Abstract

We demonstrate experimentally signatures and dispersion control of surface plasmon polaritons from 1 to 1.8 µm using periodic multilayer metallo-dielectric hyperbolic metamaterials. The fabricated structures are comprised of smooth films with very low metal filling factor. The measured dispersion properties of these hyperbolic metamaterials agree well with calculations using transfer matrix, finite-difference time-domain, and effective medium approximation methods despite using only 2.5 periods. The enhancement factor in the local photonic density of states from the studied samples in the near-infrared wavelength region is determined to be 2.5-3.5. Development of this type of metamaterial is relevant to sub-wavelength imaging, spontaneous emission and thermophotovoltaic applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
    [CrossRef] [PubMed]
  2. A. Ono, J.-i. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett.95(26), 267407 (2005).
    [CrossRef] [PubMed]
  3. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
    [CrossRef] [PubMed]
  4. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006).
    [CrossRef] [PubMed]
  5. M. Scalora, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M. G. Cappeddu, M. Fowler, and J. W. Haus, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks,” Opt. Express15(2), 508–523 (2007).
    [CrossRef] [PubMed]
  6. I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Imaging and focusing properties of plasmonic metamaterial devices,” Phys. Rev. B76(20), 205424 (2007).
    [CrossRef]
  7. X. Yang, B. Zeng, C. Wang, and X. Luo, “Breaking the feature sizes down to sub-22 nm by plasmonic interference lithography using dielectric-metal multilayer,” Opt. Express17(24), 21560–21565 (2009).
    [CrossRef] [PubMed]
  8. B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett.96(2), 023114 (2010).
    [CrossRef]
  9. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336(6078), 205–209 (2012).
    [CrossRef] [PubMed]
  10. X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012).
    [CrossRef]
  11. Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
    [CrossRef]
  12. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
    [CrossRef] [PubMed]
  13. I. Kim and K. D. Kihm, “Unveiling Hidden complex cavities formed during nanocrystalline self-assembly,” Langmuir25(4), 1881–1884 (2009).
    [CrossRef] [PubMed]
  14. S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett.109(10), 104301 (2012).
    [CrossRef] [PubMed]
  15. C. Otey and S. Fan, “Numerically exact calculation of electromagnetic heat transfer between a dielectric sphere and plate,” Phys. Rev. B84(24), 245431 (2011).
    [CrossRef]
  16. R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107(1), 014301 (2011).
    [CrossRef] [PubMed]
  17. E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics3(9), 514–517 (2009).
    [CrossRef]
  18. P. J. van Zwol, L. Ranno, and J. Chevrier, “Tuning near field radiative heat flux through surface excitations with a metal insulator transition,” Phys. Rev. Lett.108(23), 234301 (2012).
    [CrossRef] [PubMed]
  19. S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett.9(8), 2909–2913 (2009).
    [CrossRef] [PubMed]
  20. M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics6(8), 535–539 (2012).
    [CrossRef]
  21. M. Francoeur, R. Vaillon, and M. P. Menguc, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Conv.26(2), 686–698 (2011).
    [CrossRef]
  22. A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett.85(7), 1548–1551 (2000).
    [CrossRef] [PubMed]
  23. S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res.33(13), 1203–1232 (2009).
    [CrossRef]
  24. O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express20(S3), A366–A384 (2012).
    [CrossRef] [PubMed]
  25. M. Laroche, R. Carminati, and J. J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys.100(6), 063704 (2006).
    [CrossRef]
  26. A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett.82(20), 3544–3546 (2003).
    [CrossRef]
  27. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A.109(23), 8834–8838 (2012).
    [CrossRef] [PubMed]
  28. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express2(4), 478–489 (2012).
    [CrossRef]
  29. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  30. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005).
    [CrossRef]
  31. N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010).
    [CrossRef] [PubMed]
  32. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
    [CrossRef]
  33. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005).
    [CrossRef] [PubMed]
  34. M. L. Nesterov, D. Martin-Cano, A. I. Fernandez-Dominguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Geometrically induced modification of surface plasmons in the optical and telecom regimes,” Opt. Lett.35(3), 423–425 (2010).
    [CrossRef] [PubMed]
  35. J. T. Shen, P. B. Catrysse, and S. H. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett.94(19), 197401 (2005).
    [CrossRef] [PubMed]
  36. S. Q. Li, P. J. Guo, L. X. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano5(11), 9161–9170 (2011).
    [CrossRef] [PubMed]
  37. C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012).
    [CrossRef]
  38. Z. Shi, G. Piredda, A. C. Liapis, M. A. Nelson, L. Novotny, and R. W. Boyd, “Surface plasmon polaritons on metal-dielectric nanocomposite films,” in OSA Technical Digest (CD) (Optical Society of America, 2009), IThG6.
  39. S. Tomita, T. Yokoyama, H. Yanagi, B. Wood, J. B. Pendry, M. Fujii, and S. Hayashi, “Resonant photon tunneling via surface plasmon polaritons through one-dimensional metal-dielectric metamaterials,” Opt. Express16(13), 9942–9950 (2008).
    [CrossRef] [PubMed]
  40. I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B75(24), 241402 (2007).
    [CrossRef]
  41. Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B46(4), 2503–2511 (1992).
    [CrossRef]
  42. M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B81(3), 035402 (2010).
    [CrossRef]
  43. B. Gompf, J. Beister, T. Brandt, J. Pflaum, and M. Dressel, “Nanometer-thick Au-films as antireflection coating for infrared light,” Opt. Lett.32(11), 1578–1580 (2007).
    [CrossRef] [PubMed]
  44. J. Schilling, “Uniaxial metallo-dielectric metamaterials with scalar positive permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(4), 046618 (2006).
    [CrossRef] [PubMed]
  45. W. Cai and V. Shalaev, Optical Metamaterials Fundamentals and applications (Springer, 2010).
  46. S. V. Zhirnov and D. I. Sementsov, “Surface polaritons in a thin layer of an anisotropic superconductor,” Opt. Spectrosc.104(3), 467–474 (2008).
    [CrossRef]
  47. C. H. Gan and P. Lalanne, “Well-confined surface plasmon polaritons for sensing applications in the near-infrared,” Opt. Lett.35(4), 610–612 (2010).
    [CrossRef] [PubMed]
  48. K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett.10(3), 916–922 (2010).
    [CrossRef] [PubMed]
  49. W. Chen, K. P. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing,” Appl. Phys. Lett.97(21), 211107 (2010).
    [CrossRef]

