Abstract

We demonstrate the fine tuning capability of femtosecond laser surface modification as a permanent trimming mechanism for silicon photonic components. Silicon microring resonators with a 15µm radius were irradiated with single 400nm wavelength laser pulses at varying fluences. Below the laser ablation threshold, surface amorphization of the crystalline silicon waveguides yielded a tuning rate of 20 ± 2 nm/J·cm−2 with a minimum resonance wavelength shift of 0.10nm. Above that threshold, ablation yielded a minimum resonance shift of −1.7nm. There was some increase in waveguide loss for both trimming mechanisms. We also demonstrated the application of the method by using it to permanently correct the resonance mismatch of a second-order microring filter.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
    [CrossRef]
  2. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics2(4), 242–246 (2008).
    [CrossRef]
  3. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express15(2), 430–436 (2007).
    [CrossRef] [PubMed]
  4. S. Yamatogi, Y. Amemiya, T. Ikeda, A. Kuroda, and S. Yokoyama, “Si ring optical resonators for integrated on-chip biosensing,” Jpn. J. Appl. Phys.48(4), 04C188 (2009).
    [CrossRef]
  5. S. C. Buswell, V. A. Wright, J. M. Buriak, V. Van, and S. Evoy, “Specific detection of proteins using photonic crystal waveguides,” Opt. Express16(20), 15949–15957 (2008).
    [CrossRef] [PubMed]
  6. W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express18(23), 23598–23607 (2010).
    [CrossRef] [PubMed]
  7. A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
    [CrossRef]
  8. P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express18(10), 9852–9858 (2010).
    [CrossRef] [PubMed]
  9. H. Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4×4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng.47, 044601 (2008).
    [CrossRef]
  10. L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett.21(17), 1175–1177 (2009).
    [CrossRef]
  11. A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express20(14), 15807–15817 (2012).
    [CrossRef] [PubMed]
  12. J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express16(6), 3738–3743 (2008).
    [CrossRef] [PubMed]
  13. S. Prorok, A. Y. Petrov, M. Eich, J. Luo, and A. K. Y. Jen, “Trimming of high-Q-factor silicon ring resonators by electron beam bleaching,” Opt. Lett.37(15), 3114–3116 (2012).
    [CrossRef] [PubMed]
  14. C. J. Chen, J. Zheng, T. Gu, J. F. McMillan, M. Yu, G. Q. Lo, D. L. Kwong, and C. W. Wong, “Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation,” Opt. Express19(13), 12480–12489 (2011).
    [CrossRef] [PubMed]
  15. Y. Shen, I. B. Divliansky, D. N. Basov, and S. Mookherjea, “Electric-field-driven nano-oxidation trimming of silicon microrings and interferometers,” Opt. Lett.36(14), 2668–2670 (2011).
    [CrossRef] [PubMed]
  16. S. T. Chu, W. Pan, S. Sato, T. Kaneko, B. E. Little, and Y. Kokubun, “Wavelength trimming of a microring resonator filter by means of a UV sensitive polymer overlay,” IEEE Photon. Technol. Lett.11(6), 688–690 (1999).
    [CrossRef]
  17. D. K. Sparacin, C. Y. Hong, L. C. Kimerling, J. Michel, J. P. Lock, and K. K. Gleason, “Trimming of microring resonators by photooxidation of a plasma-polymerized organosilane cladding material,” Opt. Lett.30(17), 2251–2253 (2005).
    [CrossRef] [PubMed]
  18. U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett.88(11), 111107 (2006).
    [CrossRef]
  19. D. Bachman, Z. Chen, A. M. Prabhu, R. Fedosejevs, Y. Y. Tsui, and V. Van, “Femtosecond laser tuning of silicon microring resonators,” Opt. Lett.36(23), 4695–4697 (2011).
    [CrossRef] [PubMed]
  20. J. Bonse, “All-optical characterization of single femtosecond laser-pulse-induced amorphization in silicon,” Appl. Phys., A Mater. Sci. Process.84(1-2), 63–66 (2006).
    [CrossRef]
  21. Y. Izawa, Y. Izawa, Y. Setsuhara, M. Hashida, M. Fujita, R. Sasaki, H. Nagai, and M. Yoshida, “Ultrathin amorphous Si layer formation by femtosecond laser pulse irradiation,” Appl. Phys. Lett.90(4), 044107 (2007).
    [CrossRef]
  22. Y. Izawa, Y. Setuhara, M. Hashida, M. Fujita, and Y. Izawa, “Abaltion and amorphization of crystalline Si by femtosecond and picosecond laser irradiation,” Jpn. J. Appl. Phys.45(7), 5791–5794 (2006).
    [CrossRef]
  23. Y. Izawa, S. Tokita, M. Fujita, M. Nakai, T. Norimatsu, and Y. Izawa, “Ultrathin amorphization of single-crystal silicon by ultraviolet femtosecond laser pulse irradiation,” J. Appl. Phys.105(6), 064909 (2009).
    [CrossRef]
  24. W. J. Liu, S. Chen, H. Y. Cheng, J. D. Lin, and S. L. Fu, “Fabrication of amorphous silicon films for arrayed waveguide grating application,” Surf. Coat. Tech.201(15), 6581–6584 (2007).
    [CrossRef]
  25. M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys.92(2), 649–653 (2002).
    [CrossRef]
  26. B. E. Little, J. P. Laine, and S. T. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett.22(1), 4–6 (1997).
    [CrossRef] [PubMed]
  27. F. Morichetti, A. Canciamilla, M. Martinelli, A. Samarelli, R. M. De La Rue, M. Sorel, and A. Melloni, “Coherent backscattering in optical microring resonators,” Appl. Phys. Lett.96(8), 081112 (2010).
    [CrossRef]
  28. G. C. Ballesteros, J. Matres, J. Martí, and C. J. Oton, “Characterizing and modeling backscattering in silicon microring resonators,” Opt. Express19(25), 24980–24985 (2011).
    [CrossRef] [PubMed]
  29. M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express19(1), 306–316 (2011).
    [CrossRef] [PubMed]

