Abstract

We propose integrated photonic wavelength multiplexers based on serially cascaded channel add-drop filters with an asymmetric frequency response. By utilizing the through-port rejection of the previous channel to advantage, the asymmetric response provides optimal rejection of the adjacent channels at each wavelength channel. We show theoretically the basic requirements to realize an asymmetric filter response, and propose and evaluate the possible implementations using coupled resonators. For one implementation, we provide detailed design formulas based on a coupled-mode theory model, and more generally we provide broad guidelines that enumerate all structures that can provide asymmetric passbands in the context of a pole-zero design approach to engineering the device response. Using second-order microring resonator filter stages as an example, we show that the asymmetric multiplexer can provide 2.4 times higher channel packing (bandwidth) density than a multiplexer using the same order stages (number of resonators) using conventional all-pole maximally-flat designs. We also address the sensitivities and constraints of various implementations of our proposed approach, as it affects their applicability to CMOS photonic interconnects.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low-energy all-CMOS modulator integrated with driver,” Opt. Express18, 3059–3070 (2010).
    [CrossRef] [PubMed]
  2. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express19, 20435–20443 (2011).
    [CrossRef] [PubMed]
  3. J. C. Rosenberg, W. M. J. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Opt. Express20, 26411–26423 (2012).
    [CrossRef] [PubMed]
  4. N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express19, 17758–17765 (2011).
    [CrossRef] [PubMed]
  5. J. S. Orcutt, A. Khilo, C. W. Holzwarth, M. A. Popović, H. Li, J. Sun, T. Bonifield, R. Hollingsworth, F. X. Kärtner, H. I. Smith, V. Stojanović, and R. J. Ram, “Nanophotonic integration in state-of-the-art CMOS foundries,” Opt. Express19, 2335–2346 (2011).
    [CrossRef] [PubMed]
  6. J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen, H. Li, J. Sun, M. Weaver, S. Urošević, M. Popović, R. J. Ram, and V. Stojanović, “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express20, 12222–12232 (2012).
    [CrossRef] [PubMed]
  7. B. Moss, C. Sun, M. Georgas, J. Shainline, J. Orcutt, J. Leu, M. Wade, H. Li, R. Ram, M. Popovic, and V. Stojanovic, “A 1.23 pJ/bit 2.5Gb/s monolithically-integrated optical carrier-injection ring modulator and all-digital driver circuit in commercial 45nm SOI,” in International Solid-State Circuits Conference (2013), pp. 126–127.
  8. S. Beamer, K. Asanović, C. Batten, A. Joshi, and V. Stojanović, “Designing multi-socket systems using silicon photonics,” in Proceedings of the 23rd International Conference on Supercomputing (ACM, New York, NY, USA, 2009), ICS ’09, pp. 521–522.
    [CrossRef]
  9. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proceedings of the IEEE97, 1166–1185 (2009).
    [CrossRef]
  10. C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” Micro, IEEE29, 8–21 (2009).
    [CrossRef]
  11. A. Prabhu and V. Van, “Realization of asymmetric optical filters using asynhcronous coupled-microring resonators,” Opt. Express15, 9645–9658 (2007).
    [CrossRef] [PubMed]
  12. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley-Interscience, 1999).
    [CrossRef]
  13. M. Popovic, “Theory and design of high-index-contrast microphotonic circuits,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (2007).
  14. M. Popovic, “Sharply-defined optical filters and dispersionless delay lines based on loop-coupled resonators and ‘negative’ coupling,” in IEEE Conference on Lasers and Electro-Optics (2007), pp. 1–2. Paper CthP6.
  15. R. Kurzrok, “General three-resonator filters in waveguide,” IEEE Trans. Microwave Theory Tech.14, 46–47 (1966).
    [CrossRef]
  16. H. Haus and W. Huang, “Coupled-mode theory,” Proceedings of the IEEE79, 1505–1518 (1991).
    [CrossRef]
  17. R. Collin, Foundations for Microwave Engineering, IEEE Press Series on Electromagnetic Wave Theory (John Wiley & Sons, 2001).
    [CrossRef]
  18. B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Technol.15, 998–1005 (1997).
    [CrossRef]
  19. H. A. Haus, Waves and Fields in Optoelectronics, Solid state physical electronics series (Prentice-Hall, 1984).
  20. A. Melloni and M. Martinelli, “Synthesis of direct-coupled-resonators bandpass filters for WDM systems,” IEEE J. Lightwave Technol.20, 296 (2002).
    [CrossRef]
  21. R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett.7, 1447–1449 (1995).
    [CrossRef]
  22. W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron.40, 1511–1518 (2004).
    [CrossRef]
  23. B. Little, S. Chu, J. Hryniewicz, and P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett.25, 344–346 (2000).
    [CrossRef]
  24. S. Chu, B. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett.11, 691–693 (1999).
    [CrossRef]
  25. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96, 123901 (2006).
    [CrossRef] [PubMed]
  26. N. Sherwood-Droz, H. Wang, L. Chen, B. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4×4 hitless silicon router for optical networks-on-chip (NoC),” Opt. Express16, 15915–15922 (2008).
    [CrossRef] [PubMed]
  27. S. Emelett and R. Soref, “Synthesis of dual-microring-resonator cross-connect filters,” Opt. Express13, 4439–4456 (2005).
    [CrossRef] [PubMed]

