Abstract

Presented here for the first time to the best of our knowledge is a detailed Brillouin spectroscopic study of novel, highly-BaO-doped silica glass optical fibers. The fibers were fabricated utilizing a molten-core method and exhibited baria (BaO) concentrations up to 18.4 mole %. Physical characteristics such as mass density, acoustic velocity, visco-elastic damping, and refractive index are determined for the baria component of the bariosilicate system. It is found that, of each of these parameters, only the acoustic velocity is less than that of pure silica. The effect of temperature and strain on the acoustic velocity also is determined by utilizing estimates of the strain- and thermo-optic coefficients. The dependencies are found to have signs opposite to those of silica, thus suggesting both Brillouin-frequency a-thermal and a-tensic binary compositions. Via the estimate of the strain-optic coefficient and data found in the literature, the Pockels’ photoelastic constant p12 is estimated, and both a calculation and measured estimate of the Brillouin gain versus baria content are presented. Such novel fibers incorporating the unique properties of baria could be of great utility for narrow linewidth fiber lasers, high power passive components (such as couplers and combiners), and Brillouin-based sensor systems.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. K. Jen, “Similarities and differences between fiber acoustics and fiber optics,” Proceedings of the IEEE Ultrasonics Symposium, (IEEE, 1985), pp. 1128 – 1133.
  2. P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” CLEO/QELS Technical Digest, pp. 1984–1986, (2005), paper CThZ3.
  3. M.-J. Li, X. Chen, J. Wang, A. B. Ruffin, D. T. Walton, S. Li, D. A. Nolan, S. Gray, and L. A. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” Optical Fiber Communication Conference, (Optical Society of America, 2006), paper OTuA4.
    [CrossRef]
  4. A. Kobyakov, S. Kumar, D. Chowdhury, A. B. Ruffin, M. Sauer, S. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express13(14), 5338–5346 (2005).
    [CrossRef] [PubMed]
  5. W. Zou, Z. He, M. Kishi, and K. Hotate, “Stimulated Brillouin scattering and its dependences on strain and temperature in a high-delta optical fiber with F-doped depressed inner cladding,” Opt. Lett.32(6), 600–602 (2007).
    [CrossRef] [PubMed]
  6. P. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE7197, 719710, 719710-10 (2009).
    [CrossRef]
  7. P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics6(9), 629–633 (2012).
    [CrossRef]
  8. J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Appl. Opt.34(30), 6848–6854 (1995).
    [CrossRef] [PubMed]
  9. J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys.105(5), 053110 (2009).
    [CrossRef]
  10. S. Morris, T. Hawkins, P. Foy, C. McMillen, J. Fan, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “Reactive molten core fabrication of silicon optical fiber,” Opt. Mater. Express1(6), 1141–1149 (2011).
    [CrossRef]
  11. P. Dragic, “Simplified model for effect of Ge doping on silica fibre acoustic properties,” Electron. Lett.45(5), 256–257 (2009).
    [CrossRef]
  12. P. Dragic, “The acoustic velocity of Ge-doped silica fibers: a comparison of two models,” Int. J. Appl. Glass Sci.1(3), 330–337 (2010).
    [CrossRef]
  13. P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express2(11), 1641–1654 (2012).
    [CrossRef]
  14. M. Huntelaar and E. Cordfunke, “The ternary system BaSiO3-SrSiO3-SiO2,” J. Nucl. Mater.201, 250–253 (1993).
    [CrossRef]
  15. A. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol.28(4), 360–364 (2010).
    [CrossRef]
  16. P.-C. Law, Y.-S. Liu, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mater. Express1(4), 686–699 (2011).
    [CrossRef]
  17. P.-C. Law, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients,” Opt. Mater. Express2(4), 391–404 (2012).
