Abstract

We demonstrate a polarization-independent mid-infrared Fano resonance with extraordinary transmission when light passes through two concentric metallic ring apertures. A high-Q dark mode is indirectly excitated by coupling with a low-Q bright mode. A coupled optical resonator model is used to analyze the coupling process between the bright and dark modes. We find the Q of the dark mode is 3~6 times higher than that of the bright mode. We show that the dark mode can be selectively disabled without affecting the bright mode.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010).
    [CrossRef] [PubMed]
  2. Y. Zhang, T. Q. Jia, H. M. Zhang, and Z. Z. Xu, “Fano resonances in disk-ring plasmonic nanostructure: strong interaction between bright dipolar and dark multipolar mode,” Opt. Lett.37(23), 4919–4921 (2012).
    [CrossRef] [PubMed]
  3. Z. Dong, M. Xu, S. Lei, H. Liu, T. Li, F. Wang, and S. Zhu, “Negative refraction with magnetic resonance in a metallic a double-ring metamaterial,” Appl. Phys. Lett.92(6), 064101 (2008).
    [CrossRef]
  4. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
    [CrossRef] [PubMed]
  5. J. Kim, R. Soref, and W. R. Buchwald, “Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial,” Opt. Express18(17), 17997–18002 (2010).
    [CrossRef] [PubMed]
  6. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
    [CrossRef] [PubMed]
  7. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401–047404 (2008).
    [CrossRef] [PubMed]
  8. H. R. Park, Y. M. Bahk, K. J. Ahn, Q. H. Park, D. S. Kim, L. Martín-Moreno, F. J. García-Vidal, and J. Bravo-Abad, “Controlling terahertz radiation with nanoscale metal barriers embedded in nano slot antennas,” ACS Nano5(10), 8340–8345 (2011).
    [CrossRef] [PubMed]
  9. Y.-M. Bahk, J.-W. Choi, J. Kyoung, H.-R. Park, K. J. Ahn, and D.-S. Kim, “Selective enhanced resonances of two asymmetric terahertz nano resonators,” Opt. Express20(23), 25644–25653 (2012).
    [CrossRef] [PubMed]
  10. A. Artar, A. A. Yanik, and H. Altug, “Multi-spectral plasmon induced transparency in coupled meta-atoms,” Nano Lett.11(4), 1685–1689 (2011).
    [CrossRef] [PubMed]
  11. C. W. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
    [CrossRef] [PubMed]
  12. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
    [CrossRef]
  13. M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B.-J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett.10(6), 2064–2068 (2010).
    [CrossRef] [PubMed]
  14. J. Shu, C. Qiu, V. Astley, D. Nickel, D. M. Mittleman, and Q. Xu, “High-contrast terahertz modulator based on extraordinary transmission through a ring aperture,” Opt. Express19(27), 26666–26671 (2011).
    [CrossRef] [PubMed]
  15. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  16. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20(3), 569–572 (2003).
    [CrossRef] [PubMed]
  17. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
    [CrossRef]
  18. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, 2007).

2012 (2)

2011 (4)

J. Shu, C. Qiu, V. Astley, D. Nickel, D. M. Mittleman, and Q. Xu, “High-contrast terahertz modulator based on extraordinary transmission through a ring aperture,” Opt. Express19(27), 26666–26671 (2011).
[CrossRef] [PubMed]

H. R. Park, Y. M. Bahk, K. J. Ahn, Q. H. Park, D. S. Kim, L. Martín-Moreno, F. J. García-Vidal, and J. Bravo-Abad, “Controlling terahertz radiation with nanoscale metal barriers embedded in nano slot antennas,” ACS Nano5(10), 8340–8345 (2011).
[CrossRef] [PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Multi-spectral plasmon induced transparency in coupled meta-atoms,” Nano Lett.11(4), 1685–1689 (2011).
[CrossRef] [PubMed]

C. W. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

2010 (4)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B.-J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett.10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

J. Kim, R. Soref, and W. R. Buchwald, “Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial,” Opt. Express18(17), 17997–18002 (2010).
[CrossRef] [PubMed]

2009 (1)

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

2008 (2)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401–047404 (2008).
[CrossRef] [PubMed]

Z. Dong, M. Xu, S. Lei, H. Liu, T. Li, F. Wang, and S. Zhu, “Negative refraction with magnetic resonance in a metallic a double-ring metamaterial,” Appl. Phys. Lett.92(6), 064101 (2008).
[CrossRef]

2007 (1)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

2003 (2)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20(3), 569–572 (2003).
[CrossRef] [PubMed]

1999 (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

Adato, R.