2012 (2)

2011 (3)

2010 (1)

2009 (2)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proceedings of the IEEE97, 1166–1185 (2009).
[CrossRef]

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” Micro, IEEE29, 8–21 (2009).
[CrossRef]

2008 (1)

2007 (1)

2006 (1)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96, 123901 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron.40, 1511–1518 (2004).
[CrossRef]

2002 (1)

A. Melloni and M. Martinelli, “Synthesis of direct-coupled-resonators bandpass filters for WDM systems,” IEEE J. Lightwave Technol.20, 296 (2002).
[CrossRef]

2000 (1)

1999 (1)

S. Chu, B. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett.11, 691–693 (1999).
[CrossRef]

1997 (1)

B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Technol.15, 998–1005 (1997).
[CrossRef]

1995 (1)

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett.7, 1447–1449 (1995).
[CrossRef]

1991 (1)

H. Haus and W. Huang, “Coupled-mode theory,” Proceedings of the IEEE79, 1505–1518 (1991).
[CrossRef]

1966 (1)

R. Kurzrok, “General three-resonator filters in waveguide,” IEEE Trans. Microwave Theory Tech.14, 46–47 (1966).
[CrossRef]

Absil, P.

Amberg, P.

Asanovic, K.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” Micro, IEEE29, 8–21 (2009).
[CrossRef]

S. Beamer, K. Asanović, C. Batten, A. Joshi, and V. Stojanović, “Designing multi-socket systems using silicon photonics,” in Proceedings of the 23rd International Conference on Supercomputing (ACM, New York, NY, USA, 2009), ICS ’09, pp. 521–522.
[CrossRef]

Assefa, S.

Barwicz, T.

Batten, C.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” Micro, IEEE29, 8–21 (2009).
[CrossRef]

S. Beamer, K. Asanović, C. Batten, A. Joshi, and V. Stojanović, “Designing multi-socket systems using silicon photonics,” in Proceedings of the 23rd International Conference on Supercomputing (ACM, New York, NY, USA, 2009), ICS ’09, pp. 521–522.
[CrossRef]

Beamer, S.

S. Beamer, K. Asanović, C. Batten, A. Joshi, and V. Stojanović, “Designing multi-socket systems using silicon photonics,” in Proceedings of the 23rd International Conference on Supercomputing (ACM, New York, NY, USA, 2009), ICS ’09, pp. 521–522.
[CrossRef]

Bergman, K.

Biberman, A.

Bonifield, T.

Chen, L.

Chu, S.

B. Little, S. Chu, J. Hryniewicz, and P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett.25, 344–346 (2000).
[CrossRef]

S. Chu, B. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett.11, 691–693 (1999).
[CrossRef]

B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Technol.15, 998–1005 (1997).
[CrossRef]

Collin, R.