    [CrossRef]
  18. P. Dragic, “Estimating the effect of Ge doping on the acoustic damping coefficient via a highly Ge-doped MCVD silica fiber,” J. Opt. Soc. Am. B26(8), 1614–1620 (2009).
    [CrossRef]
  19. A. Bertholds and R. Dändliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol.6(1), 17–20 (1988).
    [CrossRef]
  20. P. Eskola, “The silicates of strontium and barium,” Am. J. Sci.4(23), 331–375 (1922).
    [CrossRef]
  21. J. Greig, “Immiscibility in silicate melts,” Am. J. Sci.13(73), 1–44 (1927).
    [CrossRef]
  22. T. Seward, D. Uhlmann, and D. Turnbull, “Phase separation in the system BaO-SiO2,” J. Am. Ceram. Soc.51(5), 278–285 (1968).
    [CrossRef]
  23. T. Seward, D. Uhlmann, and D. Turnbull, “Development of two-phase structure in glasses with special reference to the system BaO-SiO2,” J. Am. Ceram. Soc.51(11), 634–642 (1968).
    [CrossRef]
  24. H.-R. Wang, “Graded-index (GRIN) lenses by slurry-based three-dimensional printing (S-3DPTM),” PhD Dissertation, Massachusetts Institute of Technology (2005).
  25. C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
    [CrossRef]
  26. K.-O. Park and J. M. Sivertsen, “Temperature dependence of the bulk modulus of BaO single crystals,” J. Am. Ceram. Soc.60(11-12), 537–538 (1977).
    [CrossRef]
  27. N. Shibata, Y. Azuma, T. Horiguchi, and M. Tateda, “Identification of longitudinal acoustic modes guided in the core region of a single-mode optical fiber by Brillouin gain spectra measurements,” Opt. Lett.13(7), 595–597 (1988).
    [CrossRef] [PubMed]
  28. M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997).
    [CrossRef]
  29. P. Dragic, J. Ballato, S. Morris, and T. Hawkins, “Pockels’ coefficients of alumina in aluminosilicate optical fibers,” J. Opt. Soc. Am. B30(2), 244–250 (2013).
    [CrossRef]
  30. P. Dragic and B. Ward, “Accurate modeling of the intrinsic Brillouin linewidth via finite element analysis,” IEEE Photon. Technol. Lett.22(22), 1698–1700 (2010).
    [CrossRef]
  31. P. Dragic, “Brillouin gain reduction via B2O3 doping,” J. Lightwave Technol.29(7), 967–973 (2011).
    [CrossRef]
  32. F. Langenhorst and A. Deutsch, “Shock experiments on pre-heated α- and β-quartz: I. Optical and density data,” Earth Planet. Sci. Lett.125(1-4), 407–420 (1994).
    [CrossRef]
  33. Z. Shuang and W. Fuquan, “The study on dispersive equation and thermal refractive index coefficient of quartz crystal,” Acta Photon. Sin.35, 1183–1186 (2006).
  34. J. Kushibiki, M. Ohtagawa, and I. Takanaga, “Comparison of acoustic properties between natural and synthetic α-quartz crystals,” J. Appl. Phys.94(1), 295–300 (2003).
    [CrossRef]
  35. Springer Materials, “The Landolt-Börnstein Database,” http://www.springermaterials.com/docs/pdfs/10681719_257.pdf
  36. C. J. Anderson and E. B. Hensley, “Index of refraction of barium oxide,” J. Appl. Phys.46(1), 443 (1975).
    [CrossRef]
  37. G. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  38. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt.18(13), 2241–2251 (1979).
    [CrossRef] [PubMed]
  39. K. Matusita, R. Yokota, T. Kimijima, T. Komatsu, and C. Ihara, “Compositional trends in photoelastic constants of borate glasses,” J. Am. Ceram. Soc.67(4), 261–265 (1984).
    [CrossRef]
  40. K. Matusita, C. Ihara, T. Komatsu, and R. Yokota, “Photoelastic effects in phosphate glasses,” J. Am. Ceram. Soc.68(7), 389–391 (1985).
    [CrossRef]
  41. M. Guignard and J. W. Zwanziger, “Zero stress-optic barium tellurite glass,” J. Non-Cryst. Solids353(16-17), 1662–1664 (2007).
    [CrossRef]
  42. K. V. K. Rao and V. G. K. Murty, “Photoelastic constants of magnesium oxide,” Acta Crystallogr.17(6), 788–789 (1964).
    [CrossRef]
  43. R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A42(9), 5514–5521 (1990).
    [CrossRef] [PubMed]

