavi-Naeini, “A global approach for modeling and analysis of edge-coupled traveling-wave terahertz photoconductive sources,” IEEE Trans. Microw. Theory Tech.58(7), 1952–1966 (2010).
[CrossRef]

Sammito, D.

Sanda, P. N.

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B26(6), 2907 (1982).
[CrossRef]

Schnull, S.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys.90(3), 1303–1306 (2001).
[CrossRef]

Sheng, P.

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B26(6), 2907 (1982).
[CrossRef]

Shirazi, M. M.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. M. Shirazi, R. B. Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Letters12(12), 6255–6259 (2012).
[CrossRef] [PubMed]

Sim, S. B.

Stepleman, R. S.

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B26(6), 2907 (1982).
[CrossRef]

Teissier, R.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B63(3), 033107 (2001).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Tiedje, T.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. M. Shirazi, R. B. Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Letters12(12), 6255–6259 (2012).
[CrossRef] [PubMed]

Truchin, V. N.

V. N. Truchin, A. V. Andrianov, and N. N. Zinovev, “Generation of terahertz radiation by a moving bunch of nonequilibrium electron-hole plasma,” Phys. Rev. B78(15), 155325 (2008).
[CrossRef]

Unlu, M.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nature Commun.4, 1622 (2013).
[CrossRef]

Vasilev, K.

A. T. M. Rahman, K. Vasilev, and P. Majewski, “Analytical solution of the fundamental waveguide mode of one-dimensional transmission grating for tm polarization,” J. Opt. Soc. Am. B.28(12), 2919–2924 (2011).
[CrossRef]

Veronis, G.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).
[CrossRef]

Wang, L. J.

S. Preu, G.H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys.109, 061301 (2011).
[CrossRef]

Wang, N.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nature Commun.4, 1622 (2013).
[CrossRef]

Wilke, I.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys.90(3), 1303–1306 (2001).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Y., K. J.

Ye, J. C.

S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS nano6(3), 2026–2031 (2012).
[CrossRef] [PubMed]

Yi, M.

S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS nano6(3), 2026–2031 (2012).
[CrossRef] [PubMed]

Zacco, G.

Zilio, P.

Zinovev, N. N.

V. N. Truchin, A. V. Andrianov, and N. N. Zinovev, “Generation of terahertz radiation by a moving bunch of nonequilibrium electron-hole plasma,” Phys. Rev. B78(15), 155325 (2008).
[CrossRef]

ACS nano (1)

S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS nano6(3), 2026–2031 (2012).
[CrossRef] [PubMed]

Appl. Opt. (2)

A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.3722, 5271–5283 (1998).
[CrossRef]

D. Liu and J. Qin, “Carrier Dynamics of Terahertz Emission from Low-Temperature-Grown GaAs,” Appl. Opt.42, 3678–3683 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).
[CrossRef]

IEEE Trans. Electron Dev. (1)

H. Engan, “Excitation of elastic surface waves by spatial harmonics of interdigital transducers,” IEEE Trans. Electron Dev.16(12), 1014–1017 (1969).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

M. Neshat, D. Saeedkia, L. Rezaee, and S. Safavi-Naeini, “A global approach for modeling and analysis of edge-coupled traveling-wave terahertz photoconductive sources,” IEEE Trans. Microw. Theory Tech.58(7), 1952–1966 (2010).
[CrossRef]

IEEE Trans. Terahertz Sci. Technol. (2)

M. Khabiri, M. Neshat, and S. Safavi-Naeini, “Hybrid computational simulation and study of continuous wave terahertz photomixers,” IEEE Trans. Terahertz Sci. Technol.2(6), 605–616 (2012).
[CrossRef]

S. Jafarlou, M. Neshat, and S. Safavi-Naeini, “A fast method for analysis of guided waves and radiation from a nano-scale slit loaded waveguide for a THz photoconductive source,” IEEE Trans. Terahertz Sci. Technol.2(6), 652–658 (2012).
[CrossRef]

J. Appl. Phys. (2)

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys.90(3), 1303–1306 (2001).
[CrossRef]

S. Preu, G.H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys.109, 061301 (2011).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (2)

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt.2(1), 48 (1999).
[CrossRef]

D. Crouse and P. Keshavareddy, “A method for designing electromagnetic resonance enhanced silicon-on-insulator metal–semiconductor–metal photodetectors,” J. Opt. A: Pure Appl. Opt.8, 175 (2006).
[CrossRef]