R. Collin, Foundations for Microwave Engineering, IEEE Press Series on Electromagnetic Wave Theory (John Wiley & Sons, 2001).
[CrossRef]

Cunningham, J. E.

Emelett, S.

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96, 123901 (2006).
[CrossRef] [PubMed]

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron.40, 1511–1518 (2004).
[CrossRef]

Foresi, J.

B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Technol.15, 998–1005 (1997).
[CrossRef]

Georgas, M.

J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen, H. Li, J. Sun, M. Weaver, S. Urošević, M. Popović, R. J. Ram, and V. Stojanović, “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express20, 12222–12232 (2012).
[CrossRef] [PubMed]

B. Moss, C. Sun, M. Georgas, J. Shainline, J. Orcutt, J. Leu, M. Wade, H. Li, R. Ram, M. Popovic, and V. Stojanovic, “A 1.23 pJ/bit 2.5Gb/s monolithically-integrated optical carrier-injection ring modulator and all-digital driver circuit in commercial 45nm SOI,” in International Solid-State Circuits Conference (2013), pp. 126–127.

Gill, D. M.

Green, W. M. J.

Haus, H.

B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Technol.15, 998–1005 (1997).
[CrossRef]

H. Haus and W. Huang, “Coupled-mode theory,” Proceedings of the IEEE79, 1505–1518 (1991).
[CrossRef]

Haus, H. A.

H. A. Haus, Waves and Fields in Optoelectronics, Solid state physical electronics series (Prentice-Hall, 1984).

Ho, R.

Hollingsworth, R.

Holzwarth, C.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” Micro, IEEE29, 8–21 (2009).
[CrossRef]

Holzwarth, C. W.

Hoyt, J.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” Micro, IEEE29, 8–21 (2009).
[CrossRef]

Hryniewicz, J.

Huang, W.

H. Haus and W. Huang, “Coupled-mode theory,” Proceedings of the IEEE79, 1505–1518 (1991).
[CrossRef]

Joshi, A.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” Micro, IEEE29, 8–21 (2009).
[CrossRef]

S. Beamer, K. Asanović, C. Batten, A. Joshi, and V. Stojanović, “Designing multi-socket systems using silicon photonics,” in Proceedings of the 23rd International Conference on Supercomputing (ACM, New York, NY, USA, 2009), ICS ’09, pp. 521–522.
[CrossRef]

Kaneko, T.

S. Chu, B. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett.11, 691–693 (1999).
[CrossRef]

Kartner, F.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” Micro, IEEE29, 8–21 (2009).
[CrossRef]

Kärtner, F. X.

Khilo, A.

J. S. Orcutt, A. Khilo, C. W. Holzwarth, M. A. Popović, H. Li, J. Sun, T. Bonifield, R. Hollingsworth, F. X. Kärtner, H. I. Smith, V. Stojanović, and R. J. Ram, “Nanophotonic integration in state-of-the-art CMOS foundries,” Opt. Express19, 2335–2346 (2011).
[CrossRef] [PubMed]

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” Micro, IEEE29, 8–21 (2009).
[CrossRef]

Kokubun, Y.

S. Chu, B. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett.11, 691–693 (1999).
[CrossRef]

Krishnamoorthy, A. V.

Kurzrok, R.

R. Kurzrok, “General three-resonator filters in waveguide,” IEEE Trans. Microwave Theory Tech.14, 46–47 (1966).
[CrossRef]

Laine, J.-P.

B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Technol.15, 998–1005 (1997).
[CrossRef]

Lee, B.

Leu, J.

J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen, H. Li, J. Sun, M. Weaver, S. Urošević, M. Popović, R. J. Ram, and V. Stojanović, “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express20, 12222–12232 (2012).
[CrossRef] [PubMed]

B. Moss, C. Sun, M. Georgas, J. Shainline, J. Orcutt, J. Leu, M. Wade, H. Li, R. Ram, M. Popovic, and V. Stojanovic, “A 1.23 pJ/bit 2.5Gb/s monolithically-integrated optical carrier-injection ring modulator and all-digital driver circuit in commercial 45nm SOI,” in International Solid-State Circuits Conference (2013), pp. 126–127.