2013

2012

2011

2010

P. Dragic and B. Ward, “Accurate modeling of the intrinsic Brillouin linewidth via finite element analysis,” IEEE Photon. Technol. Lett.22(22), 1698–1700 (2010).
[CrossRef]

P. Dragic, “The acoustic velocity of Ge-doped silica fibers: a comparison of two models,” Int. J. Appl. Glass Sci.1(3), 330–337 (2010).
[CrossRef]

A. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol.28(4), 360–364 (2010).
[CrossRef]

2009

P. Dragic, “Estimating the effect of Ge doping on the acoustic damping coefficient via a highly Ge-doped MCVD silica fiber,” J. Opt. Soc. Am. B26(8), 1614–1620 (2009).
[CrossRef]

P. Dragic, “Simplified model for effect of Ge doping on silica fibre acoustic properties,” Electron. Lett.45(5), 256–257 (2009).
[CrossRef]

P. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE7197, 719710, 719710-10 (2009).
[CrossRef]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys.105(5), 053110 (2009).
[CrossRef]

2007

2006

Z. Shuang and W. Fuquan, “The study on dispersive equation and thermal refractive index coefficient of quartz crystal,” Acta Photon. Sin.35, 1183–1186 (2006).

2005

2003

J. Kushibiki, M. Ohtagawa, and I. Takanaga, “Comparison of acoustic properties between natural and synthetic α-quartz crystals,” J. Appl. Phys.94(1), 295–300 (2003).
[CrossRef]

1997

M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997).
[CrossRef]

1995

1994

F. Langenhorst and A. Deutsch, “Shock experiments on pre-heated α- and β-quartz: I. Optical and density data,” Earth Planet. Sci. Lett.125(1-4), 407–420 (1994).
[CrossRef]

1993

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
[CrossRef]

M. Huntelaar and E. Cordfunke, “The ternary system BaSiO3-SrSiO3-SiO2,” J. Nucl. Mater.201, 250–253 (1993).
[CrossRef]

1990

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

1988

1985

K. Matusita, C. Ihara, T. Komatsu, and R. Yokota, “Photoelastic effects in phosphate glasses,” J. Am. Ceram. Soc.68(7), 389–391 (1985).
[CrossRef]

1984

K. Matusita, R. Yokota, T. Kimijima, T. Komatsu, and C. Ihara, “Compositional trends in photoelastic constants of borate glasses,” J. Am. Ceram. Soc.67(4), 261–265 (1984).
[CrossRef]

1979

1977

K.-O. Park and J. M. Sivertsen, “Temperature dependence of the bulk modulus of BaO single crystals,” J. Am. Ceram. Soc.60(11-12), 537–538 (1977).
[CrossRef]

1975

C. J. Anderson and E. B. Hensley, “Index of refraction of barium oxide,” J. Appl. Phys.46(1), 443 (1975).
[CrossRef]

1968

T. Seward, D. Uhlmann, and D. Turnbull, “Phase separation in the system BaO-SiO2,” J. Am. Ceram. Soc.51(5), 278–285 (1968).
[CrossRef]

T. Seward, D. Uhlmann, and D. Turnbull, “Development of two-phase structure in glasses with special reference to the system BaO-SiO2,” J. Am. Ceram. Soc.51(11), 634–642 (1968).
[CrossRef]

1964

K. V. K. Rao and V. G. K. Murty, “Photoelastic constants of magnesium oxide,” Acta Crystallogr.17(6), 788–789 (1964).
[CrossRef]

1927

J. Greig, “Immiscibility in silicate melts,” Am. J. Sci.13(73), 1–44 (1927).
[CrossRef]

1922

P. Eskola, “The silicates of strontium and barium,” Am. J. Sci.4(23), 331–375 (1922).
[CrossRef]

Abe, K.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
[CrossRef]

Anderson, C. J.

C. J. Anderson and E. B. Hensley, “Index of refraction of barium oxide,” J. Appl. Phys.46(1), 443 (1975).
[CrossRef]

Azuma, Y.

Ballato, A.

Ballato, J.

Bertholds, A.

A. Bertholds and R. Dändliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol.6(1), 17–20 (1988).
[CrossRef]

Bickham, S.

Bonnell, L.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
[CrossRef]

Boyd, R. W.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

Chowdhury, D.

Cordfunke, E.

M. Huntelaar and E. Cordfunke, “The ternary system BaSiO3-SrSiO3-SiO2,” J. Nucl. Mater.201, 250–253 (1993).
[CrossRef]

Croteau, A.

