Abstract

Optical antennas and resonant structures have been extensively investigated due to its potential for electromagnetic detection and energy harvesting applications. However their integration into large arrays and the role of connection lines between individual antennas has drawn little attention. This is necessary if we want to exploit its potential constructively and to enable economical large-scale fabrication. In this contribution we point out some features that an efficient antenna array should address. Experimental measurements on aluminum microbolometers are compared to electromagnetic simulations, it is shown that the finite size of a real array and the interconnection lines interact and affect the global performance.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. L. Hwang, S. E. Schwarz, and D. B. Rutledge, “Microbolometers for infrared detection,” Appl. Phys. Lett. 34, 773–776 (1979).
    [CrossRef]
  2. R. K. Bhan, R. S. Saxena, C. R. Jalwania, and S. K. Lomash, “Uncooled Infrared Microbolometer Arrays and their Characterisation Techniques,” Def. Sci. J. 59, 580–590 (2009).
  3. C. Fumeaux, G. D. Boreman, W. Herrmann, F. K. Kneubhl, and H. Rothuizen, “Spatial impulse response of lithographic infrared antennas,” Appl. Opt. 38, 37–46 (1999).
    [CrossRef]
  4. J. Alda, J. M. Rico-García, J. M. Lopez Alonso, and G. D. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16, S230–S234 (2005).
    [CrossRef]
  5. F. J. Gonzalez, B. Ilic, J. Alda, and G. D. Boreman, “Antenna coupled infrared detectors for Imaging applications,” IEEE J. Sel. Top. Quantum Electron. 11, 117–120 (2005).
    [CrossRef]
  6. J. Oden, J. Meilhan, J. Lalanne-Dera, J. F. Roux, F. Garet, J. L. Coutaz, and F. Simoens, “Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature,” Opt. Express 21, 4817–4825 (2013).
    [CrossRef] [PubMed]
  7. D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nannoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132, 011014 (2010).
    [CrossRef]
  8. B. N. Tiwari, P. J. Fay, G. H. Bernstein, A. O. Orlov, and W. Porod, “Effect of read-out interconnects on the polarization characteristics of nanoantennas for the long-wave infrared regime,” IEEE Trans. Nanotechnology, 12, 270–275 (2013).
    [CrossRef]
  9. P. Krenz, B. Lail, and G. Boreman, “Calibration of lead-line response contribution in measured radiation patterns of IR dipole arrays,” J. Sel. Topics in Quantum Electron. 17, 218–221 (2010).
    [CrossRef]
  10. T. Mandviwala, B. Lail, and G. Boreman, “Vertical-Via Interconnection for Infrared Antennas,” J. Vac. Sci. Technol. B, 24, 612–615 (2006).
    [CrossRef]
  11. M. Silva-López, J. M. Rico-Garcia, and J. Alda, “Measurement limitations in knife-edge tomographic phase retrieval of focused IR laser beams,” Opt. Express 20, 23875–23886 (2012).
    [CrossRef] [PubMed]
  12. F. J. Gonzalez, M. A. Gritz, C. Fumeaux, and G. D. Boreman, “Two dimensional array of antenna-coupled microbolometers,” Int. J. Infrared and Millimeter Waves 23, 785–797 (2002).
    [CrossRef]
  13. J. Alda, C. Fumeaux, L. Codreanu, J. A. Schaefer, and G. D. Boreman, “Deconvolution method for two dimensional spatial response mapping of lithographic infrared antennas,” Appl. Opt. 38, 3993–4000 (1999).
    [CrossRef]
  14. A. Cuadrado, F. J. Gonzalez, J. Agustí, and J. Alda, “Material dependence of the distributed bolometric effect in resonant metallic nanostructures,” Proc. SPIE 8457, 845724 (2012).
    [CrossRef]
  15. J. Alda, C. Fumeaux, M. A. Gritz, D. Spencer, and G. D. Boreman, “Responsivity of infrared antenna-coupled microbolometers for air-side and substrate-side illumination,” Infrared Phys. Technol. 41, 1–9 (2000).
    [CrossRef]
  16. F. J. Gonzalez, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45, 47–51 (2004).
    [CrossRef]
  17. J. Agustí, A. Cuadrado, J. C. Martínez-Antón, J. Alda, and G. Abadal, “An analytical model for the opto-thermomechanical conversion mechanisms in a MOEMS based energy harvester,” Proc. SPIE 8463, 846313 (2012).
    [CrossRef]
  18. A. Cuadrado, J. Alda, and F. J. Gonzalez, “Distributed bolometric effect in optical antennas and resonant structures,” J. Nanophotonics 6, 063512 (2012).
    [CrossRef]
  19. B. Berland and ITN Energy Systems, Inc and National Renewable Energy Laboratory (U.S.), “Photovoltaic technologies beyond the horizon: Optical rectenna solar cell,” National Renewable Energy Laboratory, (2003).