Lexau, J.

Li, G.

Li, H.

J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen, H. Li, J. Sun, M. Weaver, S. Urošević, M. Popović, R. J. Ram, and V. Stojanović, “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express20, 12222–12232 (2012).
[CrossRef] [PubMed]

J. S. Orcutt, A. Khilo, C. W. Holzwarth, M. A. Popović, H. Li, J. Sun, T. Bonifield, R. Hollingsworth, F. X. Kärtner, H. I. Smith, V. Stojanović, and R. J. Ram, “Nanophotonic integration in state-of-the-art CMOS foundries,” Opt. Express19, 2335–2346 (2011).
[CrossRef] [PubMed]

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” Micro, IEEE29, 8–21 (2009).
[CrossRef]

B. Moss, C. Sun, M. Georgas, J. Shainline, J. Orcutt, J. Leu, M. Wade, H. Li, R. Ram, M. Popovic, and V. Stojanovic, “A 1.23 pJ/bit 2.5Gb/s monolithically-integrated optical carrier-injection ring modulator and all-digital driver circuit in commercial 45nm SOI,” in International Solid-State Circuits Conference (2013), pp. 126–127.

Lipson, M.

Little, B.

B. Little, S. Chu, J. Hryniewicz, and P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett.25, 344–346 (2000).
[CrossRef]

S. Chu, B. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett.11, 691–693 (1999).
[CrossRef]

B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Technol.15, 998–1005 (1997).
[CrossRef]

Luo, Y.

Madsen, C. K.

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley-Interscience, 1999).
[CrossRef]

Martinelli, M.

A. Melloni and M. Martinelli, “Synthesis of direct-coupled-resonators bandpass filters for WDM systems,” IEEE J. Lightwave Technol.20, 296 (2002).
[CrossRef]

Mekis, A.

Melloni, A.

A. Melloni and M. Martinelli, “Synthesis of direct-coupled-resonators bandpass filters for WDM systems,” IEEE J. Lightwave Technol.20, 296 (2002).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proceedings of the IEEE97, 1166–1185 (2009).
[CrossRef]

Moss, B.

J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen, H. Li, J. Sun, M. Weaver, S. Urošević, M. Popović, R. J. Ram, and V. Stojanović, “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express20, 12222–12232 (2012).
[CrossRef] [PubMed]

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” Micro, IEEE29, 8–21 (2009).
[CrossRef]

B. Moss, C. Sun, M. Georgas, J. Shainline, J. Orcutt, J. Leu, M. Wade, H. Li, R. Ram, M. Popovic, and V. Stojanovic, “A 1.23 pJ/bit 2.5Gb/s monolithically-integrated optical carrier-injection ring modulator and all-digital driver circuit in commercial 45nm SOI,” in International Solid-State Circuits Conference (2013), pp. 126–127.

Orcutt, J.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” Micro, IEEE29, 8–21 (2009).
[CrossRef]

B. Moss, C. Sun, M. Georgas, J. Shainline, J. Orcutt, J. Leu, M. Wade, H. Li, R. Ram, M. Popovic, and V. Stojanovic, “A 1.23 pJ/bit 2.5Gb/s monolithically-integrated optical carrier-injection ring modulator and all-digital driver circuit in commercial 45nm SOI,” in International Solid-State Circuits Conference (2013), pp. 126–127.

Orcutt, J. S.

Orta, R.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett.7, 1447–1449 (1995).
[CrossRef]

Pan, W.

S. Chu, B. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett.11, 691–693 (1999).
[CrossRef]

Pinckney, N.

Pinguet, T.

Popovic, M.

J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen, H. Li, J. Sun, M. Weaver, S. Urošević, M. Popović, R. J. Ram, and V. Stojanović, “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express20, 12222–12232 (2012).
[CrossRef] [PubMed]

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” Micro, IEEE29, 8–21 (2009).
[CrossRef]

M. Popovic, “Sharply-defined optical filters and dispersionless delay lines based on loop-coupled resonators and ‘negative’ coupling,” in IEEE Conference on Lasers and Electro-Optics (2007), pp. 1–2. Paper CthP6.