Dändliker, R.

A. Bertholds and R. Dändliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol.6(1), 17–20 (1988).
[CrossRef]

Daw, M.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys.105(5), 053110 (2009).
[CrossRef]

Deutsch, A.

F. Langenhorst and A. Deutsch, “Shock experiments on pre-heated α- and β-quartz: I. Optical and density data,” Earth Planet. Sci. Lett.125(1-4), 407–420 (1994).
[CrossRef]

Dragic, P.

P. Dragic, J. Ballato, S. Morris, and T. Hawkins, “Pockels’ coefficients of alumina in aluminosilicate optical fibers,” J. Opt. Soc. Am. B30(2), 244–250 (2013).
[CrossRef]

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics6(9), 629–633 (2012).
[CrossRef]

P.-C. Law, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients,” Opt. Mater. Express2(4), 391–404 (2012).
[CrossRef]

P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express2(11), 1641–1654 (2012).
[CrossRef]

P.-C. Law, Y.-S. Liu, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mater. Express1(4), 686–699 (2011).
[CrossRef]

P. Dragic, “Brillouin gain reduction via B2O3 doping,” J. Lightwave Technol.29(7), 967–973 (2011).
[CrossRef]

P. Dragic and B. Ward, “Accurate modeling of the intrinsic Brillouin linewidth via finite element analysis,” IEEE Photon. Technol. Lett.22(22), 1698–1700 (2010).
[CrossRef]

P. Dragic, “The acoustic velocity of Ge-doped silica fibers: a comparison of two models,” Int. J. Appl. Glass Sci.1(3), 330–337 (2010).
[CrossRef]

P. Dragic, “Simplified model for effect of Ge doping on silica fibre acoustic properties,” Electron. Lett.45(5), 256–257 (2009).
[CrossRef]

P. Dragic, “Estimating the effect of Ge doping on the acoustic damping coefficient via a highly Ge-doped MCVD silica fiber,” J. Opt. Soc. Am. B26(8), 1614–1620 (2009).
[CrossRef]

P. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE7197, 719710, 719710-10 (2009).
[CrossRef]

Dubinskii, M.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys.105(5), 053110 (2009).
[CrossRef]

Eskola, P.

P. Eskola, “The silicates of strontium and barium,” Am. J. Sci.4(23), 331–375 (1922).
[CrossRef]

Fan, J.

Foy, P.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics6(9), 629–633 (2012).
[CrossRef]

S. Morris, T. Hawkins, P. Foy, C. McMillen, J. Fan, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “Reactive molten core fabrication of silicon optical fiber,” Opt. Mater. Express1(6), 1141–1149 (2011).
[CrossRef]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys.105(5), 053110 (2009).
[CrossRef]

Fuquan, W.

Z. Shuang and W. Fuquan, “The study on dispersive equation and thermal refractive index coefficient of quartz crystal,” Acta Photon. Sin.35, 1183–1186 (2006).

Ghosh, S.

Greig, J.

J. Greig, “Immiscibility in silicate melts,” Am. J. Sci.13(73), 1–44 (1927).
[CrossRef]

Guignard, M.

M. Guignard and J. W. Zwanziger, “Zero stress-optic barium tellurite glass,” J. Non-Cryst. Solids353(16-17), 1662–1664 (2007).
[CrossRef]

Hawkins, T.

He, Z.

Hensley, E. B.

C. J. Anderson and E. B. Hensley, “Index of refraction of barium oxide,” J. Appl. Phys.46(1), 443 (1975).
[CrossRef]

Horiguchi, T.

Hotate, K.

Huntelaar, M.

M. Huntelaar and E. Cordfunke, “The ternary system BaSiO3-SrSiO3-SiO2,” J. Nucl. Mater.201, 250–253 (1993).
[CrossRef]

Ihara, C.

K. Matusita, C. Ihara, T. Komatsu, and R. Yokota, “Photoelastic effects in phosphate glasses,” J. Am. Ceram. Soc.68(7), 389–391 (1985).
[CrossRef]

K. Matusita, R. Yokota, T. Kimijima, T. Komatsu, and C. Ihara, “Compositional trends in photoelastic constants of borate glasses,” J. Am. Ceram. Soc.67(4), 261–265 (1984).
[CrossRef]

Jen, C. K.