2012

2011

2010

2009

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett.21(17), 1175–1177 (2009).
[CrossRef]

S. Yamatogi, Y. Amemiya, T. Ikeda, A. Kuroda, and S. Yokoyama, “Si ring optical resonators for integrated on-chip biosensing,” Jpn. J. Appl. Phys.48(4), 04C188 (2009).
[CrossRef]

Y. Izawa, S. Tokita, M. Fujita, M. Nakai, T. Norimatsu, and Y. Izawa, “Ultrathin amorphization of single-crystal silicon by ultraviolet femtosecond laser pulse irradiation,” J. Appl. Phys.105(6), 064909 (2009).
[CrossRef]

2008

S. C. Buswell, V. A. Wright, J. M. Buriak, V. Van, and S. Evoy, “Specific detection of proteins using photonic crystal waveguides,” Opt. Express16(20), 15949–15957 (2008).
[CrossRef] [PubMed]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics2(4), 242–246 (2008).
[CrossRef]

H. Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4×4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng.47, 044601 (2008).
[CrossRef]

J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express16(6), 3738–3743 (2008).
[CrossRef] [PubMed]

2007

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express15(2), 430–436 (2007).
[CrossRef] [PubMed]

W. J. Liu, S. Chen, H. Y. Cheng, J. D. Lin, and S. L. Fu, “Fabrication of amorphous silicon films for arrayed waveguide grating application,” Surf. Coat. Tech.201(15), 6581–6584 (2007).
[CrossRef]

Y. Izawa, Y. Izawa, Y. Setsuhara, M. Hashida, M. Fujita, R. Sasaki, H. Nagai, and M. Yoshida, “Ultrathin amorphous Si layer formation by femtosecond laser pulse irradiation,” Appl. Phys. Lett.90(4), 044107 (2007).
[CrossRef]

2006

Y. Izawa, Y. Setuhara, M. Hashida, M. Fujita, and Y. Izawa, “Abaltion and amorphization of crystalline Si by femtosecond and picosecond laser irradiation,” Jpn. J. Appl. Phys.45(7), 5791–5794 (2006).
[CrossRef]

J. Bonse, “All-optical characterization of single femtosecond laser-pulse-induced amorphization in silicon,” Appl. Phys., A Mater. Sci. Process.84(1-2), 63–66 (2006).
[CrossRef]

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett.88(11), 111107 (2006).
[CrossRef]

2005

2002

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys.92(2), 649–653 (2002).
[CrossRef]

1999

S. T. Chu, W. Pan, S. Sato, T. Kaneko, B. E. Little, and Y. Kokubun, “Wavelength trimming of a microring resonator filter by means of a UV sensitive polymer overlay,” IEEE Photon. Technol. Lett.11(6), 688–690 (1999).
[CrossRef]

1997

Agarwal, A.