M. Popovic, “Theory and design of high-index-contrast microphotonic circuits,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (2007).

B. Moss, C. Sun, M. Georgas, J. Shainline, J. Orcutt, J. Leu, M. Wade, H. Li, R. Ram, M. Popovic, and V. Stojanovic, “A 1.23 pJ/bit 2.5Gb/s monolithically-integrated optical carrier-injection ring modulator and all-digital driver circuit in commercial 45nm SOI,” in International Solid-State Circuits Conference (2013), pp. 126–127.

Popovic, M. A.

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96, 123901 (2006).
[CrossRef] [PubMed]

Prabhu, A.

Raj, K.

Ram, R.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” Micro, IEEE29, 8–21 (2009).
[CrossRef]

B. Moss, C. Sun, M. Georgas, J. Shainline, J. Orcutt, J. Leu, M. Wade, H. Li, R. Ram, M. Popovic, and V. Stojanovic, “A 1.23 pJ/bit 2.5Gb/s monolithically-integrated optical carrier-injection ring modulator and all-digital driver circuit in commercial 45nm SOI,” in International Solid-State Circuits Conference (2013), pp. 126–127.

Ram, R. J.

Rosenberg, J. C.

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96, 123901 (2006).
[CrossRef] [PubMed]

Sato, S.

S. Chu, B. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett.11, 691–693 (1999).
[CrossRef]

Savi, P.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett.7, 1447–1449 (1995).
[CrossRef]

Shainline, J.

J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen, H. Li, J. Sun, M. Weaver, S. Urošević, M. Popović, R. J. Ram, and V. Stojanović, “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express20, 12222–12232 (2012).
[CrossRef] [PubMed]

B. Moss, C. Sun, M. Georgas, J. Shainline, J. Orcutt, J. Leu, M. Wade, H. Li, R. Ram, M. Popovic, and V. Stojanovic, “A 1.23 pJ/bit 2.5Gb/s monolithically-integrated optical carrier-injection ring modulator and all-digital driver circuit in commercial 45nm SOI,” in International Solid-State Circuits Conference (2013), pp. 126–127.

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96, 123901 (2006).
[CrossRef] [PubMed]

Shank, S. M.

Sherwood-Droz, N.

Shi, J.

Shubin, I.

Smith, H.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” Micro, IEEE29, 8–21 (2009).
[CrossRef]

Smith, H. I.

Soref, R.

Stojanovic, V.

J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen, H. Li, J. Sun, M. Weaver, S. Urošević, M. Popović, R. J. Ram, and V. Stojanović, “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express20, 12222–12232 (2012).
[CrossRef] [PubMed]

J. S. Orcutt, A. Khilo, C. W. Holzwarth, M. A. Popović, H. Li, J. Sun, T. Bonifield, R. Hollingsworth, F. X. Kärtner, H. I. Smith, V. Stojanović, and R. J. Ram, “Nanophotonic integration in state-of-the-art CMOS foundries,” Opt. Express19, 2335–2346 (2011).
[CrossRef] [PubMed]

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” Micro, IEEE29, 8–21 (2009).
[CrossRef]

S. Beamer, K. Asanović, C. Batten, A. Joshi, and V. Stojanović, “Designing multi-socket systems using silicon photonics,” in Proceedings of the 23rd International Conference on Supercomputing (ACM, New York, NY, USA, 2009), ICS ’09, pp. 521–522.
[CrossRef]

B. Moss, C. Sun, M. Georgas, J. Shainline, J. Orcutt, J. Leu, M. Wade, H. Li, R. Ram, M. Popovic, and V. Stojanovic, “A 1.23 pJ/bit 2.5Gb/s monolithically-integrated optical carrier-injection ring modulator and all-digital driver circuit in commercial 45nm SOI,” in International Solid-State Circuits Conference (2013), pp. 126–127.

Suh, W.