2012 (9)

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336(6078), 205–209 (2012).
[CrossRef] [PubMed]

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012).
[CrossRef]

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett.109(10), 104301 (2012).
[CrossRef] [PubMed]

P. J. van Zwol, L. Ranno, and J. Chevrier, “Tuning near field radiative heat flux through surface excitations with a metal insulator transition,” Phys. Rev. Lett.108(23), 234301 (2012).
[CrossRef] [PubMed]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics6(8), 535–539 (2012).
[CrossRef]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A.109(23), 8834–8838 (2012).
[CrossRef] [PubMed]

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012).
[CrossRef]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express20(S3), A366–A384 (2012).
[CrossRef] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express2(4), 478–489 (2012).
[CrossRef]

2011 (5)

S. Q. Li, P. J. Guo, L. X. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano5(11), 9161–9170 (2011).
[CrossRef] [PubMed]

M. Francoeur, R. Vaillon, and M. P. Menguc, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Conv.26(2), 686–698 (2011).
[CrossRef]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
[CrossRef] [PubMed]

C. Otey and S. Fan, “Numerically exact calculation of electromagnetic heat transfer between a dielectric sphere and plate,” Phys. Rev. B84(24), 245431 (2011).
[CrossRef]

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107(1), 014301 (2011).
[CrossRef] [PubMed]

2010 (8)

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett.96(2), 023114 (2010).
[CrossRef]

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B81(3), 035402 (2010).
[CrossRef]

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett.10(3), 916–922 (2010).
[CrossRef] [PubMed]

W. Chen, K. P. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing,” Appl. Phys. Lett.97(21), 211107 (2010).
[CrossRef]

N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010).
[CrossRef] [PubMed]

M. L. Nesterov, D. Martin-Cano, A. I. Fernandez-Dominguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Geometrically induced modification of surface plasmons in the optical and telecom regimes,” Opt. Lett.35(3), 423–425 (2010).
[CrossRef] [PubMed]

C. H. Gan and P. Lalanne, “Well-confined surface plasmon polaritons for sensing applications in the near-infrared,” Opt. Lett.35(4), 610–612 (2010).
[CrossRef] [PubMed]

2009 (6)

X. Yang, B. Zeng, C. Wang, and X. Luo, “Breaking the feature sizes down to sub-22 nm by plasmonic interference lithography using dielectric-metal multilayer,” Opt. Express17(24), 21560–21565 (2009).
[CrossRef] [PubMed]

