Abstract

Photopolymer are appealing materials for diffractive elements recording. Two of their properties when they are illuminated are useful for this goal: the relief surface changes and the refractive index modifications. To this goal the linearity in the material response is crucial to design the optimum irradiance for each element. In this paper we measured directly some parameters to know how linear is the material response, in terms of the refractive index modulation versus exposure, then we can predict the refractive index distributions during recording. We have analyzed at different recording intensities the evolution of monomer diffusion during recording for photopolymers based on PVA/Acrylamide. This model has been successfully applied to PVA/Acrylamide photopolymers to predict the transmitted diffracted orders and the agreement with experimental values has been increased.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.)112(10), 449–463 (2001).
    [CrossRef]
  2. T. A. Shankoff, “Phase holograms in dichromated gelatin,” Appl. Opt.7(10), 2101–2105 (1968).
    [CrossRef] [PubMed]
  3. M. Lehmann, J. P. Lauer, and J. W. Goodman, “High efficiencies, low noise, and suppression of photochrome effects in bleached silver halide holography,” Appl. Opt.9(8), 1948–1949 (1970).
    [PubMed]
  4. P. Günter, “Holography, coherent light amplification and optical phase conjugation with photorefractive materials,” Phys. Rep.93(4), 199–299 (1982).
    [CrossRef]
  5. M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40–1000 µm thick layers,” Phys. Scr.118, 66–68 (2005).
  6. J. Zheng, G. Sun, Y. Jiang, T. Wang, A. Huang, Y. Zhang, P. Tang, S. Zhuang, Y. Liu, and S. Yin, “H-PDLC based waveform controllable optical choppers for FDMF microscopy,” Opt. Express19(3), 2216–2224 (2011).
    [CrossRef] [PubMed]
  7. Y.-C. Su, C.-C. Chu, W.-T. Chang, and V. K. S. Hsiao, “Characterization of optically switchable holographic polymer-dispersed liquid crystal transmission gratings,” Opt. Mater.34(1), 251–255 (2011).
    [CrossRef]
  8. I. W. Moran, A. L. Briseno, S. Loser, and K. R. Carter, “Device fabrication by easy soft imprint nano-lithography,” Chem. Mater.20(14), 4595–4601 (2008).
    [CrossRef]
  9. M. J. Swanson and G. W. Opperman, “Photochemical surface modification of polymers for improved adhesion,” J. Adhes. Sci. Technol.9(3), 385–391 (1995).
    [CrossRef]
  10. T. Vuocolo, R. Haddad, G. A. Edwards, R. E. Lyons, N. E. Liyou, J. A. Werkmeister, J. A. M. Ramshaw, and C. M. Elvin, “A highly elastic and adhesive gelatin tissue sealant for gastrointestinal surgery and colon anastomosis,” J. Gastrointest. Surg.16(4), 744–752 (2012).
    [CrossRef] [PubMed]
  11. M.-S. Weiser, F.-K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp.296(1), 133–137 (2010).
    [CrossRef]
  12. M. Toishi, T. Takeda, K. Tanaka, T. Tanaka, A. Fukumoto, and K. Watanabe, “Two-dimensional simulation of holographic data storage medium for multiplexed recording,” Opt. Express16(4), 2829–2839 (2008).
    [CrossRef] [PubMed]
  13. P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” Proc. SPIE5380, 283–288 (2004).
    [CrossRef]
  14. K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express15(24), 16196–16209 (2007).
    [CrossRef] [PubMed]
  15. J. Kelly, M. Gleeson, C. Close, F. O’Neill, J. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express13(18), 6990–7004 (2005).
    [CrossRef] [PubMed]
  16. J. H. Kwon, H. C. Hwang, and K. C. Woo, “Analysis of temporal behavior of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B16(10), 1651–1657 (1999).
    [CrossRef]
  17. C. Neipp, S. Gallego, M. Ortuño, A. Márquez, M. L. Álvarz, A. Beléndez, and I. Pascual, “First-harmonic diffusion-based model applied to a polyvinyl-alcohol–acrylamide-based photopolymer,” J. Opt. Soc. Am. B20(10), 2052–2060 (2003).
    [CrossRef]
  18. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt.41(10), 1929–1939 (1994).
    [CrossRef]
  19. G. Zhao and P. Mouroulis, “Second order grating formation in dry holographic photopolymers,” Opt. Commun.115(5-6), 528–532 (1995).
    [CrossRef]
  20. J. Kelly, M. Gleeson, C. Close, F. O’Neill, J. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express13(18), 6990–7004 (2005).
    [CrossRef] [PubMed]
  21. M. R. Gleeson, S. Liu, C. E. Close, D. Sabol, and J. T. Sheridan, “Improvement of photopolymer materials for holographic data storage,” J. Mater. Sci.44(22), 6090–6099 (2009).
    [CrossRef]
  22. C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B28(4), 658–666 (2011).
    [CrossRef]
  23. M. R. Gleeson, J. V. Kelly, C. E. Close, D. Sabol, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys.102(2), 023108 (2007).
    [CrossRef]
  24. M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms ad dark reactions. Part I. Modeling,” J. Opt. Soc. Am. B26(9), 1736–1745 (2009).
  25. M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B26(9), 1746–1754 (2009).
    [CrossRef]
  26. A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt.46(3), 295–301 (2007).
    [CrossRef] [PubMed]
  27. A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE7717, 77170D-1–77170D-12 (2010).
    [CrossRef]
  28. A. Pu, K. Curtis, and P. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng.35(10), 2824–2829 (1996).
    [CrossRef]
  29. H. J. Coufal, D. Psaltisand, and G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).
  30. C. Neipp, A. Beléndez, J. T. Sheridan, J. V. Kelly, F. T. O’Neill, S. Gallego, M. Ortuño, and I. Pascual, “Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity,” Opt. Express11(16), 1876–1886 (2003).
    [CrossRef] [PubMed]
  31. C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express11(16), 1835–1843 (2003).
    [CrossRef] [PubMed]
  32. S. Gallego, A. Márquez, D. Méndez, S. Marini, A. Beléndez, and I. Pascual, “Spatial-phase-modulation-based study of polyvinyl-alcohol/acrylamide photopolymers in the low spatial frequency range,” Appl. Opt.48(22), 4403–4413 (2009).
    [CrossRef] [PubMed]
  33. S. Gallego, A. Márquez, M. Ortuño, J. Francés, I. Pascual, and A. Beléndez, “Relief diffracted elements recorded on absorbent photopolymers,” Opt. Express20(10), 11218–11231 (2012).
    [CrossRef] [PubMed]
  34. I. Pascual, A. Beléndez, F. Mateos, and A. Fimia, “Obtención de elementos ópticos holográficos con fotorresinas AZ-1350: comparación entre métodos directo y copia,” Óptica Pura y Aplicada24, 63–67 (1991).
  35. T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamidebased photopolymer,” J. Opt. Soc. Am. B27(2), 197–203 (2010).
    [CrossRef]
  36. J. V. Kelly, F. T. O’ Neill, C. Neipp, S. Gallego, M. Ortuño, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions,” J. Opt. Soc. Am. B22(2), 406–407 (2005).
    [CrossRef]
  37. S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit,” Opt. Mater.33(3), 531–537 (2011).
    [CrossRef]
  38. S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, E. Fernández, I. Pascual, and A. Beléndez, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt.47(14), 2557–2563 (2008).
    [CrossRef] [PubMed]
  39. P. Hariharan, “Optical Holography: principles, techniques, and applications,” in Cambridge Studies in Modern Optics, 2nd E (Cambridge, 1996), p. 47.
  40. S. Gallego, M. Ortuño, I. Pascual, C. Neipp, A. Marquez, and A. Belendez, “Analysis of second and third diffracted orders in volume diffraction gratings recorded on photopolymers,” Phys. Scr.118, 58–60 (2005).
    [CrossRef]
  41. S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express17(20), 18279–18291 (2009).
    [CrossRef] [PubMed]

