Abstract

Abstract: We report an 850-nm vertical cavity surface emitting laser (VCSEL)-based optical link that achieves a new record in speed. The laser driver and receiver ICs are fabricated in standard 90-nm bulk CMOS, and the optoelectronic devices are commercial components. Operation at 30 Gb/s with a bit-error rate < 10−12 is achieved, representing to the authors’ knowledge the highest speed reported to date for a CMOS-based full optical link. Transmitter feed-forward equalization is shown to improve maximum data rate from 25 to 30 Gb/s, timing margin by 17% at 23.5 Gb/s, and receiver sensitivity by 4 dB at 23.5 Gb/s.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Kash, A. F. Benner, F. E. Doany, D. M. Kuchta, B. G. Lee, K. Petar, L. Schares, C. L. Schow, and M. Taubenblatt, “Optical interconnects in future servers,” in Proc. of Optical Fiber Communications Conference (IEEE, 2011), paper OTuH1.
    [CrossRef]
  2. I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits45(1), 235–248 (2010).
    [CrossRef]
  3. J. E. Proesel, B. G. Lee, A. V. Rylyakov, C. W. Baks, and C. L. Schow, “Ultra low power 10- to 28.5-Gb/s CMOS-driven VCSEL-based optical links,” J. Opt. Commun. Netw.4(11), B114–B123 (2012).
    [CrossRef]
  4. A. Nielsen, “AMP NETCONNECT Guide to ISO/IEC 11801 2nd Edition Including Amendment 1,” http://www.lanster.com/pub/files/file/okablowanie_normy/Guide_ISO_11801_2nd_Amendment1.pdf .
  5. C. L. Schow, A. V. Rylyakov, C. Baks, F. E. Doany, and J. A. Kash, “25-Gb/s 6.5-pJ/bit 90-nm CMOS-driven multimode optical link,” IEEE Photon. Technol. Lett.24(10), 824–826 (2012).
    [CrossRef]
  6. S. Palermo, A. Emami-Neyestanak, and M. Horowitz, “A 90nm CMOS 16Gb/s Transceiver for Optical Interconnects,” in 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (IEEE, 2007), pp. 44–586.
    [CrossRef]
  7. A. Kern, A. Chandrakasan, and I. Young, “18Gb/s Optical IO: VCSEL Driver and TIA in 90nm CMOS,” in 2007 IEEE Symposium on VLSI Circuits (IEEE, 2007), pp. 276–277.
    [CrossRef]
  8. A. V. Rylyakov, C. L. Schow, B. G. Lee, F. E. Doany, C. W. Baks, and J. A. Kash, “Transmitter predistortion for simultaneous improvements in bit rate, sensitivity, jitter, and power efficiency in 20 Gb/s CMOS-driven VCSEL links,” J. Lightwave Technol.30(4), 399–405 (2012).
    [CrossRef]
  9. D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “55Gb/s Directly Modulated 850nm VCSEL-Based Optical Link”, in Proc. of IEEE Photonics Conference (IEEE, 2012), paper PD1.5.
    [CrossRef]
  10. B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett.48(18), 1145–1147 (2012).
    [CrossRef]
  11. P. Wolf, P. Moser, G. Larisch, M. Kroh, A. Mutig, W. Unrau, W. Hofmann, and D. Bimberg, “High-performance 980 nm VCSELs for 12.5 Gbit/s data transmission at 155 degrees C and 49 Gbit/s at-14 degrees C,” Electron. Lett.48(7), 389–390 (2012).
    [CrossRef]
  12. N. Suzuki, H. Hatakeyama, K. Yashiki, K. Fukatsu, K. Tokutome, T. Akagawa, T. Anan, and M. Tsuji, “High-speed InGaAs VCSELs,” Proc. of 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2006), pp.508–509.
    [CrossRef]
  13. W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M.-C. Amann, “40 Gbit/s modulation of 1550 nm VCSEL,” Electron. Lett.47(4), 270–271 (2011).
    [CrossRef]