2013 (2)

J. Oden, J. Meilhan, J. Lalanne-Dera, J. F. Roux, F. Garet, J. L. Coutaz, and F. Simoens, “Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature,” Opt. Express 21, 4817–4825 (2013).
[CrossRef] [PubMed]

B. N. Tiwari, P. J. Fay, G. H. Bernstein, A. O. Orlov, and W. Porod, “Effect of read-out interconnects on the polarization characteristics of nanoantennas for the long-wave infrared regime,” IEEE Trans. Nanotechnology, 12, 270–275 (2013).
[CrossRef]

2012 (4)

M. Silva-López, J. M. Rico-Garcia, and J. Alda, “Measurement limitations in knife-edge tomographic phase retrieval of focused IR laser beams,” Opt. Express 20, 23875–23886 (2012).
[CrossRef] [PubMed]

A. Cuadrado, F. J. Gonzalez, J. Agustí, and J. Alda, “Material dependence of the distributed bolometric effect in resonant metallic nanostructures,” Proc. SPIE 8457, 845724 (2012).
[CrossRef]

J. Agustí, A. Cuadrado, J. C. Martínez-Antón, J. Alda, and G. Abadal, “An analytical model for the opto-thermomechanical conversion mechanisms in a MOEMS based energy harvester,” Proc. SPIE 8463, 846313 (2012).
[CrossRef]

A. Cuadrado, J. Alda, and F. J. Gonzalez, “Distributed bolometric effect in optical antennas and resonant structures,” J. Nanophotonics 6, 063512 (2012).
[CrossRef]

2010 (2)

P. Krenz, B. Lail, and G. Boreman, “Calibration of lead-line response contribution in measured radiation patterns of IR dipole arrays,” J. Sel. Topics in Quantum Electron. 17, 218–221 (2010).
[CrossRef]

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nannoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132, 011014 (2010).
[CrossRef]

2009 (1)

R. K. Bhan, R. S. Saxena, C. R. Jalwania, and S. K. Lomash, “Uncooled Infrared Microbolometer Arrays and their Characterisation Techniques,” Def. Sci. J. 59, 580–590 (2009).

2006 (1)

T. Mandviwala, B. Lail, and G. Boreman, “Vertical-Via Interconnection for Infrared Antennas,” J. Vac. Sci. Technol. B, 24, 612–615 (2006).
[CrossRef]

2005 (2)

J. Alda, J. M. Rico-García, J. M. Lopez Alonso, and G. D. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16, S230–S234 (2005).
[CrossRef]

F. J. Gonzalez, B. Ilic, J. Alda, and G. D. Boreman, “Antenna coupled infrared detectors for Imaging applications,” IEEE J. Sel. Top. Quantum Electron. 11, 117–120 (2005).
[CrossRef]

2004 (1)

F. J. Gonzalez, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45, 47–51 (2004).
[CrossRef]

2002 (1)

F. J. Gonzalez, M. A. Gritz, C. Fumeaux, and G. D. Boreman, “Two dimensional array of antenna-coupled microbolometers,” Int. J. Infrared and Millimeter Waves 23, 785–797 (2002).
[CrossRef]

2000 (1)

J. Alda, C. Fumeaux, M. A. Gritz, D. Spencer, and G. D. Boreman, “Responsivity of infrared antenna-coupled microbolometers for air-side and substrate-side illumination,” Infrared Phys. Technol. 41, 1–9 (2000).
[CrossRef]

1999 (2)

1979 (1)

T. L. Hwang, S. E. Schwarz, and D. B. Rutledge, “Microbolometers for infrared detection,” Appl. Phys. Lett. 34, 773–776 (1979).
[CrossRef]

Abadal, G.