2012 (2)

T. Vuocolo, R. Haddad, G. A. Edwards, R. E. Lyons, N. E. Liyou, J. A. Werkmeister, J. A. M. Ramshaw, and C. M. Elvin, “A highly elastic and adhesive gelatin tissue sealant for gastrointestinal surgery and colon anastomosis,” J. Gastrointest. Surg.16(4), 744–752 (2012).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, M. Ortuño, J. Francés, I. Pascual, and A. Beléndez, “Relief diffracted elements recorded on absorbent photopolymers,” Opt. Express20(10), 11218–11231 (2012).
[CrossRef] [PubMed]

2011 (4)

C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B28(4), 658–666 (2011).
[CrossRef]

J. Zheng, G. Sun, Y. Jiang, T. Wang, A. Huang, Y. Zhang, P. Tang, S. Zhuang, Y. Liu, and S. Yin, “H-PDLC based waveform controllable optical choppers for FDMF microscopy,” Opt. Express19(3), 2216–2224 (2011).
[CrossRef] [PubMed]

Y.-C. Su, C.-C. Chu, W.-T. Chang, and V. K. S. Hsiao, “Characterization of optically switchable holographic polymer-dispersed liquid crystal transmission gratings,” Opt. Mater.34(1), 251–255 (2011).
[CrossRef]

S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit,” Opt. Mater.33(3), 531–537 (2011).
[CrossRef]

2010 (3)

M.-S. Weiser, F.-K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp.296(1), 133–137 (2010).
[CrossRef]

T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamidebased photopolymer,” J. Opt. Soc. Am. B27(2), 197–203 (2010).
[CrossRef]

A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE7717, 77170D-1–77170D-12 (2010).
[CrossRef]

2009 (5)

2008 (3)

2007 (3)

2005 (5)

J. Kelly, M. Gleeson, C. Close, F. O’Neill, J. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40–1000 µm thick layers,” Phys. Scr.118, 66–68 (2005).

J. V. Kelly, F. T. O’ Neill, C. Neipp, S. Gallego, M. Ortuño, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions,” J. Opt. Soc. Am. B22(2), 406–407 (2005).
[CrossRef]

J. Kelly, M. Gleeson, C. Close, F. O’Neill, J. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, I. Pascual, C. Neipp, A. Marquez, and A. Belendez, “Analysis of second and third diffracted orders in volume diffraction gratings recorded on photopolymers,” Phys. Scr.118, 58–60 (2005).
[CrossRef]

2004 (1)

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” Proc. SPIE5380, 283–288 (2004).
[CrossRef]

2003 (3)

2001 (1)

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.)112(10), 449–463 (2001).
[CrossRef]

1999 (1)

1996 (1)

A. Pu, K. Curtis, and P. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng.35(10), 2824–2829 (1996).
[CrossRef]

1995 (2)

G. Zhao and P. Mouroulis, “Second order grating formation in dry holographic photopolymers,” Opt. Commun.115(5-6), 528–532 (1995).
[CrossRef]

M. J. Swanson and G. W. Opperman, “Photochemical surface modification of polymers for improved adhesion,” J. Adhes. Sci. Technol.9(3), 385–391 (1995).
[CrossRef]

1994 (1)

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt.41(10), 1929–1939 (1994).
[CrossRef]

1991 (1)

I. Pascual, A. Beléndez, F. Mateos, and A. Fimia, “Obtención de elementos ópticos holográficos con fotorresinas AZ-1350: comparación entre métodos directo y copia,” Óptica Pura y Aplicada24, 63–67 (1991).