2012

J. E. Proesel, B. G. Lee, A. V. Rylyakov, C. W. Baks, and C. L. Schow, “Ultra low power 10- to 28.5-Gb/s CMOS-driven VCSEL-based optical links,” J. Opt. Commun. Netw.4(11), B114–B123 (2012).
[CrossRef]

C. L. Schow, A. V. Rylyakov, C. Baks, F. E. Doany, and J. A. Kash, “25-Gb/s 6.5-pJ/bit 90-nm CMOS-driven multimode optical link,” IEEE Photon. Technol. Lett.24(10), 824–826 (2012).
[CrossRef]

A. V. Rylyakov, C. L. Schow, B. G. Lee, F. E. Doany, C. W. Baks, and J. A. Kash, “Transmitter predistortion for simultaneous improvements in bit rate, sensitivity, jitter, and power efficiency in 20 Gb/s CMOS-driven VCSEL links,” J. Lightwave Technol.30(4), 399–405 (2012).
[CrossRef]

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett.48(18), 1145–1147 (2012).
[CrossRef]

P. Wolf, P. Moser, G. Larisch, M. Kroh, A. Mutig, W. Unrau, W. Hofmann, and D. Bimberg, “High-performance 980 nm VCSELs for 12.5 Gbit/s data transmission at 155 degrees C and 49 Gbit/s at-14 degrees C,” Electron. Lett.48(7), 389–390 (2012).
[CrossRef]

2011

W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M.-C. Amann, “40 Gbit/s modulation of 1550 nm VCSEL,” Electron. Lett.47(4), 270–271 (2011).
[CrossRef]

2010

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits45(1), 235–248 (2010).
[CrossRef]

Amann, M.-C.

W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M.-C. Amann, “40 Gbit/s modulation of 1550 nm VCSEL,” Electron. Lett.47(4), 270–271 (2011).
[CrossRef]

Baks, C.

C. L. Schow, A. V. Rylyakov, C. Baks, F. E. Doany, and J. A. Kash, “25-Gb/s 6.5-pJ/bit 90-nm CMOS-driven multimode optical link,” IEEE Photon. Technol. Lett.24(10), 824–826 (2012).
[CrossRef]

Baks, C. W.

Bimberg, D.

P. Wolf, P. Moser, G. Larisch, M. Kroh, A. Mutig, W. Unrau, W. Hofmann, and D. Bimberg, “High-performance 980 nm VCSELs for 12.5 Gbit/s data transmission at 155 degrees C and 49 Gbit/s at-14 degrees C,” Electron. Lett.48(7), 389–390 (2012).
[CrossRef]

W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M.-C. Amann, “40 Gbit/s modulation of 1550 nm VCSEL,” Electron. Lett.47(4), 270–271 (2011).
[CrossRef]

Block, B.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits45(1), 235–248 (2010).
[CrossRef]

Böhm, G.

W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M.-C. Amann, “40 Gbit/s modulation of 1550 nm VCSEL,” Electron. Lett.47(4), 270–271 (2011).
[CrossRef]

Chang, P. L. D.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits45(1), 235–248 (2010).
[CrossRef]

Doany, F. E.

Geen, M.

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett.48(18), 1145–1147 (2012).
[CrossRef]

Gründl, T.

W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M.-C. Amann, “40 Gbit/s modulation of 1550 nm VCSEL,” Electron. Lett.47(4), 270–271 (2011).
[CrossRef]

Gustavsson, J. S.

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett.48(18), 1145–1147 (2012).
[CrossRef]

Haglund, E.

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett.48(18), 1145–1147 (2012).
[CrossRef]

Hofmann, W.

P. Wolf, P. Moser, G. Larisch, M. Kroh, A. Mutig, W. Unrau, W. Hofmann, and D. Bimberg, “High-performance 980 nm VCSELs for 12.5 Gbit/s data transmission at 155 degrees C and 49 Gbit/s at-14 degrees C,” Electron. Lett.48(7), 389–390 (2012).
[CrossRef]

W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M.-C. Amann, “40 Gbit/s modulation of 1550 nm VCSEL,” Electron. Lett.47(4), 270–271 (2011).
[CrossRef]

Joel, A.