J. Agustí, A. Cuadrado, J. C. Martínez-Antón, J. Alda, and G. Abadal, “An analytical model for the opto-thermomechanical conversion mechanisms in a MOEMS based energy harvester,” Proc. SPIE 8463, 846313 (2012).
[CrossRef]

Agustí, J.

J. Agustí, A. Cuadrado, J. C. Martínez-Antón, J. Alda, and G. Abadal, “An analytical model for the opto-thermomechanical conversion mechanisms in a MOEMS based energy harvester,” Proc. SPIE 8463, 846313 (2012).
[CrossRef]

A. Cuadrado, F. J. Gonzalez, J. Agustí, and J. Alda, “Material dependence of the distributed bolometric effect in resonant metallic nanostructures,” Proc. SPIE 8457, 845724 (2012).
[CrossRef]

Alda, J.

A. Cuadrado, F. J. Gonzalez, J. Agustí, and J. Alda, “Material dependence of the distributed bolometric effect in resonant metallic nanostructures,” Proc. SPIE 8457, 845724 (2012).
[CrossRef]

J. Agustí, A. Cuadrado, J. C. Martínez-Antón, J. Alda, and G. Abadal, “An analytical model for the opto-thermomechanical conversion mechanisms in a MOEMS based energy harvester,” Proc. SPIE 8463, 846313 (2012).
[CrossRef]

M. Silva-López, J. M. Rico-Garcia, and J. Alda, “Measurement limitations in knife-edge tomographic phase retrieval of focused IR laser beams,” Opt. Express 20, 23875–23886 (2012).
[CrossRef] [PubMed]

A. Cuadrado, J. Alda, and F. J. Gonzalez, “Distributed bolometric effect in optical antennas and resonant structures,” J. Nanophotonics 6, 063512 (2012).
[CrossRef]

J. Alda, J. M. Rico-García, J. M. Lopez Alonso, and G. D. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16, S230–S234 (2005).
[CrossRef]

F. J. Gonzalez, B. Ilic, J. Alda, and G. D. Boreman, “Antenna coupled infrared detectors for Imaging applications,” IEEE J. Sel. Top. Quantum Electron. 11, 117–120 (2005).
[CrossRef]

J. Alda, C. Fumeaux, M. A. Gritz, D. Spencer, and G. D. Boreman, “Responsivity of infrared antenna-coupled microbolometers for air-side and substrate-side illumination,” Infrared Phys. Technol. 41, 1–9 (2000).
[CrossRef]

J. Alda, C. Fumeaux, L. Codreanu, J. A. Schaefer, and G. D. Boreman, “Deconvolution method for two dimensional spatial response mapping of lithographic infrared antennas,” Appl. Opt. 38, 3993–4000 (1999).
[CrossRef]

Ashley, C. S.

F. J. Gonzalez, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45, 47–51 (2004).
[CrossRef]

Berland, B.

B. Berland and ITN Energy Systems, Inc and National Renewable Energy Laboratory (U.S.), “Photovoltaic technologies beyond the horizon: Optical rectenna solar cell,” National Renewable Energy Laboratory, (2003).

Bernstein, G. H.

B. N. Tiwari, P. J. Fay, G. H. Bernstein, A. O. Orlov, and W. Porod, “Effect of read-out interconnects on the polarization characteristics of nanoantennas for the long-wave infrared regime,” IEEE Trans. Nanotechnology, 12, 270–275 (2013).
[CrossRef]

Bhan, R. K.

R. K. Bhan, R. S. Saxena, C. R. Jalwania, and S. K. Lomash, “Uncooled Infrared Microbolometer Arrays and their Characterisation Techniques,” Def. Sci. J. 59, 580–590 (2009).

Boreman, G.