1982 (1)

P. Günter, “Holography, coherent light amplification and optical phase conjugation with photorefractive materials,” Phys. Rep.93(4), 199–299 (1982).
[CrossRef]

1970 (1)

1968 (1)

Álvarez, M. L.

A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE7717, 77170D-1–77170D-12 (2010).
[CrossRef]

Álvarz, M. L.

Askham, F.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” Proc. SPIE5380, 283–288 (2004).
[CrossRef]

Babeva, T.

Beal, D.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” Proc. SPIE5380, 283–288 (2004).
[CrossRef]

Belendez, A.

S. Gallego, M. Ortuño, I. Pascual, C. Neipp, A. Marquez, and A. Belendez, “Analysis of second and third diffracted orders in volume diffraction gratings recorded on photopolymers,” Phys. Scr.118, 58–60 (2005).
[CrossRef]

Beléndez, A.

S. Gallego, A. Márquez, M. Ortuño, J. Francés, I. Pascual, and A. Beléndez, “Relief diffracted elements recorded on absorbent photopolymers,” Opt. Express20(10), 11218–11231 (2012).
[CrossRef] [PubMed]

A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE7717, 77170D-1–77170D-12 (2010).
[CrossRef]

S. Gallego, A. Márquez, D. Méndez, S. Marini, A. Beléndez, and I. Pascual, “Spatial-phase-modulation-based study of polyvinyl-alcohol/acrylamide photopolymers in the low spatial frequency range,” Appl. Opt.48(22), 4403–4413 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, E. Fernández, I. Pascual, and A. Beléndez, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt.47(14), 2557–2563 (2008).
[CrossRef] [PubMed]

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40–1000 µm thick layers,” Phys. Scr.118, 66–68 (2005).

C. Neipp, A. Beléndez, J. T. Sheridan, J. V. Kelly, F. T. O’Neill, S. Gallego, M. Ortuño, and I. Pascual, “Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity,” Opt. Express11(16), 1876–1886 (2003).
[CrossRef] [PubMed]

C. Neipp, S. Gallego, M. Ortuño, A. Márquez, M. L. Álvarz, A. Beléndez, and I. Pascual, “First-harmonic diffusion-based model applied to a polyvinyl-alcohol–acrylamide-based photopolymer,” J. Opt. Soc. Am. B20(10), 2052–2060 (2003).
[CrossRef]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express11(16), 1835–1843 (2003).
[CrossRef] [PubMed]

I. Pascual, A. Beléndez, F. Mateos, and A. Fimia, “Obtención de elementos ópticos holográficos con fotorresinas AZ-1350: comparación entre métodos directo y copia,” Óptica Pura y Aplicada24, 63–67 (1991).

Briseno, A. L.

I. W. Moran, A. L. Briseno, S. Loser, and K. R. Carter, “Device fabrication by easy soft imprint nano-lithography,” Chem. Mater.20(14), 4595–4601 (2008).
[CrossRef]

Bruder, F.-K.

M.-S. Weiser, F.-K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp.296(1), 133–137 (2010).
[CrossRef]

Carter, K. R.

I. W. Moran, A. L. Briseno, S. Loser, and K. R. Carter, “Device fabrication by easy soft imprint nano-lithography,” Chem. Mater.20(14), 4595–4601 (2008).
[CrossRef]

Chang, W.-T.

Y.-C. Su, C.-C. Chu, W.-T. Chang, and V. K. S. Hsiao, “Characterization of optically switchable holographic polymer-dispersed liquid crystal transmission gratings,” Opt. Mater.34(1), 251–255 (2011).
[CrossRef]

Chu, C.-C.

Y.-C. Su, C.-C. Chu, W.-T. Chang, and V. K. S. Hsiao, “Characterization of optically switchable holographic polymer-dispersed liquid crystal transmission gratings,” Opt. Mater.34(1), 251–255 (2011).
[CrossRef]

Close, C.

Close, C. E.

C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B28(4), 658–666 (2011).
[CrossRef]

M. R. Gleeson, S. Liu, C. E. Close, D. Sabol, and J. T. Sheridan, “Improvement of photopolymer materials for holographic data storage,” J. Mater. Sci.44(22), 6090–6099 (2009).
[CrossRef]

M. R. Gleeson, J. V. Kelly, C. E. Close, D. Sabol, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys.102(2), 023108 (2007).
[CrossRef]

Cole, M.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” Proc. SPIE5380, 283–288 (2004).
[CrossRef]

Curtis, K.

A. Pu, K. Curtis, and P. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng.35(10), 2824–2829 (1996).
[CrossRef]

Dhar, L.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” Proc. SPIE5380, 283–288 (2004).
[CrossRef]

Edwards, G. A.

T. Vuocolo, R. Haddad, G. A. Edwards, R. E. Lyons, N. E. Liyou, J. A. Werkmeister, J. A. M. Ramshaw, and C. M. Elvin, “A highly elastic and adhesive gelatin tissue sealant for gastrointestinal surgery and colon anastomosis,” J. Gastrointest. Surg.16(4), 744–752 (2012).
[CrossRef] [PubMed]

Elvin, C. M.

T. Vuocolo, R. Haddad, G. A. Edwards, R. E. Lyons, N. E. Liyou, J. A. Werkmeister, J. A. M. Ramshaw, and C. M. Elvin, “A highly elastic and adhesive gelatin tissue sealant for gastrointestinal surgery and colon anastomosis,” J. Gastrointest. Surg.16(4), 744–752 (2012).
[CrossRef] [PubMed]

Fäcke, T.

M.-S. Weiser, F.-K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp.296(1), 133–137 (2010).
[CrossRef]

Fernández, E.

Fimia, A.