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res.33(13), 1203–1232 (2009).
[CrossRef]

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett.9(8), 2909–2913 (2009).
[CrossRef] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

I. Kim and K. D. Kihm, “Unveiling Hidden complex cavities formed during nanocrystalline self-assembly,” Langmuir25(4), 1881–1884 (2009).
[CrossRef] [PubMed]

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics3(9), 514–517 (2009).
[CrossRef]

2008 (3)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
[CrossRef]

S. V. Zhirnov and D. I. Sementsov, “Surface polaritons in a thin layer of an anisotropic superconductor,” Opt. Spectrosc.104(3), 467–474 (2008).
[CrossRef]

S. Tomita, T. Yokoyama, H. Yanagi, B. Wood, J. B. Pendry, M. Fujii, and S. Hayashi, “Resonant photon tunneling via surface plasmon polaritons through one-dimensional metal-dielectric metamaterials,” Opt. Express16(13), 9942–9950 (2008).
[CrossRef] [PubMed]

2007 (5)

M. Scalora, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M. G. Cappeddu, M. Fowler, and J. W. Haus, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks,” Opt. Express15(2), 508–523 (2007).
[CrossRef] [PubMed]

B. Gompf, J. Beister, T. Brandt, J. Pflaum, and M. Dressel, “Nanometer-thick Au-films as antireflection coating for infrared light,” Opt. Lett.32(11), 1578–1580 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Imaging and focusing properties of plasmonic metamaterial devices,” Phys. Rev. B76(20), 205424 (2007).
[CrossRef]

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B75(24), 241402 (2007).
[CrossRef]

2006 (3)

J. Schilling, “Uniaxial metallo-dielectric metamaterials with scalar positive permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(4), 046618 (2006).
[CrossRef] [PubMed]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006).
[CrossRef] [PubMed]

M. Laroche, R. Carminati, and J. J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys.100(6), 063704 (2006).
[CrossRef]

2005 (4)

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005).
[CrossRef] [PubMed]

J. T. Shen, P. B. Catrysse, and S. H. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett.94(19), 197401 (2005).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005).
[CrossRef]

A. Ono, J.-i. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett.95(26), 267407 (2005).
[CrossRef] [PubMed]

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

2003 (1)

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett.82(20), 3544–3546 (2003).
[CrossRef]

2000 (1)

A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett.85(7), 1548–1551 (2000).
[CrossRef] [PubMed]

1992 (1)

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B46(4), 2503–2511 (1992).
[CrossRef]

Akozbek, N.

Alekseyev, L. V.

Alemi, A. A.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107(1), 014301 (2011).
[CrossRef] [PubMed]

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
[CrossRef]

Asano, T.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics6(8), 535–539 (2012).
[CrossRef]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
[CrossRef] [PubMed]

Avrutsky, I.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B75(24), 241402 (2007).
[CrossRef]

Basu, S.

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res.33(13), 1203–1232 (2009).
[CrossRef]

Beister, J.

Ben-Abdallah, P.

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett.109(10), 104301 (2012).
[CrossRef] [PubMed]

Biehs, S. A.

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett.109(10), 104301 (2012).
[CrossRef] [PubMed]

Bloemer, M. J.

Boltasseva, A.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A.109(23), 8834–8838 (2012).
[CrossRef] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express2(4), 478–489 (2012).
[CrossRef]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
[CrossRef] [PubMed]

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

Borneman, J. D.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett.10(3), 916–922 (2010).
[CrossRef] [PubMed]

Brandt, T.

Capasso, F.

N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010).
[CrossRef] [PubMed]

Cappeddu, M. G.

Carminati, R.

M. Laroche, R. Carminati, and J. J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys.100(6), 063704 (2006).
[CrossRef]

A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett.85(7), 1548–1551 (2000).
[CrossRef] [PubMed]

Casse, B. D. F.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett.96(2), 023114 (2010).
[CrossRef]

Catrysse, P. B.

J. T. Shen, P. B. Catrysse, and S. H. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett.94(19), 197401 (2005).
[CrossRef] [PubMed]

Celanovic, I.

Centini, M.

Chang, R. P. H.

S. Q. Li, P. J. Guo, L. X. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano5(11), 9161–9170 (2011).
[CrossRef] [PubMed]

Chen, G.

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett.9(8), 2909–2913 (2009).
[CrossRef] [PubMed]

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett.82(20), 3544–3546 (2003).
[CrossRef]

Chen, K. P.