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron.40, 1511–1518 (2004).
[CrossRef]

Sun, C.

J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen, H. Li, J. Sun, M. Weaver, S. Urošević, M. Popović, R. J. Ram, and V. Stojanović, “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express20, 12222–12232 (2012).
[CrossRef] [PubMed]

B. Moss, C. Sun, M. Georgas, J. Shainline, J. Orcutt, J. Leu, M. Wade, H. Li, R. Ram, M. Popovic, and V. Stojanovic, “A 1.23 pJ/bit 2.5Gb/s monolithically-integrated optical carrier-injection ring modulator and all-digital driver circuit in commercial 45nm SOI,” in International Solid-State Circuits Conference (2013), pp. 126–127.

Sun, J.

Tascone, R.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett.7, 1447–1449 (1995).
[CrossRef]

Thacker, H.

Trinchero, D.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett.7, 1447–1449 (1995).
[CrossRef]

Uroševic, S.

Van, V.

Vlasov, Y. A.

Wade, M.

B. Moss, C. Sun, M. Georgas, J. Shainline, J. Orcutt, J. Leu, M. Wade, H. Li, R. Ram, M. Popovic, and V. Stojanovic, “A 1.23 pJ/bit 2.5Gb/s monolithically-integrated optical carrier-injection ring modulator and all-digital driver circuit in commercial 45nm SOI,” in International Solid-State Circuits Conference (2013), pp. 126–127.

Wang, H.

Wang, Z.

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron.40, 1511–1518 (2004).
[CrossRef]

Weaver, M.

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96, 123901 (2006).
[CrossRef] [PubMed]

Yang, M.

Yao, J.

Zgraggen, E.

Zhao, J. H.

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley-Interscience, 1999).
[CrossRef]

Zheng, X.

IEEE J. Lightwave Technol. (2)

B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Technol.15, 998–1005 (1997).
[CrossRef]

A. Melloni and M. Martinelli, “Synthesis of direct-coupled-resonators bandpass filters for WDM systems,” IEEE J. Lightwave Technol.20, 296 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron.40, 1511–1518 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett.7, 1447–1449 (1995).
[CrossRef]

S. Chu, B. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett.11, 691–693 (1999).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

R. Kurzrok, “General three-resonator filters in waveguide,” IEEE Trans. Microwave Theory Tech.14, 46–47 (1966).
[CrossRef]

Micro, IEEE (1)

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” Micro, IEEE29, 8–21 (2009).
[CrossRef]

Opt. Express (9)

A. Prabhu and V. Van, “Realization of asymmetric optical filters using asynhcronous coupled-microring resonators,” Opt. Express15, 9645–9658 (2007).
[CrossRef] [PubMed]

X. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low-energy all-CMOS modulator integrated with driver,” Opt. Express18, 3059–3070 (2010).
[CrossRef] [PubMed]

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express19, 20435–20443 (2011).
[CrossRef] [PubMed]

J. C. Rosenberg, W. M. J. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Opt. Express20, 26411–26423 (2012).
[CrossRef] [PubMed]

N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express19, 17758–17765 (2011).
[CrossRef] [PubMed]

J. S. Orcutt, A. Khilo, C. W. Holzwarth, M. A. Popović, H. Li, J. Sun, T. Bonifield, R. Hollingsworth, F. X. Kärtner, H. I. Smith, V. Stojanović, and R. J. Ram, “Nanophotonic integration in state-of-the-art CMOS foundries,” Opt. Express19, 2335–2346 (2011).
[CrossRef] [PubMed]

J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen, H. Li, J. Sun, M. Weaver, S. Urošević, M. Popović, R. J. Ram, and V. Stojanović, “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express20, 12222–12232 (2012).
[CrossRef] [PubMed]

N. Sherwood-Droz, H. Wang, L. Chen, B. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4×4 hitless silicon router for optical networks-on-chip (NoC),” Opt. Express16, 15915–15922 (2008).
[CrossRef] [PubMed]

S. Emelett and R. Soref, “Synthesis of dual-microring-resonator cross-connect filters,” Opt. Express13, 4439–4456 (2005).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96, 123901 (2006).
[CrossRef] [PubMed]