C. W. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

Ahn, K.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B.-J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett.10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Ahn, K. J.

Y.-M. Bahk, J.-W. Choi, J. Kyoung, H.-R. Park, K. J. Ahn, and D.-S. Kim, “Selective enhanced resonances of two asymmetric terahertz nano resonators,” Opt. Express20(23), 25644–25653 (2012).
[CrossRef] [PubMed]

H. R. Park, Y. M. Bahk, K. J. Ahn, Q. H. Park, D. S. Kim, L. Martín-Moreno, F. J. García-Vidal, and J. Bravo-Abad, “Controlling terahertz radiation with nanoscale metal barriers embedded in nano slot antennas,” ACS Nano5(10), 8340–8345 (2011).
[CrossRef] [PubMed]

Ahn, Y. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B.-J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett.10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Altug, H.

C. W. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Multi-spectral plasmon induced transparency in coupled meta-atoms,” Nano Lett.11(4), 1685–1689 (2011).
[CrossRef] [PubMed]

Arju, N.

C. W. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

Artar, A.

A. Artar, A. A. Yanik, and H. Altug, “Multi-spectral plasmon induced transparency in coupled meta-atoms,” Nano Lett.11(4), 1685–1689 (2011).
[CrossRef] [PubMed]

Astley, V.

Bahk, Y. M.

H. R. Park, Y. M. Bahk, K. J. Ahn, Q. H. Park, D. S. Kim, L. Martín-Moreno, F. J. García-Vidal, and J. Bravo-Abad, “Controlling terahertz radiation with nanoscale metal barriers embedded in nano slot antennas,” ACS Nano5(10), 8340–8345 (2011).
[CrossRef] [PubMed]

Bahk, Y.-M.

Bernien, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B.-J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett.10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Bravo-Abad, J.

H. R. Park, Y. M. Bahk, K. J. Ahn, Q. H. Park, D. S. Kim, L. Martín-Moreno, F. J. García-Vidal, and J. Bravo-Abad, “Controlling terahertz radiation with nanoscale metal barriers embedded in nano slot antennas,” ACS Nano5(10), 8340–8345 (2011).
[CrossRef] [PubMed]

Buchwald, W. R.

Choe, J. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B.-J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett.10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Choi, J.-W.

Dong, Z.

Z. Dong, M. Xu, S. Lei, H. Liu, T. Li, F. Wang, and S. Zhu, “Negative refraction with magnetic resonance in a metallic a double-ring metamaterial,” Appl. Phys. Lett.92(6), 064101 (2008).
[CrossRef]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Economou, E. N.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

Fan, S.

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20(3), 569–572 (2003).
[CrossRef] [PubMed]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

Fedotov, V. A.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

García-Vidal, F. J.

H. R. Park, Y. M. Bahk, K. J. Ahn, Q. H. Park, D. S. Kim, L. Martín-Moreno, F. J. García-Vidal, and J. Bravo-Abad, “Controlling terahertz radiation with nanoscale metal barriers embedded in nano slot antennas,” ACS Nano5(10), 8340–8345 (2011).
[CrossRef] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401–047404 (2008).
[CrossRef] [PubMed]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

Jia, T. Q.

Joannopoulos, J. D.

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20(3), 569–572 (2003).
[CrossRef] [PubMed]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

Khanikaev, A. B.

C. W. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

Kim, B.-J.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B.-J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett.10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Kim, D. S.

H. R. Park, Y. M. Bahk, K. J. Ahn, Q. H. Park, D. S. Kim, L. Martín-Moreno, F. J. García-Vidal, and J. Bravo-Abad, “Controlling terahertz radiation with nanoscale metal barriers embedded in nano slot antennas,” ACS Nano5(10), 8340–8345 (2011).
[CrossRef] [PubMed]

Kim, D.-S.

Y.-M. Bahk, J.-W. Choi, J. Kyoung, H.-R. Park, K. J. Ahn, and D.-S. Kim, “Selective enhanced resonances of two asymmetric terahertz nano resonators,” Opt. Express20(23), 25644–25653 (2012).
[CrossRef] [PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B.-J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett.10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Kim, H. S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B.-J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett.10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Kim, H.-T.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B.-J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett.10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Kim, J.