I. Pascual, A. Beléndez, F. Mateos, and A. Fimia, “Obtención de elementos ópticos holográficos con fotorresinas AZ-1350: comparación entre métodos directo y copia,” Óptica Pura y Aplicada24, 63–67 (1991).

Francés, J.

S. Gallego, A. Márquez, M. Ortuño, J. Francés, I. Pascual, and A. Beléndez, “Relief diffracted elements recorded on absorbent photopolymers,” Opt. Express20(10), 11218–11231 (2012).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit,” Opt. Mater.33(3), 531–537 (2011).
[CrossRef]

Fukumoto, A.

Gallego, S.

S. Gallego, A. Márquez, M. Ortuño, J. Francés, I. Pascual, and A. Beléndez, “Relief diffracted elements recorded on absorbent photopolymers,” Opt. Express20(10), 11218–11231 (2012).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit,” Opt. Mater.33(3), 531–537 (2011).
[CrossRef]

A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE7717, 77170D-1–77170D-12 (2010).
[CrossRef]

S. Gallego, A. Márquez, D. Méndez, S. Marini, A. Beléndez, and I. Pascual, “Spatial-phase-modulation-based study of polyvinyl-alcohol/acrylamide photopolymers in the low spatial frequency range,” Appl. Opt.48(22), 4403–4413 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express17(20), 18279–18291 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, E. Fernández, I. Pascual, and A. Beléndez, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt.47(14), 2557–2563 (2008).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, I. Pascual, C. Neipp, A. Marquez, and A. Belendez, “Analysis of second and third diffracted orders in volume diffraction gratings recorded on photopolymers,” Phys. Scr.118, 58–60 (2005).
[CrossRef]

J. V. Kelly, F. T. O’ Neill, C. Neipp, S. Gallego, M. Ortuño, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions,” J. Opt. Soc. Am. B22(2), 406–407 (2005).
[CrossRef]

J. Kelly, M. Gleeson, C. Close, F. O’Neill, J. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

J. Kelly, M. Gleeson, C. Close, F. O’Neill, J. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40–1000 µm thick layers,” Phys. Scr.118, 66–68 (2005).

C. Neipp, S. Gallego, M. Ortuño, A. Márquez, M. L. Álvarz, A. Beléndez, and I. Pascual, “First-harmonic diffusion-based model applied to a polyvinyl-alcohol–acrylamide-based photopolymer,” J. Opt. Soc. Am. B20(10), 2052–2060 (2003).
[CrossRef]

C. Neipp, A. Beléndez, J. T. Sheridan, J. V. Kelly, F. T. O’Neill, S. Gallego, M. Ortuño, and I. Pascual, “Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity,” Opt. Express11(16), 1876–1886 (2003).
[CrossRef] [PubMed]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express11(16), 1835–1843 (2003).
[CrossRef] [PubMed]

García, C.

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40–1000 µm thick layers,” Phys. Scr.118, 66–68 (2005).

Gleeson, M.

Gleeson, M. R.

Goodman, J. W.

Grabowski, M. W.

Günter, P.

P. Günter, “Holography, coherent light amplification and optical phase conjugation with photorefractive materials,” Phys. Rep.93(4), 199–299 (1982).
[CrossRef]

Haddad, R.

T. Vuocolo, R. Haddad, G. A. Edwards, R. E. Lyons, N. E. Liyou, J. A. Werkmeister, J. A. M. Ramshaw, and C. M. Elvin, “A highly elastic and adhesive gelatin tissue sealant for gastrointestinal surgery and colon anastomosis,” J. Gastrointest. Surg.16(4), 744–752 (2012).
[CrossRef] [PubMed]

Hara, M.

Hill, A.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” Proc. SPIE5380, 283–288 (2004).
[CrossRef]

Hirooka, K.

Hönel, D.

M.-S. Weiser, F.-K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp.296(1), 133–137 (2010).
[CrossRef]

Hsiao, V. K. S.

Y.-C. Su, C.-C. Chu, W.-T. Chang, and V. K. S. Hsiao, “Characterization of optically switchable holographic polymer-dispersed liquid crystal transmission gratings,” Opt. Mater.34(1), 251–255 (2011).
[CrossRef]

Huang, A.

Hwang, H. C.

Ihas, B.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” Proc. SPIE5380, 283–288 (2004).
[CrossRef]

Ishioka, K.

Jiang, Y.

Jurbergs, D.

M.-S. Weiser, F.-K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp.296(1), 133–137 (2010).
[CrossRef]

Kelly, J.

Kelly, J. V.

M. R. Gleeson, J. V. Kelly, C. E. Close, D. Sabol, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys.102(2), 023108 (2007).
[CrossRef]

J. V. Kelly, F. T. O’ Neill, C. Neipp, S. Gallego, M. Ortuño, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions,” J. Opt. Soc. Am. B22(2), 406–407 (2005).
[CrossRef]

C. Neipp, A. Beléndez, J. T. Sheridan, J. V. Kelly, F. T. O’Neill, S. Gallego, M. Ortuño, and I. Pascual, “Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity,” Opt. Express11(16), 1876–1886 (2003).
[CrossRef] [PubMed]

Kwon, J. H.

Lauer, J. P.

Lawrence, J. R.

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.)112(10), 449–463 (2001).
[CrossRef]

Lehmann, M.

Liu, S.

M. R. Gleeson, S. Liu, C. E. Close, D. Sabol, and J. T. Sheridan, “Improvement of photopolymer materials for holographic data storage,” J. Mater. Sci.44(22), 6090–6099 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B26(9), 1746–1754 (2009).
[CrossRef]

M. R. Gleeson, J. V. Kelly, C. E. Close, D. Sabol, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys.102(2), 023108 (2007).
[CrossRef]

Liu, Y.

Liyou, N. E.