C. K. Jen, “Similarities and differences between fiber acoustics and fiber optics,” Proceedings of the IEEE Ultrasonics Symposium, (IEEE, 1985), pp. 1128 – 1133.

Jen, C.-K.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
[CrossRef]

Kimijima, T.

K. Matusita, R. Yokota, T. Kimijima, T. Komatsu, and C. Ihara, “Compositional trends in photoelastic constants of borate glasses,” J. Am. Ceram. Soc.67(4), 261–265 (1984).
[CrossRef]

Kishi, M.

Kobyakov, A.

Kokuoz, B.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys.105(5), 053110 (2009).
[CrossRef]

Komatsu, T.

K. Matusita, C. Ihara, T. Komatsu, and R. Yokota, “Photoelastic effects in phosphate glasses,” J. Am. Ceram. Soc.68(7), 389–391 (1985).
[CrossRef]

K. Matusita, R. Yokota, T. Kimijima, T. Komatsu, and C. Ihara, “Compositional trends in photoelastic constants of borate glasses,” J. Am. Ceram. Soc.67(4), 261–265 (1984).
[CrossRef]

Kumar, S.

Kushibiki, J.

J. Kushibiki, M. Ohtagawa, and I. Takanaga, “Comparison of acoustic properties between natural and synthetic α-quartz crystals,” J. Appl. Phys.94(1), 295–300 (2003).
[CrossRef]

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
[CrossRef]

Langenhorst, F.

F. Langenhorst and A. Deutsch, “Shock experiments on pre-heated α- and β-quartz: I. Optical and density data,” Earth Planet. Sci. Lett.125(1-4), 407–420 (1994).
[CrossRef]

Law, P.-C.

Liu, Y.-S.

Matthewson, M. J.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys.105(5), 053110 (2009).
[CrossRef]

Matusita, K.

K. Matusita, C. Ihara, T. Komatsu, and R. Yokota, “Photoelastic effects in phosphate glasses,” J. Am. Ceram. Soc.68(7), 389–391 (1985).
[CrossRef]

K. Matusita, R. Yokota, T. Kimijima, T. Komatsu, and C. Ihara, “Compositional trends in photoelastic constants of borate glasses,” J. Am. Ceram. Soc.67(4), 261–265 (1984).
[CrossRef]

McMillen, C.

S. Morris, T. Hawkins, P. Foy, C. McMillen, J. Fan, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “Reactive molten core fabrication of silicon optical fiber,” Opt. Mater. Express1(6), 1141–1149 (2011).
[CrossRef]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys.105(5), 053110 (2009).
[CrossRef]

Mishra, R.

Morris, S.

Murty, V. G. K.

K. V. K. Rao and V. G. K. Murty, “Photoelastic constants of magnesium oxide,” Acta Crystallogr.17(6), 788–789 (1964).
[CrossRef]

Narum, P.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

Neron, C.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
[CrossRef]

Niklès, M.

M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997).
[CrossRef]

Ohtagawa, M.

J. Kushibiki, M. Ohtagawa, and I. Takanaga, “Comparison of acoustic properties between natural and synthetic α-quartz crystals,” J. Appl. Phys.94(1), 295–300 (2003).
[CrossRef]

Park, K.-O.

K.-O. Park and J. M. Sivertsen, “Temperature dependence of the bulk modulus of BaO single crystals,” J. Am. Ceram. Soc.60(11-12), 537–538 (1977).
[CrossRef]

Paul, M. C.

Rao, K. V. K.

K. V. K. Rao and V. G. K. Murty, “Photoelastic constants of magnesium oxide,” Acta Crystallogr.17(6), 788–789 (1964).
[CrossRef]

Rice, R.

Robert, P.

M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997).
[CrossRef]

Ruffin, A. B.

Rzaewski, K.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

Sanamyan, T.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys.105(5), 053110 (2009).
[CrossRef]

Sauer, M.

Seward, T.

T. Seward, D. Uhlmann, and D. Turnbull, “Development of two-phase structure in glasses with special reference to the system BaO-SiO2,” J. Am. Ceram. Soc.51(11), 634–642 (1968).
[CrossRef]

T. Seward, D. Uhlmann, and D. Turnbull, “Phase separation in the system BaO-SiO2,” J. Am. Ceram. Soc.51(5), 278–285 (1968).
[CrossRef]

Shang, A.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
[CrossRef]

Shibata, N.