P. Krenz, B. Lail, and G. Boreman, “Calibration of lead-line response contribution in measured radiation patterns of IR dipole arrays,” J. Sel. Topics in Quantum Electron. 17, 218–221 (2010).
[CrossRef]

T. Mandviwala, B. Lail, and G. Boreman, “Vertical-Via Interconnection for Infrared Antennas,” J. Vac. Sci. Technol. B, 24, 612–615 (2006).
[CrossRef]

Boreman, G. D.

J. Alda, J. M. Rico-García, J. M. Lopez Alonso, and G. D. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16, S230–S234 (2005).
[CrossRef]

F. J. Gonzalez, B. Ilic, J. Alda, and G. D. Boreman, “Antenna coupled infrared detectors for Imaging applications,” IEEE J. Sel. Top. Quantum Electron. 11, 117–120 (2005).
[CrossRef]

F. J. Gonzalez, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45, 47–51 (2004).
[CrossRef]

F. J. Gonzalez, M. A. Gritz, C. Fumeaux, and G. D. Boreman, “Two dimensional array of antenna-coupled microbolometers,” Int. J. Infrared and Millimeter Waves 23, 785–797 (2002).
[CrossRef]

J. Alda, C. Fumeaux, M. A. Gritz, D. Spencer, and G. D. Boreman, “Responsivity of infrared antenna-coupled microbolometers for air-side and substrate-side illumination,” Infrared Phys. Technol. 41, 1–9 (2000).
[CrossRef]

J. Alda, C. Fumeaux, L. Codreanu, J. A. Schaefer, and G. D. Boreman, “Deconvolution method for two dimensional spatial response mapping of lithographic infrared antennas,” Appl. Opt. 38, 3993–4000 (1999).
[CrossRef]

C. Fumeaux, G. D. Boreman, W. Herrmann, F. K. Kneubhl, and H. Rothuizen, “Spatial impulse response of lithographic infrared antennas,” Appl. Opt. 38, 37–46 (1999).
[CrossRef]

Clem, P. G.

F. J. Gonzalez, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45, 47–51 (2004).
[CrossRef]

Codreanu, L.

Coutaz, J. L.

J. Oden, J. Meilhan, J. Lalanne-Dera, J. F. Roux, F. Garet, J. L. Coutaz, and F. Simoens, “Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature,” Opt. Express 21, 4817–4825 (2013).
[CrossRef] [PubMed]

Cuadrado, A.

J. Agustí, A. Cuadrado, J. C. Martínez-Antón, J. Alda, and G. Abadal, “An analytical model for the opto-thermomechanical conversion mechanisms in a MOEMS based energy harvester,” Proc. SPIE 8463, 846313 (2012).
[CrossRef]

A. Cuadrado, J. Alda, and F. J. Gonzalez, “Distributed bolometric effect in optical antennas and resonant structures,” J. Nanophotonics 6, 063512 (2012).
[CrossRef]

A. Cuadrado, F. J. Gonzalez, J. Agustí, and J. Alda, “Material dependence of the distributed bolometric effect in resonant metallic nanostructures,” Proc. SPIE 8457, 845724 (2012).
[CrossRef]

Fay, P. J.

B. N. Tiwari, P. J. Fay, G. H. Bernstein, A. O. Orlov, and W. Porod, “Effect of read-out interconnects on the polarization characteristics of nanoantennas for the long-wave infrared regime,” IEEE Trans. Nanotechnology, 12, 270–275 (2013).
[CrossRef]

Fumeaux, C.

F. J. Gonzalez, M. A. Gritz, C. Fumeaux, and G. D. Boreman, “Two dimensional array of antenna-coupled microbolometers,” Int. J. Infrared and Millimeter Waves 23, 785–797 (2002).
[CrossRef]

J. Alda, C. Fumeaux, M. A. Gritz, D. Spencer, and G. D. Boreman, “Responsivity of infrared antenna-coupled microbolometers for air-side and substrate-side illumination,” Infrared Phys. Technol. 41, 1–9 (2000).
[CrossRef]

J. Alda, C. Fumeaux, L. Codreanu, J. A. Schaefer, and G. D. Boreman, “Deconvolution method for two dimensional spatial response mapping of lithographic infrared antennas,” Appl. Opt. 38, 3993–4000 (1999).
[CrossRef]

C. Fumeaux, G. D. Boreman, W. Herrmann, F. K. Kneubhl, and H. Rothuizen, “Spatial impulse response of lithographic infrared antennas,” Appl. Opt. 38, 37–46 (1999).
[CrossRef]

Garet, F.