Amemiya, Y.

S. Yamatogi, Y. Amemiya, T. Ikeda, A. Kuroda, and S. Yokoyama, “Si ring optical resonators for integrated on-chip biosensing,” Jpn. J. Appl. Phys.48(4), 04C188 (2009).
[CrossRef]

Asghari, M.

Bachman, D.

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express16(6), 3738–3743 (2008).
[CrossRef] [PubMed]

Ballesteros, G. C.

Basov, D. N.

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

Bonse, J.

J. Bonse, “All-optical characterization of single femtosecond laser-pulse-induced amorphization in silicon,” Appl. Phys., A Mater. Sci. Process.84(1-2), 63–66 (2006).
[CrossRef]

Buriak, J. M.

Buswell, S. C.

Campbell, K.

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett.88(11), 111107 (2006).
[CrossRef]

Canciamilla, A.

A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express20(14), 15807–15817 (2012).
[CrossRef] [PubMed]

F. Morichetti, A. Canciamilla, M. Martinelli, A. Samarelli, R. M. De La Rue, M. Sorel, and A. Melloni, “Coherent backscattering in optical microring resonators,” Appl. Phys. Lett.96(8), 081112 (2010).
[CrossRef]

Chen, C. J.

Chen, S.

W. J. Liu, S. Chen, H. Y. Cheng, J. D. Lin, and S. L. Fu, “Fabrication of amorphous silicon films for arrayed waveguide grating application,” Surf. Coat. Tech.201(15), 6581–6584 (2007).
[CrossRef]

Chen, Z.

Cheng, H. Y.

W. J. Liu, S. Chen, H. Y. Cheng, J. D. Lin, and S. L. Fu, “Fabrication of amorphous silicon films for arrayed waveguide grating application,” Surf. Coat. Tech.201(15), 6581–6584 (2007).
[CrossRef]

Chu, S. T.

S. T. Chu, W. Pan, S. Sato, T. Kaneko, B. E. Little, and Y. Kokubun, “Wavelength trimming of a microring resonator filter by means of a UV sensitive polymer overlay,” IEEE Photon. Technol. Lett.11(6), 688–690 (1999).
[CrossRef]

B. E. Little, J. P. Laine, and S. T. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett.22(1), 4–6 (1997).
[CrossRef] [PubMed]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

Cunningham, J. E.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
[CrossRef]

Dahlem, M. S.

de Dood, M. J. A.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys.92(2), 649–653 (2002).
[CrossRef]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

De La Rue, R. M.

F. Morichetti, A. Canciamilla, M. Martinelli, A. Samarelli, R. M. De La Rue, M. Sorel, and A. Melloni, “Coherent backscattering in optical microring resonators,” Appl. Phys. Lett.96(8), 081112 (2010).
[CrossRef]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

Divliansky, I. B.

Dong, P.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

Eich, M.

Evoy, S.

Fainman, Y.

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett.88(11), 111107 (2006).
[CrossRef]

Fedosejevs, R.

Feng, D.

Feng, N. N.

Fu, S. L.

W. J. Liu, S. Chen, H. Y. Cheng, J. D. Lin, and S. L. Fu, “Fabrication of amorphous silicon films for arrayed waveguide grating application,” Surf. Coat. Tech.201(15), 6581–6584 (2007).
[CrossRef]

Fujita, M.