Koo, S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B.-J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett.10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Koschny, T.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Kyoung, J.

Y.-M. Bahk, J.-W. Choi, J. Kyoung, H.-R. Park, K. J. Ahn, and D.-S. Kim, “Selective enhanced resonances of two asymmetric terahertz nano resonators,” Opt. Express20(23), 25644–25653 (2012).
[CrossRef] [PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B.-J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett.10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Lei, S.

Z. Dong, M. Xu, S. Lei, H. Liu, T. Li, F. Wang, and S. Zhu, “Negative refraction with magnetic resonance in a metallic a double-ring metamaterial,” Appl. Phys. Lett.92(6), 064101 (2008).
[CrossRef]

Li, T.

Z. Dong, M. Xu, S. Lei, H. Liu, T. Li, F. Wang, and S. Zhu, “Negative refraction with magnetic resonance in a metallic a double-ring metamaterial,” Appl. Phys. Lett.92(6), 064101 (2008).
[CrossRef]

Liu, H.

Z. Dong, M. Xu, S. Lei, H. Liu, T. Li, F. Wang, and S. Zhu, “Negative refraction with magnetic resonance in a metallic a double-ring metamaterial,” Appl. Phys. Lett.92(6), 064101 (2008).
[CrossRef]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401–047404 (2008).
[CrossRef] [PubMed]

Maier, S. A.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Martín-Moreno, L.

H. R. Park, Y. M. Bahk, K. J. Ahn, Q. H. Park, D. S. Kim, L. Martín-Moreno, F. J. García-Vidal, and J. Bravo-Abad, “Controlling terahertz radiation with nanoscale metal barriers embedded in nano slot antennas,” ACS Nano5(10), 8340–8345 (2011).
[CrossRef] [PubMed]

Mittleman, D. M.

Moshchalkov, V. V.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

Nickel, D.

Nordlander, P.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Papasimakis, N.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Park, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B.-J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett.10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Park, H. R.

H. R. Park, Y. M. Bahk, K. J. Ahn, Q. H. Park, D. S. Kim, L. Martín-Moreno, F. J. García-Vidal, and J. Bravo-Abad, “Controlling terahertz radiation with nanoscale metal barriers embedded in nano slot antennas,” ACS Nano5(10), 8340–8345 (2011).
[CrossRef] [PubMed]

Park, H.-R.

Park, N.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B.-J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett.10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Park, Q. H.

H. R. Park, Y. M. Bahk, K. J. Ahn, Q. H. Park, D. S. Kim, L. Martín-Moreno, F. J. García-Vidal, and J. Bravo-Abad, “Controlling terahertz radiation with nanoscale metal barriers embedded in nano slot antennas,” ACS Nano5(10), 8340–8345 (2011).
[CrossRef] [PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B.-J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett.10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Qiu, C.

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Seo, M.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B.-J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett.10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Shu, J.

Shvets, G.

C. W. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

Sobhani, H.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

Sonnefraud, Y.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

Soref, R.

Soukoulis, C. M.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

Suh, W.

Tassin, P.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

Van Dorpe, P.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

Vandenbosch, G. A. E.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

Verellen, N.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

Wang, F.

Z. Dong, M. Xu, S. Lei, H. Liu, T. Li, F. Wang, and S. Zhu, “Negative refraction with magnetic resonance in a metallic a double-ring metamaterial,” Appl. Phys. Lett.92(6), 064101 (2008).
[CrossRef]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401–047404 (2008).
[CrossRef] [PubMed]

Wu, C. W.

C. W. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

Xu, M.

Z. Dong, M. Xu, S. Lei, H. Liu, T. Li, F. Wang, and S. Zhu, “Negative refraction with magnetic resonance in a metallic a double-ring metamaterial,” Appl. Phys. Lett.92(6), 064101 (2008).
[CrossRef]

Xu, Q.

Xu, Z. Z.

Yanik, A. A.

C. W. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Multi-spectral plasmon induced transparency in coupled meta-atoms,” Nano Lett.11(4), 1685–1689 (2011).
[CrossRef] [PubMed]

Zhang, H. M.

Zhang, L.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401–047404 (2008).
[CrossRef] [PubMed]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401–047404 (2008).
[CrossRef] [PubMed]

Zhang, Y.

Zheludev, N. I.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Zhu, S.