W. Chen, K. P. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing,” Appl. Phys. Lett.97(21), 211107 (2010).
[CrossRef]

Chen, K.-P.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett.10(3), 916–922 (2010).
[CrossRef] [PubMed]

Chen, W.

W. Chen, K. P. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing,” Appl. Phys. Lett.97(21), 211107 (2010).
[CrossRef]

Chevrier, J.

P. J. van Zwol, L. Ranno, and J. Chevrier, “Tuning near field radiative heat flux through surface excitations with a metal insulator transition,” Phys. Rev. Lett.108(23), 234301 (2012).
[CrossRef] [PubMed]

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics3(9), 514–517 (2009).
[CrossRef]

Comin, F.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics3(9), 514–517 (2009).
[CrossRef]

Cortes, C. L.

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012).
[CrossRef]

D’Aguanno, G.

Davies, A. G.

N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010).
[CrossRef] [PubMed]

Davis, C. C.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Imaging and focusing properties of plasmonic metamaterial devices,” Phys. Rev. B76(20), 205424 (2007).
[CrossRef]

de Ceglia, D.

De Zoysa, M.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics6(8), 535–539 (2012).
[CrossRef]

Deutscher, G.

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B46(4), 2503–2511 (1992).
[CrossRef]

Drachev, V. P.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett.10(3), 916–922 (2010).
[CrossRef] [PubMed]

Dressel, M.

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B81(3), 035402 (2010).
[CrossRef]

B. Gompf, J. Beister, T. Brandt, J. Pflaum, and M. Dressel, “Nanometer-thick Au-films as antireflection coating for infrared light,” Opt. Lett.32(11), 1578–1580 (2007).
[CrossRef] [PubMed]

Elser, J.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B75(24), 241402 (2007).
[CrossRef]

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Fan, J. A.

N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010).
[CrossRef] [PubMed]

Fan, S.

C. Otey and S. Fan, “Numerically exact calculation of electromagnetic heat transfer between a dielectric sphere and plate,” Phys. Rev. B84(24), 245431 (2011).
[CrossRef]

Fan, S. H.

J. T. Shen, P. B. Catrysse, and S. H. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett.94(19), 197401 (2005).
[CrossRef] [PubMed]

Fernandez-Dominguez, A. I.

M. L. Nesterov, D. Martin-Cano, A. I. Fernandez-Dominguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Geometrically induced modification of surface plasmons in the optical and telecom regimes,” Opt. Lett.35(3), 423–425 (2010).
[CrossRef] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
[CrossRef]

Fowler, M.

Francoeur, M.

M. Francoeur, R. Vaillon, and M. P. Menguc, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Conv.26(2), 686–698 (2011).
[CrossRef]

Fu, C. J.

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res.33(13), 1203–1232 (2009).
[CrossRef]

Fujii, M.

Gadenne, P.

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B46(4), 2503–2511 (1992).
[CrossRef]

Gan, C. H.

Garcia-Vidal, F. J.

M. L. Nesterov, D. Martin-Cano, A. I. Fernandez-Dominguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Geometrically induced modification of surface plasmons in the optical and telecom regimes,” Opt. Lett.35(3), 423–425 (2010).
[CrossRef] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Gompf, B.

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B81(3), 035402 (2010).
[CrossRef]

B. Gompf, J. Beister, T. Brandt, J. Pflaum, and M. Dressel, “Nanometer-thick Au-films as antireflection coating for infrared light,” Opt. Lett.32(11), 1578–1580 (2007).
[CrossRef] [PubMed]

Greffet, J. J.

M. Laroche, R. Carminati, and J. J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys.100(6), 063704 (2006).
[CrossRef]

A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett.85(7), 1548–1551 (2000).
[CrossRef] [PubMed]

Greffet, J.-J.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics3(9), 514–517 (2009).
[CrossRef]

Gultepe, E.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett.96(2), 023114 (2010).
[CrossRef]

Guo, P. J.

S. Q. Li, P. J. Guo, L. X. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano5(11), 9161–9170 (2011).
[CrossRef] [PubMed]

Haus, J. W.

Hayashi, S.

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Hibbins, A. P.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Hövel, M.

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B81(3), 035402 (2010).
[CrossRef]

Huang, Y. J.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett.96(2), 023114 (2010).
[CrossRef]

Hung, Y.-J.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Imaging and focusing properties of plasmonic metamaterial devices,” Phys. Rev. B76(20), 205424 (2007).
[CrossRef]

Ilic, O.