J. Oden, J. Meilhan, J. Lalanne-Dera, J. F. Roux, F. Garet, J. L. Coutaz, and F. Simoens, “Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature,” Opt. Express 21, 4817–4825 (2013).
[CrossRef] [PubMed]

Gonzalez, F. J.

A. Cuadrado, F. J. Gonzalez, J. Agustí, and J. Alda, “Material dependence of the distributed bolometric effect in resonant metallic nanostructures,” Proc. SPIE 8457, 845724 (2012).
[CrossRef]

A. Cuadrado, J. Alda, and F. J. Gonzalez, “Distributed bolometric effect in optical antennas and resonant structures,” J. Nanophotonics 6, 063512 (2012).
[CrossRef]

F. J. Gonzalez, B. Ilic, J. Alda, and G. D. Boreman, “Antenna coupled infrared detectors for Imaging applications,” IEEE J. Sel. Top. Quantum Electron. 11, 117–120 (2005).
[CrossRef]

F. J. Gonzalez, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45, 47–51 (2004).
[CrossRef]

F. J. Gonzalez, M. A. Gritz, C. Fumeaux, and G. D. Boreman, “Two dimensional array of antenna-coupled microbolometers,” Int. J. Infrared and Millimeter Waves 23, 785–797 (2002).
[CrossRef]

Gritz, M. A.

F. J. Gonzalez, M. A. Gritz, C. Fumeaux, and G. D. Boreman, “Two dimensional array of antenna-coupled microbolometers,” Int. J. Infrared and Millimeter Waves 23, 785–797 (2002).
[CrossRef]

J. Alda, C. Fumeaux, M. A. Gritz, D. Spencer, and G. D. Boreman, “Responsivity of infrared antenna-coupled microbolometers for air-side and substrate-side illumination,” Infrared Phys. Technol. 41, 1–9 (2000).
[CrossRef]

Herrmann, W.

Hwang, T. L.

T. L. Hwang, S. E. Schwarz, and D. B. Rutledge, “Microbolometers for infrared detection,” Appl. Phys. Lett. 34, 773–776 (1979).
[CrossRef]

Ilic, B.

F. J. Gonzalez, B. Ilic, J. Alda, and G. D. Boreman, “Antenna coupled infrared detectors for Imaging applications,” IEEE J. Sel. Top. Quantum Electron. 11, 117–120 (2005).
[CrossRef]

Jalwania, C. R.

R. K. Bhan, R. S. Saxena, C. R. Jalwania, and S. K. Lomash, “Uncooled Infrared Microbolometer Arrays and their Characterisation Techniques,” Def. Sci. J. 59, 580–590 (2009).

Kneubhl, F. K.

Kotter, D. K.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nannoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132, 011014 (2010).
[CrossRef]

Krenz, P.

P. Krenz, B. Lail, and G. Boreman, “Calibration of lead-line response contribution in measured radiation patterns of IR dipole arrays,” J. Sel. Topics in Quantum Electron. 17, 218–221 (2010).
[CrossRef]

Lail, B.

P. Krenz, B. Lail, and G. Boreman, “Calibration of lead-line response contribution in measured radiation patterns of IR dipole arrays,” J. Sel. Topics in Quantum Electron. 17, 218–221 (2010).
[CrossRef]

T. Mandviwala, B. Lail, and G. Boreman, “Vertical-Via Interconnection for Infrared Antennas,” J. Vac. Sci. Technol. B, 24, 612–615 (2006).
[CrossRef]

Lalanne-Dera, J.

J. Oden, J. Meilhan, J. Lalanne-Dera, J. F. Roux, F. Garet, J. L. Coutaz, and F. Simoens, “Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature,” Opt. Express 21, 4817–4825 (2013).
[CrossRef] [PubMed]

Lomash, S. K.