Y. Izawa, S. Tokita, M. Fujita, M. Nakai, T. Norimatsu, and Y. Izawa, “Ultrathin amorphization of single-crystal silicon by ultraviolet femtosecond laser pulse irradiation,” J. Appl. Phys.105(6), 064909 (2009).
[CrossRef]

Y. Izawa, Y. Izawa, Y. Setsuhara, M. Hashida, M. Fujita, R. Sasaki, H. Nagai, and M. Yoshida, “Ultrathin amorphous Si layer formation by femtosecond laser pulse irradiation,” Appl. Phys. Lett.90(4), 044107 (2007).
[CrossRef]

Y. Izawa, Y. Setuhara, M. Hashida, M. Fujita, and Y. Izawa, “Abaltion and amorphization of crystalline Si by femtosecond and picosecond laser irradiation,” Jpn. J. Appl. Phys.45(7), 5791–5794 (2006).
[CrossRef]

Gleason, K. K.

Green, W. M. J.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics2(4), 242–246 (2008).
[CrossRef]

Grillanda, S.

Groisman, A.

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett.88(11), 111107 (2006).
[CrossRef]

Gu, T.

Hashida, M.

Y. Izawa, Y. Izawa, Y. Setsuhara, M. Hashida, M. Fujita, R. Sasaki, H. Nagai, and M. Yoshida, “Ultrathin amorphous Si layer formation by femtosecond laser pulse irradiation,” Appl. Phys. Lett.90(4), 044107 (2007).
[CrossRef]

Y. Izawa, Y. Setuhara, M. Hashida, M. Fujita, and Y. Izawa, “Abaltion and amorphization of crystalline Si by femtosecond and picosecond laser irradiation,” Jpn. J. Appl. Phys.45(7), 5791–5794 (2006).
[CrossRef]

Holzwarth, C. W.

Hong, C. Y.

Ikeda, T.

S. Yamatogi, Y. Amemiya, T. Ikeda, A. Kuroda, and S. Yokoyama, “Si ring optical resonators for integrated on-chip biosensing,” Jpn. J. Appl. Phys.48(4), 04C188 (2009).
[CrossRef]

Ippen, E. P.

Izawa, Y.

Y. Izawa, S. Tokita, M. Fujita, M. Nakai, T. Norimatsu, and Y. Izawa, “Ultrathin amorphization of single-crystal silicon by ultraviolet femtosecond laser pulse irradiation,” J. Appl. Phys.105(6), 064909 (2009).
[CrossRef]

Y. Izawa, S. Tokita, M. Fujita, M. Nakai, T. Norimatsu, and Y. Izawa, “Ultrathin amorphization of single-crystal silicon by ultraviolet femtosecond laser pulse irradiation,” J. Appl. Phys.105(6), 064909 (2009).
[CrossRef]

Y. Izawa, Y. Izawa, Y. Setsuhara, M. Hashida, M. Fujita, R. Sasaki, H. Nagai, and M. Yoshida, “Ultrathin amorphous Si layer formation by femtosecond laser pulse irradiation,” Appl. Phys. Lett.90(4), 044107 (2007).
[CrossRef]

Y. Izawa, Y. Izawa, Y. Setsuhara, M. Hashida, M. Fujita, R. Sasaki, H. Nagai, and M. Yoshida, “Ultrathin amorphous Si layer formation by femtosecond laser pulse irradiation,” Appl. Phys. Lett.90(4), 044107 (2007).
[CrossRef]

Y. Izawa, Y. Setuhara, M. Hashida, M. Fujita, and Y. Izawa, “Abaltion and amorphization of crystalline Si by femtosecond and picosecond laser irradiation,” Jpn. J. Appl. Phys.45(7), 5791–5794 (2006).
[CrossRef]

Y. Izawa, Y. Setuhara, M. Hashida, M. Fujita, and Y. Izawa, “Abaltion and amorphization of crystalline Si by femtosecond and picosecond laser irradiation,” Jpn. J. Appl. Phys.45(7), 5791–5794 (2006).
[CrossRef]

Jen, A. K. Y.

Kaneko, T.

S. T. Chu, W. Pan, S. Sato, T. Kaneko, B. E. Little, and Y. Kokubun, “Wavelength trimming of a microring resonator filter by means of a UV sensitive polymer overlay,” IEEE Photon. Technol. Lett.11(6), 688–690 (1999).
[CrossRef]

Kärtner, F. X.