Proceedings of the IEEE (2)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proceedings of the IEEE97, 1166–1185 (2009).
[CrossRef]

H. Haus and W. Huang, “Coupled-mode theory,” Proceedings of the IEEE79, 1505–1518 (1991).
[CrossRef]

Other (7)

R. Collin, Foundations for Microwave Engineering, IEEE Press Series on Electromagnetic Wave Theory (John Wiley & Sons, 2001).
[CrossRef]

H. A. Haus, Waves and Fields in Optoelectronics, Solid state physical electronics series (Prentice-Hall, 1984).

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley-Interscience, 1999).
[CrossRef]

M. Popovic, “Theory and design of high-index-contrast microphotonic circuits,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (2007).

M. Popovic, “Sharply-defined optical filters and dispersionless delay lines based on loop-coupled resonators and ‘negative’ coupling,” in IEEE Conference on Lasers and Electro-Optics (2007), pp. 1–2. Paper CthP6.

B. Moss, C. Sun, M. Georgas, J. Shainline, J. Orcutt, J. Leu, M. Wade, H. Li, R. Ram, M. Popovic, and V. Stojanovic, “A 1.23 pJ/bit 2.5Gb/s monolithically-integrated optical carrier-injection ring modulator and all-digital driver circuit in commercial 45nm SOI,” in International Solid-State Circuits Conference (2013), pp. 126–127.

S. Beamer, K. Asanović, C. Batten, A. Joshi, and V. Stojanović, “Designing multi-socket systems using silicon photonics,” in Proceedings of the 23rd International Conference on Supercomputing (ACM, New York, NY, USA, 2009), ICS ’09, pp. 521–522.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Resonant systems capable of a 2-pole, 1-zero response: (a) abstract representation of a 2-pole, 1-zero photonic circuit; (b) a physical implementation that uses a weak tap coupler to give rise to interference that produces the transmission zero.

Fig. 2
Fig. 2

Higher-order filters with a drop-port transmission zero: (a) a device architecture that can produce one drop-port zero in arbitrarily high order filters; (b) example response of a 2nd-order filter using Eqs. 6,7 and a zero placed at δωzd = 10ri.

Fig. 3
Fig. 3

Abstract photonic circuit used to derive the T-matrix of the tapped-filter: (a) schematic of a 2-ring filter with 3 input and 3 output ports; (b) graphical representation of the drop-port zero location in the complex-δω plane.

Fig. 4
Fig. 4

Comparison of a pole-zero filter with an asymmetric response, and an all-pole Butterworth filter. In the pole-zero filter, the zero is placed at δω/ri = 2.3.

Fig. 5
Fig. 5

Constructing a serial demultiplexer with symmetrized, densely packed passbands by using asymmetric response filters: (a) illustration of a two-channel demultiplexer; (b) Channel 1 drop port response, |T31|2; (c) Channel 1 through port response, |T21|2; (d) Channel 2 drop port response, |T61|2, showing a highly selective response due to the transmission zero on the right, and through-port extinction of the previous stage on the left.

Fig. 6
Fig. 6

Design example demonstrating higher bandwidth density and denser channel packing in a serial demultiplexer based on asymmetric second-order filter stages: (a) example demultiplexer design using pole-zero filters shows 20 GHz passbands with 44 GHz channel spacing; (b) example design using conventional, all-pole Butterworth filters (same pass-band shape and bandwidth) is limited to 106 GHz channel spacing.

Fig. 7
Fig. 7

Proposed device topologies that support a 2-pole, 1-zero drop-port response: (a) general, abstract design with all possible (non-trivial) degrees of freedom; (b) tap-coupler implementation (analyzed in detail in this paper), (c) phased parallel-coupled-ring implementation, (d) 2-poles, 1-zero with minimal degrees of freedom. (b–d) are limiting cases of the general geometry in (a).