T. Vuocolo, R. Haddad, G. A. Edwards, R. E. Lyons, N. E. Liyou, J. A. Werkmeister, J. A. M. Ramshaw, and C. M. Elvin, “A highly elastic and adhesive gelatin tissue sealant for gastrointestinal surgery and colon anastomosis,” J. Gastrointest. Surg.16(4), 744–752 (2012).
[CrossRef] [PubMed]

Loser, S.

I. W. Moran, A. L. Briseno, S. Loser, and K. R. Carter, “Device fabrication by easy soft imprint nano-lithography,” Chem. Mater.20(14), 4595–4601 (2008).
[CrossRef]

Lyons, R. E.

T. Vuocolo, R. Haddad, G. A. Edwards, R. E. Lyons, N. E. Liyou, J. A. Werkmeister, J. A. M. Ramshaw, and C. M. Elvin, “A highly elastic and adhesive gelatin tissue sealant for gastrointestinal surgery and colon anastomosis,” J. Gastrointest. Surg.16(4), 744–752 (2012).
[CrossRef] [PubMed]

Mackey, D.

Marini, S.

Marquez, A.

S. Gallego, M. Ortuño, I. Pascual, C. Neipp, A. Marquez, and A. Belendez, “Analysis of second and third diffracted orders in volume diffraction gratings recorded on photopolymers,” Phys. Scr.118, 58–60 (2005).
[CrossRef]

Márquez, A.

S. Gallego, A. Márquez, M. Ortuño, J. Francés, I. Pascual, and A. Beléndez, “Relief diffracted elements recorded on absorbent photopolymers,” Opt. Express20(10), 11218–11231 (2012).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit,” Opt. Mater.33(3), 531–537 (2011).
[CrossRef]

A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE7717, 77170D-1–77170D-12 (2010).
[CrossRef]

S. Gallego, A. Márquez, D. Méndez, S. Marini, A. Beléndez, and I. Pascual, “Spatial-phase-modulation-based study of polyvinyl-alcohol/acrylamide photopolymers in the low spatial frequency range,” Appl. Opt.48(22), 4403–4413 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express17(20), 18279–18291 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, E. Fernández, I. Pascual, and A. Beléndez, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt.47(14), 2557–2563 (2008).
[CrossRef] [PubMed]

C. Neipp, S. Gallego, M. Ortuño, A. Márquez, M. L. Álvarz, A. Beléndez, and I. Pascual, “First-harmonic diffusion-based model applied to a polyvinyl-alcohol–acrylamide-based photopolymer,” J. Opt. Soc. Am. B20(10), 2052–2060 (2003).
[CrossRef]

Martin, S.

Mateos, F.

I. Pascual, A. Beléndez, F. Mateos, and A. Fimia, “Obtención de elementos ópticos holográficos con fotorresinas AZ-1350: comparación entre métodos directo y copia,” Óptica Pura y Aplicada24, 63–67 (1991).

McLeod, R. R.

Méndez, D.

Michaels, D.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” Proc. SPIE5380, 283–288 (2004).
[CrossRef]

Miller, S.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” Proc. SPIE5380, 283–288 (2004).
[CrossRef]

Moran, I. W.

I. W. Moran, A. L. Briseno, S. Loser, and K. R. Carter, “Device fabrication by easy soft imprint nano-lithography,” Chem. Mater.20(14), 4595–4601 (2008).
[CrossRef]

Mouroulis, P.

G. Zhao and P. Mouroulis, “Second order grating formation in dry holographic photopolymers,” Opt. Commun.115(5-6), 528–532 (1995).
[CrossRef]

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt.41(10), 1929–1939 (1994).
[CrossRef]

Naydenova, I.

Neipp, C.

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, E. Fernández, I. Pascual, and A. Beléndez, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt.47(14), 2557–2563 (2008).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, I. Pascual, C. Neipp, A. Marquez, and A. Belendez, “Analysis of second and third diffracted orders in volume diffraction gratings recorded on photopolymers,” Phys. Scr.118, 58–60 (2005).
[CrossRef]

J. V. Kelly, F. T. O’ Neill, C. Neipp, S. Gallego, M. Ortuño, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions,” J. Opt. Soc. Am. B22(2), 406–407 (2005).
[CrossRef]

J. Kelly, M. Gleeson, C. Close, F. O’Neill, J. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

J. Kelly, M. Gleeson, C. Close, F. O’Neill, J. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40–1000 µm thick layers,” Phys. Scr.118, 66–68 (2005).

C. Neipp, S. Gallego, M. Ortuño, A. Márquez, M. L. Álvarz, A. Beléndez, and I. Pascual, “First-harmonic diffusion-based model applied to a polyvinyl-alcohol–acrylamide-based photopolymer,” J. Opt. Soc. Am. B20(10), 2052–2060 (2003).
[CrossRef]

C. Neipp, A. Beléndez, J. T. Sheridan, J. V. Kelly, F. T. O’Neill, S. Gallego, M. Ortuño, and I. Pascual, “Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity,” Opt. Express11(16), 1876–1886 (2003).
[CrossRef] [PubMed]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express11(16), 1835–1843 (2003).
[CrossRef] [PubMed]

O’ Neill, F. T.

J. V. Kelly, F. T. O’ Neill, C. Neipp, S. Gallego, M. Ortuño, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions,” J. Opt. Soc. Am. B22(2), 406–407 (2005).
[CrossRef]

O’Neill, F.

O’Neill, F. T.

Opperman, G. W.

M. J. Swanson and G. W. Opperman, “Photochemical surface modification of polymers for improved adhesion,” J. Adhes. Sci. Technol.9(3), 385–391 (1995).
[CrossRef]

Ortuño, M.