Khilo, A.

Kimerling, L. C.

Kokubun, Y.

S. T. Chu, W. Pan, S. Sato, T. Kaneko, B. E. Little, and Y. Kokubun, “Wavelength trimming of a microring resonator filter by means of a UV sensitive polymer overlay,” IEEE Photon. Technol. Lett.11(6), 688–690 (1999).
[CrossRef]

Krishnamoorthy, A. V.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
[CrossRef]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express18(10), 9852–9858 (2010).
[CrossRef] [PubMed]

Kuroda, A.

S. Yamatogi, Y. Amemiya, T. Ikeda, A. Kuroda, and S. Yokoyama, “Si ring optical resonators for integrated on-chip biosensing,” Jpn. J. Appl. Phys.48(4), 04C188 (2009).
[CrossRef]

Kwong, D. L.

Laine, J. P.

Levy, U.

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett.88(11), 111107 (2006).
[CrossRef]

Li, D.

H. Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4×4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng.47, 044601 (2008).
[CrossRef]

Li, G.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
[CrossRef]

Liang, H.

Lin, J. D.

W. J. Liu, S. Chen, H. Y. Cheng, J. D. Lin, and S. L. Fu, “Fabrication of amorphous silicon films for arrayed waveguide grating application,” Surf. Coat. Tech.201(15), 6581–6584 (2007).
[CrossRef]

Lipson, M.

Little, B. E.

S. T. Chu, W. Pan, S. Sato, T. Kaneko, B. E. Little, and Y. Kokubun, “Wavelength trimming of a microring resonator filter by means of a UV sensitive polymer overlay,” IEEE Photon. Technol. Lett.11(6), 688–690 (1999).
[CrossRef]

B. E. Little, J. P. Laine, and S. T. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett.22(1), 4–6 (1997).
[CrossRef] [PubMed]

Liu, W. J.

W. J. Liu, S. Chen, H. Y. Cheng, J. D. Lin, and S. L. Fu, “Fabrication of amorphous silicon films for arrayed waveguide grating application,” Surf. Coat. Tech.201(15), 6581–6584 (2007).
[CrossRef]

Lo, G. Q.

Lock, J. P.

Luo, J.

Luo, Y.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
[CrossRef]

Manipatruni, S.

Martí, J.

Martinelli, M.

F. Morichetti, A. Canciamilla, M. Martinelli, A. Samarelli, R. M. De La Rue, M. Sorel, and A. Melloni, “Coherent backscattering in optical microring resonators,” Appl. Phys. Lett.96(8), 081112 (2010).
[CrossRef]

Martinez, J.

H. Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4×4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng.47, 044601 (2008).
[CrossRef]

Matres, J.

McMillan, J. F.

Mekis, A.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
[CrossRef]

Melloni, A.

A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express20(14), 15807–15817 (2012).
[CrossRef] [PubMed]

F. Morichetti, A. Canciamilla, M. Martinelli, A. Samarelli, R. M. De La Rue, M. Sorel, and A. Melloni, “Coherent backscattering in optical microring resonators,” Appl. Phys. Lett.96(8), 081112 (2010).
[CrossRef]

Michel, J.

Mookherjea, S.

Y. Shen, I. B. Divliansky, D. N. Basov, and S. Mookherjea, “Electric-field-driven nano-oxidation trimming of silicon microrings and interferometers,” Opt. Lett.36(14), 2668–2670 (2011).
[CrossRef] [PubMed]

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett.88(11), 111107 (2006).
[CrossRef]

Morichetti, F.

A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express20(14), 15807–15817 (2012).
[CrossRef] [PubMed]

F. Morichetti, A. Canciamilla, M. Martinelli, A. Samarelli, R. M. De La Rue, M. Sorel, and A. Melloni, “Coherent backscattering in optical microring resonators,” Appl. Phys. Lett.96(8), 081112 (2010).
[CrossRef]

Nagai, H.

Y. Izawa, Y. Izawa, Y. Setsuhara, M. Hashida, M. Fujita, R. Sasaki, H. Nagai, and M. Yoshida, “Ultrathin amorphous Si layer formation by femtosecond laser pulse irradiation,” Appl. Phys. Lett.90(4), 044107 (2007).
[CrossRef]

Nakai, M.