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett.48(18), 1145–1147 (2012).
[CrossRef]

Kash, J. A.

Kern, A. M.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits45(1), 235–248 (2010).
[CrossRef]

Kögel, B.

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett.48(18), 1145–1147 (2012).
[CrossRef]

Kroh, M.

P. Wolf, P. Moser, G. Larisch, M. Kroh, A. Mutig, W. Unrau, W. Hofmann, and D. Bimberg, “High-performance 980 nm VCSELs for 12.5 Gbit/s data transmission at 155 degrees C and 49 Gbit/s at-14 degrees C,” Electron. Lett.48(7), 389–390 (2012).
[CrossRef]

Larisch, G.

P. Wolf, P. Moser, G. Larisch, M. Kroh, A. Mutig, W. Unrau, W. Hofmann, and D. Bimberg, “High-performance 980 nm VCSELs for 12.5 Gbit/s data transmission at 155 degrees C and 49 Gbit/s at-14 degrees C,” Electron. Lett.48(7), 389–390 (2012).
[CrossRef]

Larsson, A.

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett.48(18), 1145–1147 (2012).
[CrossRef]

Lawrence, R.

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett.48(18), 1145–1147 (2012).
[CrossRef]

Lee, B. G.

Liao, J. T. S.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits45(1), 235–248 (2010).
[CrossRef]

Mohammed, E.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits45(1), 235–248 (2010).
[CrossRef]

Moser, P.

P. Wolf, P. Moser, G. Larisch, M. Kroh, A. Mutig, W. Unrau, W. Hofmann, and D. Bimberg, “High-performance 980 nm VCSELs for 12.5 Gbit/s data transmission at 155 degrees C and 49 Gbit/s at-14 degrees C,” Electron. Lett.48(7), 389–390 (2012).
[CrossRef]

Müller, M.

W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M.-C. Amann, “40 Gbit/s modulation of 1550 nm VCSEL,” Electron. Lett.47(4), 270–271 (2011).
[CrossRef]

Mutig, A.

P. Wolf, P. Moser, G. Larisch, M. Kroh, A. Mutig, W. Unrau, W. Hofmann, and D. Bimberg, “High-performance 980 nm VCSELs for 12.5 Gbit/s data transmission at 155 degrees C and 49 Gbit/s at-14 degrees C,” Electron. Lett.48(7), 389–390 (2012).
[CrossRef]

W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M.-C. Amann, “40 Gbit/s modulation of 1550 nm VCSEL,” Electron. Lett.47(4), 270–271 (2011).
[CrossRef]

Palermo, S.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits45(1), 235–248 (2010).
[CrossRef]

Proesel, J. E.

Reshotko, M. R.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits45(1), 235–248 (2010).
[CrossRef]

Rylyakov, A. V.

Safaisini, R.

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett.48(18), 1145–1147 (2012).
[CrossRef]

Schow, C. L.

Unrau, W.

P. Wolf, P. Moser, G. Larisch, M. Kroh, A. Mutig, W. Unrau, W. Hofmann, and D. Bimberg, “High-performance 980 nm VCSELs for 12.5 Gbit/s data transmission at 155 degrees C and 49 Gbit/s at-14 degrees C,” Electron. Lett.48(7), 389–390 (2012).
[CrossRef]

Westbergh, P.

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett.48(18), 1145–1147 (2012).
[CrossRef]

Wolf, P.

P. Wolf, P. Moser, G. Larisch, M. Kroh, A. Mutig, W. Unrau, W. Hofmann, and D. Bimberg, “High-performance 980 nm VCSELs for 12.5 Gbit/s data transmission at 155 degrees C and 49 Gbit/s at-14 degrees C,” Electron. Lett.48(7), 389–390 (2012).
[CrossRef]

W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M.-C. Amann, “40 Gbit/s modulation of 1550 nm VCSEL,” Electron. Lett.47(4), 270–271 (2011).
[CrossRef]

Young, I. A.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits45(1), 235–248 (2010).
[CrossRef]

Electron. Lett.