R. K. Bhan, R. S. Saxena, C. R. Jalwania, and S. K. Lomash, “Uncooled Infrared Microbolometer Arrays and their Characterisation Techniques,” Def. Sci. J. 59, 580–590 (2009).

Lopez Alonso, J. M.

J. Alda, J. M. Rico-García, J. M. Lopez Alonso, and G. D. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16, S230–S234 (2005).
[CrossRef]

Mandviwala, T.

T. Mandviwala, B. Lail, and G. Boreman, “Vertical-Via Interconnection for Infrared Antennas,” J. Vac. Sci. Technol. B, 24, 612–615 (2006).
[CrossRef]

Martínez-Antón, J. C.

J. Agustí, A. Cuadrado, J. C. Martínez-Antón, J. Alda, and G. Abadal, “An analytical model for the opto-thermomechanical conversion mechanisms in a MOEMS based energy harvester,” Proc. SPIE 8463, 846313 (2012).
[CrossRef]

Meilhan, J.

J. Oden, J. Meilhan, J. Lalanne-Dera, J. F. Roux, F. Garet, J. L. Coutaz, and F. Simoens, “Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature,” Opt. Express 21, 4817–4825 (2013).
[CrossRef] [PubMed]

Novack, S. D.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nannoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132, 011014 (2010).
[CrossRef]

Oden, J.

J. Oden, J. Meilhan, J. Lalanne-Dera, J. F. Roux, F. Garet, J. L. Coutaz, and F. Simoens, “Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature,” Opt. Express 21, 4817–4825 (2013).
[CrossRef] [PubMed]

Orlov, A. O.

B. N. Tiwari, P. J. Fay, G. H. Bernstein, A. O. Orlov, and W. Porod, “Effect of read-out interconnects on the polarization characteristics of nanoantennas for the long-wave infrared regime,” IEEE Trans. Nanotechnology, 12, 270–275 (2013).
[CrossRef]

Pinhero, P. J.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nannoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132, 011014 (2010).
[CrossRef]

Porod, W.

B. N. Tiwari, P. J. Fay, G. H. Bernstein, A. O. Orlov, and W. Porod, “Effect of read-out interconnects on the polarization characteristics of nanoantennas for the long-wave infrared regime,” IEEE Trans. Nanotechnology, 12, 270–275 (2013).
[CrossRef]

Rico-Garcia, J. M.

Rico-García, J. M.

J. Alda, J. M. Rico-García, J. M. Lopez Alonso, and G. D. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16, S230–S234 (2005).
[CrossRef]

Rothuizen, H.

Roux, J. F.

J. Oden, J. Meilhan, J. Lalanne-Dera, J. F. Roux, F. Garet, J. L. Coutaz, and F. Simoens, “Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature,” Opt. Express 21, 4817–4825 (2013).
[CrossRef] [PubMed]

Rutledge, D. B.

T. L. Hwang, S. E. Schwarz, and D. B. Rutledge, “Microbolometers for infrared detection,” Appl. Phys. Lett. 34, 773–776 (1979).
[CrossRef]

Saxena, R. S.

R. K. Bhan, R. S. Saxena, C. R. Jalwania, and S. K. Lomash, “Uncooled Infrared Microbolometer Arrays and their Characterisation Techniques,” Def. Sci. J. 59, 580–590 (2009).

Schaefer, J. A.

Schwarz, S. E.

T. L. Hwang, S. E. Schwarz, and D. B. Rutledge, “Microbolometers for infrared detection,” Appl. Phys. Lett. 34, 773–776 (1979).
[CrossRef]

Silva-López, M.

Simoens, F.

J. Oden, J. Meilhan, J. Lalanne-Dera, J. F. Roux, F. Garet, J. L. Coutaz, and F. Simoens, “Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature,” Opt. Express 21, 4817–4825 (2013).
[CrossRef] [PubMed]

Slafer, W. D.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nannoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132, 011014 (2010).
[CrossRef]

Spencer, D.

J. Alda, C. Fumeaux, M. A. Gritz, D. Spencer, and G. D. Boreman, “Responsivity of infrared antenna-coupled microbolometers for air-side and substrate-side illumination,” Infrared Phys. Technol. 41, 1–9 (2000).
[CrossRef]

Tiwari, B. N.