Y. Izawa, S. Tokita, M. Fujita, M. Nakai, T. Norimatsu, and Y. Izawa, “Ultrathin amorphization of single-crystal silicon by ultraviolet femtosecond laser pulse irradiation,” J. Appl. Phys.105(6), 064909 (2009).
[CrossRef]

Ng, H. Y.

H. Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4×4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng.47, 044601 (2008).
[CrossRef]

Norimatsu, T.

Y. Izawa, S. Tokita, M. Fujita, M. Nakai, T. Norimatsu, and Y. Izawa, “Ultrathin amorphization of single-crystal silicon by ultraviolet femtosecond laser pulse irradiation,” J. Appl. Phys.105(6), 064909 (2009).
[CrossRef]

Okamoto, K.

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett.21(17), 1175–1177 (2009).
[CrossRef]

Oton, C. J.

Pan, W.

S. T. Chu, W. Pan, S. Sato, T. Kaneko, B. E. Little, and Y. Kokubun, “Wavelength trimming of a microring resonator filter by means of a UV sensitive polymer overlay,” IEEE Photon. Technol. Lett.11(6), 688–690 (1999).
[CrossRef]

Panepucci, R. R.

H. Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4×4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng.47, 044601 (2008).
[CrossRef]

Pathak, K.

H. Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4×4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng.47, 044601 (2008).
[CrossRef]

Petrov, A. Y.

Pinguet, T.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
[CrossRef]

Polman, A.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys.92(2), 649–653 (2002).
[CrossRef]

Prabhu, A. M.

Prorok, S.

Qian, W.

Raj, K.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
[CrossRef]

Samarelli, A.

F. Morichetti, A. Canciamilla, M. Martinelli, A. Samarelli, R. M. De La Rue, M. Sorel, and A. Melloni, “Coherent backscattering in optical microring resonators,” Appl. Phys. Lett.96(8), 081112 (2010).
[CrossRef]

Sasaki, R.

Y. Izawa, Y. Izawa, Y. Setsuhara, M. Hashida, M. Fujita, R. Sasaki, H. Nagai, and M. Yoshida, “Ultrathin amorphous Si layer formation by femtosecond laser pulse irradiation,” Appl. Phys. Lett.90(4), 044107 (2007).
[CrossRef]

Sato, S.

S. T. Chu, W. Pan, S. Sato, T. Kaneko, B. E. Little, and Y. Kokubun, “Wavelength trimming of a microring resonator filter by means of a UV sensitive polymer overlay,” IEEE Photon. Technol. Lett.11(6), 688–690 (1999).
[CrossRef]

Schmidt, B.

Schrauwen, J.

Selvaraja, S. K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

Setsuhara, Y.

Y. Izawa, Y. Izawa, Y. Setsuhara, M. Hashida, M. Fujita, R. Sasaki, H. Nagai, and M. Yoshida, “Ultrathin amorphous Si layer formation by femtosecond laser pulse irradiation,” Appl. Phys. Lett.90(4), 044107 (2007).
[CrossRef]

Setuhara, Y.

Y. Izawa, Y. Setuhara, M. Hashida, M. Fujita, and Y. Izawa, “Abaltion and amorphization of crystalline Si by femtosecond and picosecond laser irradiation,” Jpn. J. Appl. Phys.45(7), 5791–5794 (2006).
[CrossRef]

Shafiiha, R.

Shakya, J.

Shen, Y.

Shubin, I.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
[CrossRef]

Singh, V.

Smith, H. I.

Sorel, M.

A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express20(14), 15807–15817 (2012).
[CrossRef] [PubMed]

F. Morichetti, A. Canciamilla, M. Martinelli, A. Samarelli, R. M. De La Rue, M. Sorel, and A. Melloni, “Coherent backscattering in optical microring resonators,” Appl. Phys. Lett.96(8), 081112 (2010).
[CrossRef]

Sparacin, D. K.

Thacker, H.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
[CrossRef]

Tokita, S.