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett.48(18), 1145–1147 (2012).
[CrossRef]

P. Wolf, P. Moser, G. Larisch, M. Kroh, A. Mutig, W. Unrau, W. Hofmann, and D. Bimberg, “High-performance 980 nm VCSELs for 12.5 Gbit/s data transmission at 155 degrees C and 49 Gbit/s at-14 degrees C,” Electron. Lett.48(7), 389–390 (2012).
[CrossRef]

W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M.-C. Amann, “40 Gbit/s modulation of 1550 nm VCSEL,” Electron. Lett.47(4), 270–271 (2011).
[CrossRef]

IEEE J. Solid-State Circuits

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-State Circuits45(1), 235–248 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

C. L. Schow, A. V. Rylyakov, C. Baks, F. E. Doany, and J. A. Kash, “25-Gb/s 6.5-pJ/bit 90-nm CMOS-driven multimode optical link,” IEEE Photon. Technol. Lett.24(10), 824–826 (2012).
[CrossRef]

J. Lightwave Technol.

J. Opt. Commun. Netw.

Other

A. Nielsen, “AMP NETCONNECT Guide to ISO/IEC 11801 2nd Edition Including Amendment 1,” http://www.lanster.com/pub/files/file/okablowanie_normy/Guide_ISO_11801_2nd_Amendment1.pdf .

S. Palermo, A. Emami-Neyestanak, and M. Horowitz, “A 90nm CMOS 16Gb/s Transceiver for Optical Interconnects,” in 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (IEEE, 2007), pp. 44–586.
[CrossRef]

A. Kern, A. Chandrakasan, and I. Young, “18Gb/s Optical IO: VCSEL Driver and TIA in 90nm CMOS,” in 2007 IEEE Symposium on VLSI Circuits (IEEE, 2007), pp. 276–277.
[CrossRef]

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “55Gb/s Directly Modulated 850nm VCSEL-Based Optical Link”, in Proc. of IEEE Photonics Conference (IEEE, 2012), paper PD1.5.
[CrossRef]

N. Suzuki, H. Hatakeyama, K. Yashiki, K. Fukatsu, K. Tokutome, T. Akagawa, T. Anan, and M. Tsuji, “High-speed InGaAs VCSELs,” Proc. of 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2006), pp.508–509.
[CrossRef]

J. A. Kash, A. F. Benner, F. E. Doany, D. M. Kuchta, B. G. Lee, K. Petar, L. Schares, C. L. Schow, and M. Taubenblatt, “Optical interconnects in future servers,” in Proc. of Optical Fiber Communications Conference (IEEE, 2011), paper OTuH1.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Optical link block diagram, (b) Feed-forward equalization waveform (from [4]). (c) Photograph of transmitter IC and VCSELs mounted on high-speed PCB, (d) Photograph of receiver IC and photodiode mounted on high-speed PCB.

Fig. 2
Fig. 2

30 Gb/s results: (a) Electrical receiver output, (b) Timing margin characteristics, (c) Optical VCSEL output.

Fig. 3
Fig. 3

Full link power efficiency for 10 to 30 Gb/s.

Fig. 4
Fig. 4

(a) Electrical Rx output equalized (Vpp = 240 mV), (b) Electrical Rx output without equalization (Vpp = 240 mV), (c) Optical VCSEL output equalized (OMA = 0.82 mW), (d) Optical VCSEL output without equalization (OMA = 0.95 mW).

Fig. 5
Fig. 5

(a) Timing margin characteristics at 22 Gb/s, (b) Timing margin characteristics at 23.5 Gb/s.

Fig. 6
Fig. 6

(a) Receiver sensitivity for the equalized link, (b) Comparison of receiver sensitivity with and without equalization.

Tables (1)

Tables Icon

Table 1 Power consumption (mW) for supplies shown in Fig. 1.

Metrics