Inoue, T.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics6(8), 535–539 (2012).
[CrossRef]

Jablan, M.

Jacob, Z.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336(6078), 205–209 (2012).
[CrossRef] [PubMed]

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012).
[CrossRef]

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006).
[CrossRef] [PubMed]

Joannopoulos, J. D.

Joulain, K.

A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett.85(7), 1548–1551 (2000).
[CrossRef] [PubMed]

Jourdan, G.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics3(9), 514–517 (2009).
[CrossRef]

Julien, C.

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B46(4), 2503–2511 (1992).
[CrossRef]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Kato, J.-i.

A. Ono, J.-i. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett.95(26), 267407 (2005).
[CrossRef] [PubMed]

Kats, M. A.

N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010).
[CrossRef] [PubMed]

Kawata, S.

A. Ono, J.-i. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett.95(26), 267407 (2005).
[CrossRef] [PubMed]

Ketterson, J. B.

S. Q. Li, P. J. Guo, L. X. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano5(11), 9161–9170 (2011).
[CrossRef] [PubMed]

Khanna, S. P.

N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010).
[CrossRef] [PubMed]

Kihm, K. D.

I. Kim and K. D. Kihm, “Unveiling Hidden complex cavities formed during nanocrystalline self-assembly,” Langmuir25(4), 1881–1884 (2009).
[CrossRef] [PubMed]

Kildishev, A. V.

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express2(4), 478–489 (2012).
[CrossRef]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A.109(23), 8834–8838 (2012).
[CrossRef] [PubMed]

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett.10(3), 916–922 (2010).
[CrossRef] [PubMed]

W. Chen, K. P. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing,” Appl. Phys. Lett.97(21), 211107 (2010).
[CrossRef]

Kim, I.

I. Kim and K. D. Kihm, “Unveiling Hidden complex cavities formed during nanocrystalline self-assembly,” Langmuir25(4), 1881–1884 (2009).
[CrossRef] [PubMed]

Kim, J. Y.

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

Kretzschmar, I.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336(6078), 205–209 (2012).
[CrossRef] [PubMed]

Krishnamoorthy, H. N. S.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336(6078), 205–209 (2012).
[CrossRef] [PubMed]

Lalanne, P.

Laroche, M.

M. Laroche, R. Carminati, and J. J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys.100(6), 063704 (2006).
[CrossRef]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Li, L. H.

N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010).
[CrossRef] [PubMed]

Li, S. Q.

S. Q. Li, P. J. Guo, L. X. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano5(11), 9161–9170 (2011).
[CrossRef] [PubMed]

Linfield, E. H.

N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010).
[CrossRef] [PubMed]

Liu, J.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A.109(23), 8834–8838 (2012).
[CrossRef] [PubMed]

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Lu, W. T.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett.96(2), 023114 (2010).
[CrossRef]

Lundock, R.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107(1), 014301 (2011).
[CrossRef] [PubMed]

Luo, X.

Maier, S. A.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
[CrossRef]

Mandatori, A.

Martin Moreno, L.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
[CrossRef]

Martin-Cano, D.

Martin-Moreno, L.

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Mattiucci, N.

Menguc, M. P.

M. Francoeur, R. Vaillon, and M. P. Menguc, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Conv.26(2), 686–698 (2011).
[CrossRef]

Menon, L.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett.96(2), 023114 (2010).
[CrossRef]

Menon, V. M.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336(6078), 205–209 (2012).
[CrossRef] [PubMed]

Mochizuki, K.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics6(8), 535–539 (2012).
[CrossRef]

Molesky, S.

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012).
[CrossRef]

Moreno, E.

Mueller, G.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107(1), 014301 (2011).
[CrossRef] [PubMed]

Naik, G. V.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A.109(23), 8834–8838 (2012).
[CrossRef] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express2(4), 478–489 (2012).
[CrossRef]

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

Narayanaswamy, A.

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett.9(8), 2909–2913 (2009).
[CrossRef] [PubMed]

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett.82(20), 3544–3546 (2003).
[CrossRef]

Narimanov, E.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336(6078), 205–209 (2012).
[CrossRef] [PubMed]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006).
[CrossRef] [PubMed]

Narimanov, E. E.

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

Nesterov, M. L.

Newman, W.

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012).
[CrossRef]

Ni, X.

Noda, S.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics6(8), 535–539 (2012).
[CrossRef]

Odom, T. W.