J. Opt. Soc. Am. B. (2)

A. T. M. Rahman, K. Vasilev, and P. Majewski, “Analytical solution of the fundamental waveguide mode of one-dimensional transmission grating for tm polarization,” J. Opt. Soc. Am. B.28(12), 2919–2924 (2011).
[CrossRef]

P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B.13(11), 2424–2436 (1996).
[CrossRef]

Nano Lett. (1)

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett.12(6), 2894–2900 (2012).
[CrossRef] [PubMed]

Nano Letters (1)

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. M. Shirazi, R. B. Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Letters12(12), 6255–6259 (2012).
[CrossRef] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Nature Commun. (1)

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nature Commun.4, 1622 (2013).
[CrossRef]

New J. Phys. (1)

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys.14, 105029 (2012).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (4)

T. Dekorsy, T. Pfeifer, W. Kütt, and H. Kurz, “Subpicosecond carrier transport in GaAs surface-space-charge fields,” Phys. Rev. B47(7), 3842 (1993).
[CrossRef]

V. N. Truchin, A. V. Andrianov, and N. N. Zinovev, “Generation of terahertz radiation by a moving bunch of nonequilibrium electron-hole plasma,” Phys. Rev. B78(15), 155325 (2008).
[CrossRef]

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B26(6), 2907 (1982).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B63(3), 033107 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

Other (3)

TCAD Sentaurus, http://www.synopsys.com (access date Nov. 2012).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

S. L. Chuang, Physics of optoelectronic devices (Series in pure & applied optics) (Wiley, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Cross section of the structure, (b) zero-order transmission obtained from Eq. (1) in [17] (T0 = C0/||D||2) where C0 is a constant coefficient, and FDTD method for absorbing and non-absorbing substrate for grating dimension of d = 450nm, h = 300nm, w = 300nm. FDTD results for total transmission coefficient are also plotted. Vertical dashed lines shows the location of WR anomalies, SPP and FP resonances obtained as explained in the text.

Fig. 2
Fig. 2

(a) Optical absorption density, P ave I, profile for resonance modes occurs in different grating periods, d, with h/d = 0.7 and w/d = 0.67 illuminated by a laser beam at 800nm wavelength with intensity of 0.5 W/cm2, (b) three configurations for applying voltage to the nano-grating to act as bias electrodes.

Fig. 3
Fig. 3

Contours of absoption enhancement factor, ν, for horizontal (a,c) and alternating (b,d) bias configurations (see Fig. 2(b)) with respect to the grating period d and (a,b) height ratio when w/d = 0.67, (c,d) filling factor when h/d = 0.7. The locations of FP resonances are also shown by black dots. The white doted represents the common data points between the corresponding figures.

Fig. 4
Fig. 4

Distribution of AC component of the photocurrent, Jph, for three configuration of biased voltage for d = 430nm, w/d = 0.8 and h/d = 0.4, and definition of photocurrent, Iph, for each case. The structure is illuminated by two laser beams with power density of 0.5 W/cm2 each, and the bias voltage are chosen in such a way that V0/d = V1/H = 5 × 104V/cm.

Fig. 5
Fig. 5

(a) Contour of photocurrent enhancement, IAlt/I0, for alternating bias with respect to d and h/d, (b) Absorption and photocurrent enhancements for all bias types with respect to d for w/d = 0.7 and h = 160 nm.

Fig. 6
Fig. 6

IAC (solid lines) and IDC (dashed lines) as a function of (a) carrier lifetime of LTG-GaAs [28] for alternating bias type under the same condition described for Fig. 4, (b) V0/d for alternating and horizontal bias types, and V1/H for vertical bias configuration under the same illumination.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P ave I I ( t , r ) = P ave I ( r ) ( 1 + cos ( 2 π f THz t ) )
ν = P ¯ P 0 = P ave I ( r ) | E b ( z ) | d y d z P 0 ( r ) | E b 0 ( z ) | d y d z
. ( ε ϕ ) = q ( ρ n ρ p )
± . J n , p = q ( G opt R ) + q ρ n , p t
J n , p = q μ n , p ρ n , p ϕ ± q D n , p ρ n , p
J p h ( t ) = J D C + J A C cos ( 2 π f THz t )

Metrics