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

d d t a 1 = ( j ω 1 r 1 ) a 1 j μ 12 a 2 j 2 r i s i d d t a 2 = j ω 2 a 2 j μ 21 a 1 j μ 23 a 3 d d t a N = ( j ω N r d ) a N j μ ( N ) ( N 1 ) a N 1 j 2 r d s d
d d t a 1 = j ( ω 1 + j r 1 ) a 1 j 2 r i s i d d t a 2 = j ω 2 a 2 j μ 21 a 1 d d t a N 1 = j ω N 1 a N 1 j μ ( N 1 ) ( N 2 ) a N 2 r t a N 1 d d t a N = j ( ω N 1 + j r d ) a N j μ ( N ) ( N 1 ) a N 1 j 2 r d s d e j ϕ
s d = j 2 r t a N 1 .
s d = s d e j ϕ j 2 r d a N .
s d s i = μ N 2 j δ ω N 1 + r t ( k = 1 N 3 μ k j δ ω k + 1 ) j 2 r i j δ ω 1 + r i ( 2 r d ( j μ N 1 + 2 r d r t e j ϕ ) j δ ω N + r d 2 r t e j ϕ ) .
cos ϕ = δ ω zd δ ω z d 2 + r d 2
r t = r d μ N 1 2 r d 2 + δ ω z d 2 .
d d t a = j H ¯ ¯ a j M ¯ ¯ i s +
s = j M ¯ ¯ o a I ¯ ¯ s +
H ¯ ¯ = [ ω 1 + j ( r i + r t ) μ μ ω 2 + j r d ] M ¯ ¯ i = [ 2 r i e j ϕ 1 0 2 r t e j ϕ 3 0 2 r d e j ϕ 2 0 ] M ¯ ¯ o = [ 2 r i e j ϕ 1 0 0 2 r d e j ϕ 2 2 r t e j ϕ 3 0 ] a = [ a 1 a 2 ] s + = [ s i s a s a ] s = [ s t s d s d ] .
T ¯ ¯ 3 × 3 = I ¯ ¯ + j M ¯ ¯ o ( δ ω I ¯ ¯ H ¯ ¯ ) 1 M ¯ ¯ i .
T ¯ ¯ = P ¯ ¯ ( I ¯ ¯ T ¯ ¯ 3 × 3 B ¯ ¯ ) 1 T ¯ ¯ 3 × 3 A ¯ ¯
P ¯ ¯ = [ 1 0 0 0 1 0 ] , B ¯ ¯ = [ 0 0 0 0 0 e j ϕ 0 0 0 ] , A ¯ ¯ = [ 1 0 0 0 0 1 ]
[ s t s d ] = [ T 11 T 12 T 21 T 22 ] [ s i s a ] .
T 11 ( δ ω ) = j 2 r d r t μ + e j ϕ [ ( j r t j r i δ ω + δ ω ) ( j r d + δ ω + δ ω ) + μ 2 ] j 2 r d r t μ + e j ϕ [ ( r t + r i + j δ ω j δ ω ) ( r d + j δ ω + j δ ω ) + μ 2 ]
T 21 ( δ ω ) = 2 r i [ r t ( r d j δ ω j δ ω ) + j e j ϕ r d μ ] j 2 r d r t μ + e j ϕ [ ( r t + r i + j δ ω j δ ω ) ( r d + j δ ω + j δ ω ) + μ 2 ]
δ ω z , thru = 1 2 [ j ( r d r i + r t ) ± j 8 e j ϕ r d r t μ ( r d + r i r t + j 2 δ ω ) 2 4 μ 2 ]
r d r i + r t = 0
Im { j 8 e j ϕ r d r t μ ( r d + r i r t + j 2 δ ω ) 2 4 μ 2 } = 0
( r d + r i r t ) δ ω + 2 r d r t μ cos ϕ = 0
δ ω = 2 r d r t μ cos ϕ r d + r i r t .
δ ω = ( δ ω + j r d ) + e j ϕ μ r d r t δ ω z d .
cos ϕ = δ ω + δ ω z d ( δ ω + δ ω z d ) 2 + r d 2 .
r t = μ 2 r d ( δ ω + δ ω z d ) 2 + r d 2 .

Metrics