S. Gallego, A. Márquez, M. Ortuño, J. Francés, I. Pascual, and A. Beléndez, “Relief diffracted elements recorded on absorbent photopolymers,” Opt. Express20(10), 11218–11231 (2012).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit,” Opt. Mater.33(3), 531–537 (2011).
[CrossRef]

A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE7717, 77170D-1–77170D-12 (2010).
[CrossRef]

S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express17(20), 18279–18291 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, E. Fernández, I. Pascual, and A. Beléndez, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt.47(14), 2557–2563 (2008).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, I. Pascual, C. Neipp, A. Marquez, and A. Belendez, “Analysis of second and third diffracted orders in volume diffraction gratings recorded on photopolymers,” Phys. Scr.118, 58–60 (2005).
[CrossRef]

J. V. Kelly, F. T. O’ Neill, C. Neipp, S. Gallego, M. Ortuño, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions,” J. Opt. Soc. Am. B22(2), 406–407 (2005).
[CrossRef]

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40–1000 µm thick layers,” Phys. Scr.118, 66–68 (2005).

C. Neipp, A. Beléndez, J. T. Sheridan, J. V. Kelly, F. T. O’Neill, S. Gallego, M. Ortuño, and I. Pascual, “Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity,” Opt. Express11(16), 1876–1886 (2003).
[CrossRef] [PubMed]

C. Neipp, S. Gallego, M. Ortuño, A. Márquez, M. L. Álvarz, A. Beléndez, and I. Pascual, “First-harmonic diffusion-based model applied to a polyvinyl-alcohol–acrylamide-based photopolymer,” J. Opt. Soc. Am. B20(10), 2052–2060 (2003).
[CrossRef]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express11(16), 1835–1843 (2003).
[CrossRef] [PubMed]

Pascual, I.

S. Gallego, A. Márquez, M. Ortuño, J. Francés, I. Pascual, and A. Beléndez, “Relief diffracted elements recorded on absorbent photopolymers,” Opt. Express20(10), 11218–11231 (2012).
[CrossRef] [PubMed]

A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE7717, 77170D-1–77170D-12 (2010).
[CrossRef]

S. Gallego, A. Márquez, D. Méndez, S. Marini, A. Beléndez, and I. Pascual, “Spatial-phase-modulation-based study of polyvinyl-alcohol/acrylamide photopolymers in the low spatial frequency range,” Appl. Opt.48(22), 4403–4413 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express17(20), 18279–18291 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, E. Fernández, I. Pascual, and A. Beléndez, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt.47(14), 2557–2563 (2008).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, I. Pascual, C. Neipp, A. Marquez, and A. Belendez, “Analysis of second and third diffracted orders in volume diffraction gratings recorded on photopolymers,” Phys. Scr.118, 58–60 (2005).
[CrossRef]

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40–1000 µm thick layers,” Phys. Scr.118, 66–68 (2005).

C. Neipp, A. Beléndez, J. T. Sheridan, J. V. Kelly, F. T. O’Neill, S. Gallego, M. Ortuño, and I. Pascual, “Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity,” Opt. Express11(16), 1876–1886 (2003).
[CrossRef] [PubMed]

C. Neipp, S. Gallego, M. Ortuño, A. Márquez, M. L. Álvarz, A. Beléndez, and I. Pascual, “First-harmonic diffusion-based model applied to a polyvinyl-alcohol–acrylamide-based photopolymer,” J. Opt. Soc. Am. B20(10), 2052–2060 (2003).
[CrossRef]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express11(16), 1835–1843 (2003).
[CrossRef] [PubMed]

I. Pascual, A. Beléndez, F. Mateos, and A. Fimia, “Obtención de elementos ópticos holográficos con fotorresinas AZ-1350: comparación entre métodos directo y copia,” Óptica Pura y Aplicada24, 63–67 (1991).

Psaltis, P.

A. Pu, K. Curtis, and P. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng.35(10), 2824–2829 (1996).
[CrossRef]

Pu, A.

A. Pu, K. Curtis, and P. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng.35(10), 2824–2829 (1996).
[CrossRef]

Quirin, S.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” Proc. SPIE5380, 283–288 (2004).
[CrossRef]

Ramshaw, J. A. M.

T. Vuocolo, R. Haddad, G. A. Edwards, R. E. Lyons, N. E. Liyou, J. A. Werkmeister, J. A. M. Ramshaw, and C. M. Elvin, “A highly elastic and adhesive gelatin tissue sealant for gastrointestinal surgery and colon anastomosis,” J. Gastrointest. Surg.16(4), 744–752 (2012).
[CrossRef] [PubMed]

Rölle, T.

M.-S. Weiser, F.-K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp.296(1), 133–137 (2010).
[CrossRef]

Sabol, D.

M. R. Gleeson, S. Liu, C. E. Close, D. Sabol, and J. T. Sheridan, “Improvement of photopolymer materials for holographic data storage,” J. Mater. Sci.44(22), 6090–6099 (2009).
[CrossRef]

M. R. Gleeson, J. V. Kelly, C. E. Close, D. Sabol, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys.102(2), 023108 (2007).
[CrossRef]

Schnoes, M.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” Proc. SPIE5380, 283–288 (2004).
[CrossRef]

Setthachayanon, S.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” Proc. SPIE5380, 283–288 (2004).
[CrossRef]

Shankoff, T. A.

Sheridan, J.

Sheridan, J. T.

C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B28(4), 658–666 (2011).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms ad dark reactions. Part I. Modeling,” J. Opt. Soc. Am. B26(9), 1736–1745 (2009).