Y. Izawa, S. Tokita, M. Fujita, M. Nakai, T. Norimatsu, and Y. Izawa, “Ultrathin amorphization of single-crystal silicon by ultraviolet femtosecond laser pulse irradiation,” J. Appl. Phys.105(6), 064909 (2009).
[CrossRef]

Trotter, D. C.

Tsui, Y. Y.

Van, V.

van der Drift, E. W. J. M.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys.92(2), 649–653 (2002).
[CrossRef]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express16(6), 3738–3743 (2008).
[CrossRef] [PubMed]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

Velha, P.

Vlasov, Y.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics2(4), 242–246 (2008).
[CrossRef]

Wang, M. R.

H. Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4×4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng.47, 044601 (2008).
[CrossRef]

Wang, X.

H. Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4×4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng.47, 044601 (2008).
[CrossRef]

Watts, M. R.

Wong, C. W.

Wright, V. A.

Xia, F.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics2(4), 242–246 (2008).
[CrossRef]

Xu, Q.

Yamatogi, S.

S. Yamatogi, Y. Amemiya, T. Ikeda, A. Kuroda, and S. Yokoyama, “Si ring optical resonators for integrated on-chip biosensing,” Jpn. J. Appl. Phys.48(4), 04C188 (2009).
[CrossRef]

Yao, J.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
[CrossRef]

Yokoyama, S.

S. Yamatogi, Y. Amemiya, T. Ikeda, A. Kuroda, and S. Yokoyama, “Si ring optical resonators for integrated on-chip biosensing,” Jpn. J. Appl. Phys.48(4), 04C188 (2009).
[CrossRef]

Yoo, S. J. B.

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett.21(17), 1175–1177 (2009).
[CrossRef]

Yoshida, M.

Y. Izawa, Y. Izawa, Y. Setsuhara, M. Hashida, M. Fujita, R. Sasaki, H. Nagai, and M. Yoshida, “Ultrathin amorphous Si layer formation by femtosecond laser pulse irradiation,” Appl. Phys. Lett.90(4), 044107 (2007).
[CrossRef]

Yu, M.

Zheng, J.

Zheng, X.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
[CrossRef]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express18(10), 9852–9858 (2010).
[CrossRef] [PubMed]

Zhou, L.

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett.21(17), 1175–1177 (2009).
[CrossRef]

Zijlstra, T.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys.92(2), 649–653 (2002).
[CrossRef]

Zortman, W. A.

Appl. Phys. Lett.

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett.88(11), 111107 (2006).
[CrossRef]

Y. Izawa, Y. Izawa, Y. Setsuhara, M. Hashida, M. Fujita, R. Sasaki, H. Nagai, and M. Yoshida, “Ultrathin amorphous Si layer formation by femtosecond laser pulse irradiation,” Appl. Phys. Lett.90(4), 044107 (2007).
[CrossRef]

F. Morichetti, A. Canciamilla, M. Martinelli, A. Samarelli, R. M. De La Rue, M. Sorel, and A. Melloni, “Coherent backscattering in optical microring resonators,” Appl. Phys. Lett.96(8), 081112 (2010).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

J. Bonse, “All-optical characterization of single femtosecond laser-pulse-induced amorphization in silicon,” Appl. Phys., A Mater. Sci. Process.84(1-2), 63–66 (2006).
[CrossRef]

IEEE Photon. J.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

S. T. Chu, W. Pan, S. Sato, T. Kaneko, B. E. Little, and Y. Kokubun, “Wavelength trimming of a microring resonator filter by means of a UV sensitive polymer overlay,” IEEE Photon. Technol. Lett.11(6), 688–690 (1999).
[CrossRef]

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett.21(17), 1175–1177 (2009).
[CrossRef]

J. Appl. Phys.

Y. Izawa, S. Tokita, M. Fujita, M. Nakai, T. Norimatsu, and Y. Izawa, “Ultrathin amorphization of single-crystal silicon by ultraviolet femtosecond laser pulse irradiation,” J. Appl. Phys.105(6), 064909 (2009).
[CrossRef]

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys.92(2), 649–653 (2002).
[CrossRef]

Jpn. J. Appl. Phys.