S. Q. Li, P. J. Guo, L. X. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano5(11), 9161–9170 (2011).
[CrossRef] [PubMed]

Ono, A.

A. Ono, J.-i. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett.95(26), 267407 (2005).
[CrossRef] [PubMed]

Oskooi, A.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics6(8), 535–539 (2012).
[CrossRef]

Otey, C.

C. Otey and S. Fan, “Numerically exact calculation of electromagnetic heat transfer between a dielectric sphere and plate,” Phys. Rev. B84(24), 245431 (2011).
[CrossRef]

Ottens, R. S.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107(1), 014301 (2011).
[CrossRef] [PubMed]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pendry, J. B.

S. Tomita, T. Yokoyama, H. Yanagi, B. Wood, J. B. Pendry, M. Fujii, and S. Hayashi, “Resonant photon tunneling via surface plasmon polaritons through one-dimensional metal-dielectric metamaterials,” Opt. Express16(13), 9942–9950 (2008).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Pflaum, J.

Podolskiy, V.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B75(24), 241402 (2007).
[CrossRef]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Quetschke, V.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107(1), 014301 (2011).
[CrossRef] [PubMed]

Ranno, L.

P. J. van Zwol, L. Ranno, and J. Chevrier, “Tuning near field radiative heat flux through surface excitations with a metal insulator transition,” Phys. Rev. Lett.108(23), 234301 (2012).
[CrossRef] [PubMed]

Reitze, D. H.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107(1), 014301 (2011).
[CrossRef] [PubMed]

Rho, J.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012).
[CrossRef]

Rousseau, E.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics3(9), 514–517 (2009).
[CrossRef]

Salakhutdinov, I.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B75(24), 241402 (2007).
[CrossRef]

Sambles, J. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Sands, T. D.

Scalora, M.

Schilling, J.

J. Schilling, “Uniaxial metallo-dielectric metamaterials with scalar positive permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(4), 046618 (2006).
[CrossRef] [PubMed]

Schroeder, J. L.

Seideman, T.

S. Q. Li, P. J. Guo, L. X. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano5(11), 9161–9170 (2011).
[CrossRef] [PubMed]

Sementsov, D. I.

S. V. Zhirnov and D. I. Sementsov, “Surface polaritons in a thin layer of an anisotropic superconductor,” Opt. Spectrosc.104(3), 467–474 (2008).
[CrossRef]

Shalaev, V. M.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A.109(23), 8834–8838 (2012).
[CrossRef] [PubMed]

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett.10(3), 916–922 (2010).
[CrossRef] [PubMed]

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

W. Chen, K. P. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing,” Appl. Phys. Lett.97(21), 211107 (2010).
[CrossRef]

Shchegrov, A. V.

A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett.85(7), 1548–1551 (2000).
[CrossRef] [PubMed]

Shen, J. T.

J. T. Shen, P. B. Catrysse, and S. H. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett.94(19), 197401 (2005).
[CrossRef] [PubMed]

Shen, S.

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett.9(8), 2909–2913 (2009).
[CrossRef] [PubMed]

Sibilia, C.

Siria, A.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics3(9), 514–517 (2009).
[CrossRef]

Smolyaninov, I. I.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Imaging and focusing properties of plasmonic metamaterial devices,” Phys. Rev. B76(20), 205424 (2007).
[CrossRef]

Soljacic, M.

Sridhar, S.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett.96(2), 023114 (2010).
[CrossRef]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Tanner, D. B.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107(1), 014301 (2011).
[CrossRef] [PubMed]

Thoreson, M. D.

W. Chen, K. P. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing,” Appl. Phys. Lett.97(21), 211107 (2010).
[CrossRef]

Tomita, S.

Tschikin, M.

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett.109(10), 104301 (2012).
[CrossRef] [PubMed]

Vaillon, R.

M. Francoeur, R. Vaillon, and M. P. Menguc, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Conv.26(2), 686–698 (2011).
[CrossRef]

van Zwol, P. J.

P. J. van Zwol, L. Ranno, and J. Chevrier, “Tuning near field radiative heat flux through surface excitations with a metal insulator transition,” Phys. Rev. Lett.108(23), 234301 (2012).
[CrossRef] [PubMed]

Volz, S.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics3(9), 514–517 (2009).
[CrossRef]

Wang, C.

Wang, Q. J.

N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010).
[CrossRef] [PubMed]

Whiting, B. F.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107(1), 014301 (2011).
[CrossRef] [PubMed]

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
[CrossRef]

Wise, S.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107(1), 014301 (2011).
[CrossRef] [PubMed]

Wood, B.