Shuang, Z.

Z. Shuang and W. Fuquan, “The study on dispersive equation and thermal refractive index coefficient of quartz crystal,” Acta Photon. Sin.35, 1183–1186 (2006).

Simon, A.

Sivertsen, J. M.

K.-O. Park and J. M. Sivertsen, “Temperature dependence of the bulk modulus of BaO single crystals,” J. Am. Ceram. Soc.60(11-12), 537–538 (1977).
[CrossRef]

Snitzer, E.

Stolen, R.

S. Morris, T. Hawkins, P. Foy, C. McMillen, J. Fan, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “Reactive molten core fabrication of silicon optical fiber,” Opt. Mater. Express1(6), 1141–1149 (2011).
[CrossRef]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys.105(5), 053110 (2009).
[CrossRef]

Su, Z.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys.105(5), 053110 (2009).
[CrossRef]

Takanaga, I.

J. Kushibiki, M. Ohtagawa, and I. Takanaga, “Comparison of acoustic properties between natural and synthetic α-quartz crystals,” J. Appl. Phys.94(1), 295–300 (2003).
[CrossRef]

Tateda, M.

Thévenaz, L.

M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997).
[CrossRef]

Tritt, T.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys.105(5), 053110 (2009).
[CrossRef]

Turnbull, D.

T. Seward, D. Uhlmann, and D. Turnbull, “Phase separation in the system BaO-SiO2,” J. Am. Ceram. Soc.51(5), 278–285 (1968).
[CrossRef]

T. Seward, D. Uhlmann, and D. Turnbull, “Development of two-phase structure in glasses with special reference to the system BaO-SiO2,” J. Am. Ceram. Soc.51(11), 634–642 (1968).
[CrossRef]

Uhlmann, D.

T. Seward, D. Uhlmann, and D. Turnbull, “Development of two-phase structure in glasses with special reference to the system BaO-SiO2,” J. Am. Ceram. Soc.51(11), 634–642 (1968).
[CrossRef]

T. Seward, D. Uhlmann, and D. Turnbull, “Phase separation in the system BaO-SiO2,” J. Am. Ceram. Soc.51(5), 278–285 (1968).
[CrossRef]

Ulrich, R.

Ward, B.

P. Dragic and B. Ward, “Accurate modeling of the intrinsic Brillouin linewidth via finite element analysis,” IEEE Photon. Technol. Lett.22(22), 1698–1700 (2010).
[CrossRef]

Yablon, A.

Yokota, R.

K. Matusita, C. Ihara, T. Komatsu, and R. Yokota, “Photoelastic effects in phosphate glasses,” J. Am. Ceram. Soc.68(7), 389–391 (1985).
[CrossRef]

K. Matusita, R. Yokota, T. Kimijima, T. Komatsu, and C. Ihara, “Compositional trends in photoelastic constants of borate glasses,” J. Am. Ceram. Soc.67(4), 261–265 (1984).
[CrossRef]

Zhang, J.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys.105(5), 053110 (2009).
[CrossRef]

Zhu, L.

Zou, W.

Zwanziger, J. W.

M. Guignard and J. W. Zwanziger, “Zero stress-optic barium tellurite glass,” J. Non-Cryst. Solids353(16-17), 1662–1664 (2007).
[CrossRef]

Acta Crystallogr.

K. V. K. Rao and V. G. K. Murty, “Photoelastic constants of magnesium oxide,” Acta Crystallogr.17(6), 788–789 (1964).
[CrossRef]

Acta Photon. Sin.

Z. Shuang and W. Fuquan, “The study on dispersive equation and thermal refractive index coefficient of quartz crystal,” Acta Photon. Sin.35, 1183–1186 (2006).

Am. J. Sci.

P. Eskola, “The silicates of strontium and barium,” Am. J. Sci.4(23), 331–375 (1922).
[CrossRef]

J. Greig, “Immiscibility in silicate melts,” Am. J. Sci.13(73), 1–44 (1927).
[CrossRef]

Appl. Opt.

Earth Planet. Sci. Lett.