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B26(9), 1746–1754 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, C. E. Close, D. Sabol, and J. T. Sheridan, “Improvement of photopolymer materials for holographic data storage,” J. Mater. Sci.44(22), 6090–6099 (2009).
[CrossRef]

M. R. Gleeson, J. V. Kelly, C. E. Close, D. Sabol, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys.102(2), 023108 (2007).
[CrossRef]

J. V. Kelly, F. T. O’ Neill, C. Neipp, S. Gallego, M. Ortuño, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions,” J. Opt. Soc. Am. B22(2), 406–407 (2005).
[CrossRef]

C. Neipp, A. Beléndez, J. T. Sheridan, J. V. Kelly, F. T. O’Neill, S. Gallego, M. Ortuño, and I. Pascual, “Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity,” Opt. Express11(16), 1876–1886 (2003).
[CrossRef] [PubMed]

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.)112(10), 449–463 (2001).
[CrossRef]

Su, Y.-C.

Y.-C. Su, C.-C. Chu, W.-T. Chang, and V. K. S. Hsiao, “Characterization of optically switchable holographic polymer-dispersed liquid crystal transmission gratings,” Opt. Mater.34(1), 251–255 (2011).
[CrossRef]

Sullivan, A. C.

Sun, G.

Swanson, M. J.

M. J. Swanson and G. W. Opperman, “Photochemical surface modification of polymers for improved adhesion,” J. Adhes. Sci. Technol.9(3), 385–391 (1995).
[CrossRef]

Takeda, T.

Tanaka, K.

Tanaka, T.

Tang, P.

Toal, V.

Toishi, M.

Tokuyama, K.

Trentler, T.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” Proc. SPIE5380, 283–288 (2004).
[CrossRef]

Vuocolo, T.

T. Vuocolo, R. Haddad, G. A. Edwards, R. E. Lyons, N. E. Liyou, J. A. Werkmeister, J. A. M. Ramshaw, and C. M. Elvin, “A highly elastic and adhesive gelatin tissue sealant for gastrointestinal surgery and colon anastomosis,” J. Gastrointest. Surg.16(4), 744–752 (2012).
[CrossRef] [PubMed]

Wang, P.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” Proc. SPIE5380, 283–288 (2004).
[CrossRef]

Wang, T.

Watanabe, K.

Weiser, M.-S.

M.-S. Weiser, F.-K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp.296(1), 133–137 (2010).
[CrossRef]

Werkmeister, J. A.

T. Vuocolo, R. Haddad, G. A. Edwards, R. E. Lyons, N. E. Liyou, J. A. Werkmeister, J. A. M. Ramshaw, and C. M. Elvin, “A highly elastic and adhesive gelatin tissue sealant for gastrointestinal surgery and colon anastomosis,” J. Gastrointest. Surg.16(4), 744–752 (2012).
[CrossRef] [PubMed]

Wilson, W.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” Proc. SPIE5380, 283–288 (2004).
[CrossRef]

Woo, K. C.

Yin, S.

Zhang, Y.

Zhao, G.

G. Zhao and P. Mouroulis, “Second order grating formation in dry holographic photopolymers,” Opt. Commun.115(5-6), 528–532 (1995).
[CrossRef]

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt.41(10), 1929–1939 (1994).
[CrossRef]

Zheng, J.

Zhuang, S.

Appl. Opt. (5)

Chem. Mater. (1)

I. W. Moran, A. L. Briseno, S. Loser, and K. R. Carter, “Device fabrication by easy soft imprint nano-lithography,” Chem. Mater.20(14), 4595–4601 (2008).
[CrossRef]

J. Adhes. Sci. Technol. (1)

M. J. Swanson and G. W. Opperman, “Photochemical surface modification of polymers for improved adhesion,” J. Adhes. Sci. Technol.9(3), 385–391 (1995).
[CrossRef]

J. Appl. Phys. (1)

M. R. Gleeson, J. V. Kelly, C. E. Close, D. Sabol, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys.102(2), 023108 (2007).
[CrossRef]

J. Gastrointest. Surg. (1)

T. Vuocolo, R. Haddad, G. A. Edwards, R. E. Lyons, N. E. Liyou, J. A. Werkmeister, J. A. M. Ramshaw, and C. M. Elvin, “A highly elastic and adhesive gelatin tissue sealant for gastrointestinal surgery and colon anastomosis,” J. Gastrointest. Surg.16(4), 744–752 (2012).
[CrossRef] [PubMed]

J. Mater. Sci. (1)

M. R. Gleeson, S. Liu, C. E. Close, D. Sabol, and J. T. Sheridan, “Improvement of photopolymer materials for holographic data storage,” J. Mater. Sci.44(22), 6090–6099 (2009).
[CrossRef]

J. Mod. Opt. (1)

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt.41(10), 1929–1939 (1994).
[CrossRef]

J. Opt. Soc. Am. B (7)

J. H. Kwon, H. C. Hwang, and K. C. Woo, “Analysis of temporal behavior of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B16(10), 1651–1657 (1999).
[CrossRef]

C. Neipp, S. Gallego, M. Ortuño, A. Márquez, M. L. Álvarz, A. Beléndez, and I. Pascual, “First-harmonic diffusion-based model applied to a polyvinyl-alcohol–acrylamide-based photopolymer,” J. Opt. Soc. Am. B20(10), 2052–2060 (2003).
[CrossRef]

C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B28(4), 658–666 (2011).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms ad dark reactions. Part I. Modeling,” J. Opt. Soc. Am. B26(9), 1736–1745 (2009).