Z. Dong, M. Xu, S. Lei, H. Liu, T. Li, F. Wang, and S. Zhu, “Negative refraction with magnetic resonance in a metallic a double-ring metamaterial,” Appl. Phys. Lett.92(6), 064101 (2008).
[CrossRef]

ACS Nano (2)

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010).
[CrossRef] [PubMed]

H. R. Park, Y. M. Bahk, K. J. Ahn, Q. H. Park, D. S. Kim, L. Martín-Moreno, F. J. García-Vidal, and J. Bravo-Abad, “Controlling terahertz radiation with nanoscale metal barriers embedded in nano slot antennas,” ACS Nano5(10), 8340–8345 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

Z. Dong, M. Xu, S. Lei, H. Liu, T. Li, F. Wang, and S. Zhu, “Negative refraction with magnetic resonance in a metallic a double-ring metamaterial,” Appl. Phys. Lett.92(6), 064101 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nano Lett. (2)

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B.-J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett.10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Multi-spectral plasmon induced transparency in coupled meta-atoms,” Nano Lett.11(4), 1685–1689 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

C. W. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (3)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401–047404 (2008).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Other (1)

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Top-view of Ex field amplitude distribution at frequency of 760 cm−1 when the dark mode is excitated in the concentric ring apertures. (b) and (c) show the cross-sectional Ex field distribution of the bright mode (excitated at frequency of 980 cm−1) and the dark mode, respectively, with the cross-section cut along the horizontal dashed line in (a). Black arrows indicate the field direction, and red circles indicate the charge distribution. (d) The simulated power transmission spectrum for the concentric two-ring apertures is shown as the solid red line, which is fitted by a coupled optical oscillator model (dotted black line). The dashed blue and dashed green lines are the transmission spectra of the single ring apertures. (e) The phases of the Ex field in the two apertures (the dashed lines) and their difference (the solid line). (f) Solid lines: energies in the dark mode (the red line) and the bright mode (the black line) calculated from the analytical model, which are normalized to the maximum energy in the dark mode. Blue dashed line: absorption of the structure calculated from FDTD simulation.

Fig. 2
Fig. 2

(a) Hybridization schemes. (b)-(e) Quality factors for the dark (red) and the bright (black) modes extracted from the simulated transmission spectra by fitting them with the analytical model. Unless otherwise specified by the x-axis of each panel, the geometric parameters of the device are h = 100 nm, r1 = 950 nm, r2 = 700 nm, w = 100 nm, d = 150 nm, p = 2.6 µm. (b) Q versus the metal thickness h. (c) Q versus the gap size d between the two apertures. (d) Q versus the width of the aperture w. (e) Q versus radius r1 when r1, r2 and w are scaled with the same factor. The resonant wavelength scales proportional to the radii.

Fig. 3
Fig. 3

(a) An SEM picture of fabricated concentric two-ring apertures. (b) Red solid line shows measured power transmission spectrum for the concentric two-ring apertures with r1 = 600 nm and r2 = 350 nm. The dashed lines are the measured transmission spectra of single-ring apertures (blue: r = 600 nm, green: r = 350 nm). The spectra are normalized to the transmission of a bare silicon substrate. The black dotted line is analytical fitting of transmission of concentric two-ring apertures using coupled optical resonator model.

Fig. 4
Fig. 4

(a) Scheme of charge motions for the dark mode with a cut between the apertures. (b) An SEM picture of fabricated concentric two-ring apertures with a cut between the apertures. (c) Measured transmission spectra of concentric two-ring apertures with a cut in the metal between the two apertures, as shown in (b), with different polarization of incident light. The transmission is normalized to the transmission of a bare silicon wafer.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d a 1 dt =(i ω 1 1 τ 1 k 1 2 + k 2 2 2 ) a 1 iκ a 2 + k 1 s 1 + + k 2 s 2 ,
d a 2 dt =(i ω 2 1 τ 2 ) a 2 iκ a 1 ,
s 1 = s 1 + k 1 * a 1 ,
s 2 + = s 2 k 2 * a 1 ,
Q 1 = ω 1 /( 1 τ 1 + | k 1 | 2 + | k 2 | 2 2 ),
Q 2 = ω 2 τ 2 .
T(ω)= | s 2 + s 1 + | 2 = | k 1 k 2 * (i ω 2 iω 1 τ 2 ) (i ω 1 iω 1 τ 1 | k 1 | 2 + | k 2 | 2 2 )(i ω 2 iω 1 τ 2 )+ κ 2 | 2 .

Metrics