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Yagil, Y.

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B46(4), 2503–2511 (1992).
[CrossRef]

Yanagi, H.

Yang, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012).
[CrossRef]

X. Yang, B. Zeng, C. Wang, and X. Luo, “Breaking the feature sizes down to sub-22 nm by plasmonic interference lithography using dielectric-metal multilayer,” Opt. Express17(24), 21560–21565 (2009).
[CrossRef] [PubMed]

Yao, J.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012).
[CrossRef]

Yin, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012).
[CrossRef]

Yokoyama, T.

Yu, N. F.

N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010).
[CrossRef] [PubMed]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Zeng, B.

Zhang, L. X.

S. Q. Li, P. J. Guo, L. X. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano5(11), 9161–9170 (2011).
[CrossRef] [PubMed]

Zhang, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Zhang, Z. M.

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res.33(13), 1203–1232 (2009).
[CrossRef]

Zhirnov, S. V.

S. V. Zhirnov and D. I. Sementsov, “Surface polaritons in a thin layer of an anisotropic superconductor,” Opt. Spectrosc.104(3), 467–474 (2008).
[CrossRef]

Zhou, W.

S. Q. Li, P. J. Guo, L. X. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano5(11), 9161–9170 (2011).
[CrossRef] [PubMed]

ACS Nano (1)

S. Q. Li, P. J. Guo, L. X. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano5(11), 9161–9170 (2011).
[CrossRef] [PubMed]

Appl. Phys. B (1)

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett.96(2), 023114 (2010).
[CrossRef]

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett.82(20), 3544–3546 (2003).
[CrossRef]

W. Chen, K. P. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing,” Appl. Phys. Lett.97(21), 211107 (2010).
[CrossRef]

IEEE Trans. Energy Conv. (1)

M. Francoeur, R. Vaillon, and M. P. Menguc, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Conv.26(2), 686–698 (2011).
[CrossRef]

Int. J. Energy Res. (1)

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res.33(13), 1203–1232 (2009).
[CrossRef]

J. Appl. Phys. (1)

M. Laroche, R. Carminati, and J. J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys.100(6), 063704 (2006).
[CrossRef]

J. Opt. (1)

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005).
[CrossRef]

Langmuir (1)

I. Kim and K. D. Kihm, “Unveiling Hidden complex cavities formed during nanocrystalline self-assembly,” Langmuir25(4), 1881–1884 (2009).
[CrossRef] [PubMed]

Nano Lett. (2)

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett.9(8), 2909–2913 (2009).
[CrossRef] [PubMed]

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett.10(3), 916–922 (2010).
[CrossRef] [PubMed]

Nat. Mater. (2)

N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010).
[CrossRef] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Nat. Photonics (4)

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics3(9), 514–517 (2009).
[CrossRef]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
[CrossRef]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics6(8), 535–539 (2012).
[CrossRef]

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Opt. Mater. Express (1)

Opt. Spectrosc. (1)

S. V. Zhirnov and D. I. Sementsov, “Surface polaritons in a thin layer of an anisotropic superconductor,” Opt. Spectrosc.104(3), 467–474 (2008).
[CrossRef]

Phys. Rev. B (5)

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B75(24), 241402 (2007).
[CrossRef]

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B46(4), 2503–2511 (1992).
[CrossRef]

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B81(3), 035402 (2010).
[CrossRef]

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Imaging and focusing properties of plasmonic metamaterial devices,” Phys. Rev. B76(20), 205424 (2007).
[CrossRef]

C. Otey and S. Fan, “Numerically exact calculation of electromagnetic heat transfer between a dielectric sphere and plate,” Phys. Rev. B84(24), 245431 (2011).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J. Schilling, “Uniaxial metallo-dielectric metamaterials with scalar positive permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(4), 046618 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (6)

J. T. Shen, P. B. Catrysse, and S. H. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett.94(19), 197401 (2005).
[CrossRef] [PubMed]

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107(1), 014301 (2011).
[CrossRef] [PubMed]

P. J. van Zwol, L. Ranno, and J. Chevrier, “Tuning near field radiative heat flux through surface excitations with a metal insulator transition,” Phys. Rev. Lett.108(23), 234301 (2012).
[CrossRef] [PubMed]

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett.109(10), 104301 (2012).
[CrossRef] [PubMed]

A. Ono, J.-i. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett.95(26), 267407 (2005).
[CrossRef] [PubMed]

A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett.85(7), 1548–1551 (2000).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A.109(23), 8834–8838 (2012).
[CrossRef] [PubMed]

Science (5)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
[CrossRef] [PubMed]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336(6078), 205–209 (2012).
[CrossRef] [PubMed]

Other (2)

Z. Shi, G. Piredda, A. C. Liapis, M. A. Nelson, L. Novotny, and R. W. Boyd, “Surface plasmon polaritons on metal-dielectric nanocomposite films,” in OSA Technical Digest (CD) (Optical Society of America, 2009), IThG6.