Y. Izawa, Y. Setuhara, M. Hashida, M. Fujita, and Y. Izawa, “Abaltion and amorphization of crystalline Si by femtosecond and picosecond laser irradiation,” Jpn. J. Appl. Phys.45(7), 5791–5794 (2006).
[CrossRef]

S. Yamatogi, Y. Amemiya, T. Ikeda, A. Kuroda, and S. Yokoyama, “Si ring optical resonators for integrated on-chip biosensing,” Jpn. J. Appl. Phys.48(4), 04C188 (2009).
[CrossRef]

Laser Photon. Rev.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

Nat. Photonics

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics2(4), 242–246 (2008).
[CrossRef]

Opt. Eng.

H. Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4×4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng.47, 044601 (2008).
[CrossRef]

Opt. Express

G. C. Ballesteros, J. Matres, J. Martí, and C. J. Oton, “Characterizing and modeling backscattering in silicon microring resonators,” Opt. Express19(25), 24980–24985 (2011).
[CrossRef] [PubMed]

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express19(1), 306–316 (2011).
[CrossRef] [PubMed]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express15(2), 430–436 (2007).
[CrossRef] [PubMed]

S. C. Buswell, V. A. Wright, J. M. Buriak, V. Van, and S. Evoy, “Specific detection of proteins using photonic crystal waveguides,” Opt. Express16(20), 15949–15957 (2008).
[CrossRef] [PubMed]

W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express18(23), 23598–23607 (2010).
[CrossRef] [PubMed]

A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express20(14), 15807–15817 (2012).
[CrossRef] [PubMed]

J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express16(6), 3738–3743 (2008).
[CrossRef] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express18(10), 9852–9858 (2010).
[CrossRef] [PubMed]

C. J. Chen, J. Zheng, T. Gu, J. F. McMillan, M. Yu, G. Q. Lo, D. L. Kwong, and C. W. Wong, “Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation,” Opt. Express19(13), 12480–12489 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Surf. Coat. Tech.

W. J. Liu, S. Chen, H. Y. Cheng, J. D. Lin, and S. L. Fu, “Fabrication of amorphous silicon films for arrayed waveguide grating application,” Surf. Coat. Tech.201(15), 6581–6584 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Scanning electron microscope image of a 15 µm radius all-pass microring resonator. (b) Initial TM spectral scan of one of the microrings used in the study. Inset: blue is the measured transmission of one resonance and red is the curve fit.

Fig. 2
Fig. 2

(a) Setup of the fs laser tuning experiment. The center of a Gaussian pulse of 8mm beam waist diameter passed though a pin hole of 500µm diameter (P1), and was imaged onto the device. M1 and M2 are 400nm dielectric mirrors, L1 and L2 are plano-convex lenses, MO is a 10X microscope objective of 0.28 numerical aperature, MS is a 3D motion stage, BS is a beam splitter. (b) Femtosecond laser “top hat” beam profile when the device was at the best image plane. (c) The horizontal line-out across the center of the beam when the device was at the best image plane (black line), and 2 µm in front (blue) or after (red) it.

Fig. 3
Fig. 3

(a) Resonance wavelength shift of the microring resonators as a function of laser fluence. (b) Linear fit of the positive resonance shifts and change in the waveguide effective index as function of the laser fluence. The data point at 0.04 J/cm2 is removed for reasons discussed in the text.

Fig. 4
Fig. 4

Change in roundtrip loss of the microrings following shots plotted as a function of the resonance wavelength shift. Negative shifts represent ablation and positive shifts represent amorphization of the waveguide. The open and closed data points represent the first and second shots on the microrings respectively.

Fig. 5
Fig. 5

(a) SEM of the second-order microring filter. All of the device parameters are labeled in yellow and the location of the single femtosecond laser shot is outlined in red. (b) Spectral response before and after tuning by a femtosecond laser shot. The blue curves are the measured spectra and the red curves are the best fits, with the peaks corresponding to ring 1 and 2 labeled.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

H Chip = ( 1r ) H MR e j φ l 1r H MR 2 e 2j φ l ,
H MR = τ a rt e j φ rt 1τ a rt e j φ rt .
Δ n eff = Δλ λ o 2πR l n eff,o

Metrics