F. Langenhorst and A. Deutsch, “Shock experiments on pre-heated α- and β-quartz: I. Optical and density data,” Earth Planet. Sci. Lett.125(1-4), 407–420 (1994).
[CrossRef]

Electron. Lett.

P. Dragic, “Simplified model for effect of Ge doping on silica fibre acoustic properties,” Electron. Lett.45(5), 256–257 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

P. Dragic and B. Ward, “Accurate modeling of the intrinsic Brillouin linewidth via finite element analysis,” IEEE Photon. Technol. Lett.22(22), 1698–1700 (2010).
[CrossRef]

Int. J. Appl. Glass Sci.

P. Dragic, “The acoustic velocity of Ge-doped silica fibers: a comparison of two models,” Int. J. Appl. Glass Sci.1(3), 330–337 (2010).
[CrossRef]

J. Am. Ceram. Soc.

T. Seward, D. Uhlmann, and D. Turnbull, “Phase separation in the system BaO-SiO2,” J. Am. Ceram. Soc.51(5), 278–285 (1968).
[CrossRef]

T. Seward, D. Uhlmann, and D. Turnbull, “Development of two-phase structure in glasses with special reference to the system BaO-SiO2,” J. Am. Ceram. Soc.51(11), 634–642 (1968).
[CrossRef]

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993).
[CrossRef]

K.-O. Park and J. M. Sivertsen, “Temperature dependence of the bulk modulus of BaO single crystals,” J. Am. Ceram. Soc.60(11-12), 537–538 (1977).
[CrossRef]

K. Matusita, R. Yokota, T. Kimijima, T. Komatsu, and C. Ihara, “Compositional trends in photoelastic constants of borate glasses,” J. Am. Ceram. Soc.67(4), 261–265 (1984).
[CrossRef]

K. Matusita, C. Ihara, T. Komatsu, and R. Yokota, “Photoelastic effects in phosphate glasses,” J. Am. Ceram. Soc.68(7), 389–391 (1985).
[CrossRef]

J. Appl. Phys.

J. Kushibiki, M. Ohtagawa, and I. Takanaga, “Comparison of acoustic properties between natural and synthetic α-quartz crystals,” J. Appl. Phys.94(1), 295–300 (2003).
[CrossRef]

C. J. Anderson and E. B. Hensley, “Index of refraction of barium oxide,” J. Appl. Phys.46(1), 443 (1975).
[CrossRef]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys.105(5), 053110 (2009).
[CrossRef]

J. Lightwave Technol.

A. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol.28(4), 360–364 (2010).
[CrossRef]

A. Bertholds and R. Dändliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol.6(1), 17–20 (1988).
[CrossRef]

P. Dragic, “Brillouin gain reduction via B2O3 doping,” J. Lightwave Technol.29(7), 967–973 (2011).
[CrossRef]

M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997).
[CrossRef]

J. Non-Cryst. Solids

M. Guignard and J. W. Zwanziger, “Zero stress-optic barium tellurite glass,” J. Non-Cryst. Solids353(16-17), 1662–1664 (2007).
[CrossRef]

J. Nucl. Mater.

M. Huntelaar and E. Cordfunke, “The ternary system BaSiO3-SrSiO3-SiO2,” J. Nucl. Mater.201, 250–253 (1993).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Photonics

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics6(9), 629–633 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater. Express

Phys. Rev. A

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

Proc. SPIE

P. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE7197, 719710, 719710-10 (2009).
[CrossRef]

Other

C. K. Jen, “Similarities and differences between fiber acoustics and fiber optics,” Proceedings of the IEEE Ultrasonics Symposium, (IEEE, 1985), pp. 1128 – 1133.

P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” CLEO/QELS Technical Digest, pp. 1984–1986, (2005), paper CThZ3.

M.-J. Li, X. Chen, J. Wang, A. B. Ruffin, D. T. Walton, S. Li, D. A. Nolan, S. Gray, and L. A. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” Optical Fiber Communication Conference, (Optical Society of America, 2006), paper OTuA4.
[CrossRef]

H.-R. Wang, “Graded-index (GRIN) lenses by slurry-based three-dimensional printing (S-3DPTM),” PhD Dissertation, Massachusetts Institute of Technology (2005).

G. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Springer Materials, “The Landolt-Börnstein Database,” http://www.springermaterials.com/docs/pdfs/10681719_257.pdf

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Refractive index profile, RIP, measured at a wavelength of 1000 nm, (open circles; right ordinate) and BaO content measured using energy dispersive x-ray spectroscopy, EDX (solid squares; left ordinate) measurements on Fiber C.

Fig. 2
Fig. 2

Attenuation spectrum for Fiber C. The spectrum was typical of all the baria-doped fibers. An unobscured OH peak is found near 1390 nm but the peaks near 950 nm and 1250 nm are mostly hidden under the broad impurity absorption.

Fig. 3
Fig. 3

Normalized Brillouin gain spectra measured at room temperature and zero-strain for the three BaO-doped fibers of the present study. Features to the blue of the main peaks are due to HOAMs and those to the red of the main peaks are due to HOMs.

Fig. 4
Fig. 4

Example of a splice of Fiber C (left-side fiber) and SMF-28TM (right-side fiber). The splice duration was kept short (~2 s) due to the high diffusivity of bariosilicate glasses. The taper that forms during splicing seems to act as an effective mode converter. The diameter of the SMF-28 cladding is 125 μm.

Fig. 5
Fig. 5

Evolution of the BaO-doped fiber core with increasing splice time, listed in green. The BaO-doped fiber is once again on the left-hand side.

Fig. 6
Fig. 6

Brillouin gain spectra for Fiber C measured at room temperature and at 80°C. The spectrum has blue-shifted and become somewhat narrower with heating.

Fig. 7
Fig. 7

Measured change in FSR for Fiber A as a function of strain. Ten individual sets of data were acquired and averaged to obtain this graph. A fit to the data is also shown (dashed line).

Fig. 8
Fig. 8

(a) Refractive index difference versus baria content at fiber center (points) plotted with the additive model (solid line) and (b) Acoustic velocity versus baria content at fiber center (points) plotted with the additive model (solid line).

Fig. 9
Fig. 9

(a) Modeled thermal coefficient of the binary bariosilicate system (solid line) plotted with the data of the present study (points). (b) Analogous plot for strain.

Fig. 10
Fig. 10

(a) Modeled refractive index of the binary barioborate system (solid line) plotted with the data from [39] (points). (b) Analogous plot for photoelastic coefficient, p44.

Fig. 11
Fig. 11

Calculated Brillouin gain coefficient (BGC) relative to a typical SMF versus BaO concentration for the binary bariosilicate glasses. The open circles represent the locations, and computed BGC for the compositions treated in this work. A zero-p12 composition is calculated to be at a BaO concentration of about 33.5 mole %.

Fig. 12
Fig. 12

Relative Brillouin gain spectrum of a 0.33 m segment of BaO-derived fiber (Fiber C) spliced to 3.2 m of SMF-28TM.

Tables (3)

Tables Icon

Table 1 Summary of fiber characteristics. Fibers are listed in order of increasing baria content.

Tables Icon

Table 2 Summary of the deduced baria characteristics for each fiber.

Tables Icon

Table 3 Comparison of selected crystal- and glass-phase silica and baria bulk parameters.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

dν d(T,ε) = 2 λ o ( V dn d(T,ε) +n dV d(T,ε) ),
Δ ν ESA M =MΔFSR=M c ( nl+NL ) 2 ( n( l 0 ,ξ l 0 )+lQ )(ε,ΔT),
Δ ν B = 0 Δ ν B ( r )u( r ) u * ( r )rdr
n=m n B +(1m) n S
V= ( m V B + ( 1m ) V S ) 1
m= ρ S M S M B ρ B [ BaO ] 1+[ BaO ]( ρ S M S M B ρ B 1 )
g B = 2π n 7 p 12 2 c λ o 2 ρVΔν
p 44, eff = 1 n 0 3 ( n BaO 3 m( p 44, A l 2 O 3 )+ n Si O 2 3 ( 1m )( p 44 ,Si O 2 ) ),
R B =Y e G'/2 [ I 0 ( G' 2 ) I 1 ( G' 2 ) ],
Y=( n ¯ +1 ) g B h ν S Γ L 4A ,
G'= g B P A L,
n ¯ = ( exp( h ν B kT )1 ) 1 ,

Metrics