W. Cai and V. Shalaev, Optical Metamaterials Fundamentals and applications (Springer, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic depiction of 2.5 periods of metallo-dielectric hyperbolic metamaterial composed of alternating layers of Ti-Au (1 nm thick Ti and 5 nm thick Au), and SiO2 (50, 100 or 250 nm); sample A, B and C respectively. Thin films are sequentially deposited on a glass substrate using thermal evaporation with a base vacuum pressure of 10−7 torr. (b) Cross-sectional SEM image shows clear identification of 3 layers of Au and 2 layers of SiO2 films (100 nm thick). (c-e) AFM topography images of 1 nm thick Ti, 5nm thick Au on 1 nm thick Ti, and 100nm thick SiO2 film for a 1.0µm × 1.0µm region in the peak-to-valley grey scale of 0-5 nm range with their respective root mean square roughness of 0.2, 0.4 and 0.4 nm.

Fig. 2
Fig. 2

The classic signatures for the identification of SPP mode of sample B at 45 degree angle of incidence. (a) The presence of a reflectivity minimum at the SPP resonance using ATR configuration. (b) Its absence without ATR. Experiments are depicted as black circular symbols. Results obtained from 5-layer TMM, single layer of uniaxial effective medium TMM, and FDTD calculations are solid (blue online), dash-dot (blue online), and dash (blue online) lines, respectively. Due to the close match of FDTD result with TMM calculation, they cannot be distinguished visually.

Fig. 3
Fig. 3

(a) Surface plasmon dispersion curves from three different metal filling factor samples (A, B and C) of 0.118, 0.076 and 0.032 arising from a different SiO2 thickness: 50 nm in blue, 100 nm in black, and 250 nm in red, respectively. Experimental data from sample A, B and C are indicated by symbols of squares (blue online), diamonds (black online), and triangles (red online). Dispersion calculations using 5-layer TMM, single layer of uniaxial effective medium, and analytical solution are solid, dash, and dash-dot lines, respectively. Notice the dispersion results of uniaxial TMM and analytical solution are in quite good agreement. The free space light line is indicated by a light dotted line. The inset table summarizes the experimentally obtained shortest SPP wavelengths for the three samples. (b) LPDOS enhancement of the three samples mentioned above. The solid lines are for the purpose of visual guide.

Fig. 4
Fig. 4

The real (a) and imaginary (b) parts of ε || of the uniaxial anisotropic dielectric functions of sample A, B, and C obtained from fitted ellisopmetry data. The sample A, B, and C with metal filling factor f = 0.118, 0.076, and 0.032, respectively are depicted by a dash-dot (blue online), solid, and dash (red online) lines, respectively. In part a, sample A, B, and C becomes a type II hyperbolic metamaterial at wavelengths beyond 0.8, 1.2, and 1.7 µm, respectively since ε || is negative, whereas ε is positive in the entire wavelength range for all samples (data not shown).

Fig. 5
Fig. 5

The result of a FDTD simulation of the field pattern and enhancement signatures of the SPP resonance for sample B. The top air-metal interface is at y-position = 0 and the bottom metal-substrate interface is at y-position = −0.215μm. The metal layers are indicated with black lines. A p-polarized incident field is launched from the bottom inside the glass substrate to the film stack at an angle of incidence of 45 degrees. (a) The surface normal component of the electric field pattern of the SPP located on the top air-metal interface. (b) The wavelength dependent enhancement factor for the electric field amplitude square normalized to the incident value. (c) The electric field mode pattern same as (a) for a single layer of a uniaxial effective medium with thickness equal to that of the entire 5-layer stack.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( ε 1 k || 2 ε 1 k 0 2 + ε || α )( ε || α + ε sub k || 2 ε sub k 0 2 )+( ε 1 k || 2 ε 1 k 0 2 ε || α )( ε || α ε sub k || 2 ε sub k 0 2 )exp(2α t t )

Metrics