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B26(9), 1746–1754 (2009).
[CrossRef]

T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamidebased photopolymer,” J. Opt. Soc. Am. B27(2), 197–203 (2010).
[CrossRef]

J. V. Kelly, F. T. O’ Neill, C. Neipp, S. Gallego, M. Ortuño, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions,” J. Opt. Soc. Am. B22(2), 406–407 (2005).
[CrossRef]

Macromol. Symp. (1)

M.-S. Weiser, F.-K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp.296(1), 133–137 (2010).
[CrossRef]

Opt. Commun. (1)

G. Zhao and P. Mouroulis, “Second order grating formation in dry holographic photopolymers,” Opt. Commun.115(5-6), 528–532 (1995).
[CrossRef]

Opt. Eng. (1)

A. Pu, K. Curtis, and P. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng.35(10), 2824–2829 (1996).
[CrossRef]

Opt. Express (9)

S. Gallego, A. Márquez, M. Ortuño, J. Francés, I. Pascual, and A. Beléndez, “Relief diffracted elements recorded on absorbent photopolymers,” Opt. Express20(10), 11218–11231 (2012).
[CrossRef] [PubMed]

C. Neipp, A. Beléndez, J. T. Sheridan, J. V. Kelly, F. T. O’Neill, S. Gallego, M. Ortuño, and I. Pascual, “Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity,” Opt. Express11(16), 1876–1886 (2003).
[CrossRef] [PubMed]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express11(16), 1835–1843 (2003).
[CrossRef] [PubMed]

J. Kelly, M. Gleeson, C. Close, F. O’Neill, J. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

J. Zheng, G. Sun, Y. Jiang, T. Wang, A. Huang, Y. Zhang, P. Tang, S. Zhuang, Y. Liu, and S. Yin, “H-PDLC based waveform controllable optical choppers for FDMF microscopy,” Opt. Express19(3), 2216–2224 (2011).
[CrossRef] [PubMed]

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express15(24), 16196–16209 (2007).
[CrossRef] [PubMed]

J. Kelly, M. Gleeson, C. Close, F. O’Neill, J. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

M. Toishi, T. Takeda, K. Tanaka, T. Tanaka, A. Fukumoto, and K. Watanabe, “Two-dimensional simulation of holographic data storage medium for multiplexed recording,” Opt. Express16(4), 2829–2839 (2008).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express17(20), 18279–18291 (2009).
[CrossRef] [PubMed]

Opt. Mater. (2)

Y.-C. Su, C.-C. Chu, W.-T. Chang, and V. K. S. Hsiao, “Characterization of optically switchable holographic polymer-dispersed liquid crystal transmission gratings,” Opt. Mater.34(1), 251–255 (2011).
[CrossRef]

S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit,” Opt. Mater.33(3), 531–537 (2011).
[CrossRef]

Óptica Pura y Aplicada (1)

I. Pascual, A. Beléndez, F. Mateos, and A. Fimia, “Obtención de elementos ópticos holográficos con fotorresinas AZ-1350: comparación entre métodos directo y copia,” Óptica Pura y Aplicada24, 63–67 (1991).

Optik (Stuttg.) (1)

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.)112(10), 449–463 (2001).
[CrossRef]

Phys. Rep. (1)

P. Günter, “Holography, coherent light amplification and optical phase conjugation with photorefractive materials,” Phys. Rep.93(4), 199–299 (1982).
[CrossRef]

Phys. Scr. (2)

M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40–1000 µm thick layers,” Phys. Scr.118, 66–68 (2005).

S. Gallego, M. Ortuño, I. Pascual, C. Neipp, A. Marquez, and A. Belendez, “Analysis of second and third diffracted orders in volume diffraction gratings recorded on photopolymers,” Phys. Scr.118, 58–60 (2005).
[CrossRef]

Proc. SPIE (2)

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” Proc. SPIE5380, 283–288 (2004).
[CrossRef]

A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE7717, 77170D-1–77170D-12 (2010).
[CrossRef]

Other (2)

H. J. Coufal, D. Psaltisand, and G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).

P. Hariharan, “Optical Holography: principles, techniques, and applications,” in Cambridge Studies in Modern Optics, 2nd E (Cambridge, 1996), p. 47.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Diffraction efficiency for the first four orders for a sinusoidal grating as a function of the phase depth.

Fig. 2
Fig. 2

Diffraction efficiency of the four first orders obtained by the simulations using the model for different values of γ. a) γ = 0.5, b) γ = 0.7, c) γ = 0.9 and d)γ = 1.

Fig. 3
Fig. 3

Phase shift as a function of exposure for different intensities for chemical composition B.

Fig. 4
Fig. 4

. Simulations of the main four orders for different recording intensities. a) I = 1 mW/cm2, b) I = 2 mW/cm2 c) I = 5 mW/cm2

Fig. 5
Fig. 5

Simulations of the main four orders for different values of D. a) D = 1.5 µm2/s, b) D = 0.15 µm2/s.

Fig. 6
Fig. 6

Fittings to obtain D for different exposure time values. a) 16s, b) 32s, c) 50s d) 100s.

Fig. 7
Fig. 7

Experimental values of monomer diffusion as a function of exposure and the fitting using Eq. (8).

Fig. 8
Fig. 8

- Simulations of the four main orders. a) Taking into account Eq. (8) together with the experimental results for chemical composition B, b) With constant value of monomer diffusion. For a grating with spatial period of 168 µm and sinusoidal intensity distribution.

Tables (2)

Tables Icon

Table 1 Chemical composition of the water solutions

Tables Icon

Table 2 Fitted values of FR

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

R= D K g 2 F R
F R (t)= k R (t) I γ (x,z,t)= k R ( I 0 [ 1+Vcos( K g x) ] e α(t)z ) γ
M(x,z,t) t = x D(x,z,t) M(x,z,t) x + z D(x,z,t) M(x,z,t) z F R (x,z,t)M(x,z,t)
P(x,z,t) t = F R (x,z,t)M(x,z,t)
k R (t)= k R 0 exp( α T t )
n 2 1 n 2 +2 = n m 2 1 n m 2 +2 M+ n p 2 1 n p 2 +2 P+ n b 2 1 n b 2 +2 ( 1 M 0 )
ln( 1 PS P S )= I γ K R t= F R t
D= D [ ( D 0 1 ) e ( α D t ) 1 ]

Metrics