B. N. Tiwari, P. J. Fay, G. H. Bernstein, A. O. Orlov, and W. Porod, “Effect of read-out interconnects on the polarization characteristics of nanoantennas for the long-wave infrared regime,” IEEE Trans. Nanotechnology, 12, 270–275 (2013).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

T. L. Hwang, S. E. Schwarz, and D. B. Rutledge, “Microbolometers for infrared detection,” Appl. Phys. Lett. 34, 773–776 (1979).
[CrossRef]

Def. Sci. J. (1)

R. K. Bhan, R. S. Saxena, C. R. Jalwania, and S. K. Lomash, “Uncooled Infrared Microbolometer Arrays and their Characterisation Techniques,” Def. Sci. J. 59, 580–590 (2009).

IEEE J. Sel. Top. Quantum Electron. (1)

F. J. Gonzalez, B. Ilic, J. Alda, and G. D. Boreman, “Antenna coupled infrared detectors for Imaging applications,” IEEE J. Sel. Top. Quantum Electron. 11, 117–120 (2005).
[CrossRef]

IEEE Trans. Nanotechnology (1)

B. N. Tiwari, P. J. Fay, G. H. Bernstein, A. O. Orlov, and W. Porod, “Effect of read-out interconnects on the polarization characteristics of nanoantennas for the long-wave infrared regime,” IEEE Trans. Nanotechnology, 12, 270–275 (2013).
[CrossRef]

Infrared Phys. Technol. (1)

J. Alda, C. Fumeaux, M. A. Gritz, D. Spencer, and G. D. Boreman, “Responsivity of infrared antenna-coupled microbolometers for air-side and substrate-side illumination,” Infrared Phys. Technol. 41, 1–9 (2000).
[CrossRef]

Infrared Phys. Technol. (1)

F. J. Gonzalez, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45, 47–51 (2004).
[CrossRef]

Int. J. Infrared and Millimeter Waves (1)

F. J. Gonzalez, M. A. Gritz, C. Fumeaux, and G. D. Boreman, “Two dimensional array of antenna-coupled microbolometers,” Int. J. Infrared and Millimeter Waves 23, 785–797 (2002).
[CrossRef]

J. Nanophotonics (1)

A. Cuadrado, J. Alda, and F. J. Gonzalez, “Distributed bolometric effect in optical antennas and resonant structures,” J. Nanophotonics 6, 063512 (2012).
[CrossRef]

J. Sel. Topics in Quantum Electron. (1)

P. Krenz, B. Lail, and G. Boreman, “Calibration of lead-line response contribution in measured radiation patterns of IR dipole arrays,” J. Sel. Topics in Quantum Electron. 17, 218–221 (2010).
[CrossRef]

J. Sol. Energy Eng. (1)

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nannoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132, 011014 (2010).
[CrossRef]

J. Vac. Sci. Technol. B (1)

T. Mandviwala, B. Lail, and G. Boreman, “Vertical-Via Interconnection for Infrared Antennas,” J. Vac. Sci. Technol. B, 24, 612–615 (2006).
[CrossRef]

Nanotechnology (1)

J. Alda, J. M. Rico-García, J. M. Lopez Alonso, and G. D. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16, S230–S234 (2005).
[CrossRef]

Opt. Express (1)

J. Oden, J. Meilhan, J. Lalanne-Dera, J. F. Roux, F. Garet, J. L. Coutaz, and F. Simoens, “Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature,” Opt. Express 21, 4817–4825 (2013).
[CrossRef] [PubMed]

Opt. Express (1)

Proc. SPIE (1)

J. Agustí, A. Cuadrado, J. C. Martínez-Antón, J. Alda, and G. Abadal, “An analytical model for the opto-thermomechanical conversion mechanisms in a MOEMS based energy harvester,” Proc. SPIE 8463, 846313 (2012).
[CrossRef]

Proc. SPIE (1)

A. Cuadrado, F. J. Gonzalez, J. Agustí, and J. Alda, “Material dependence of the distributed bolometric effect in resonant metallic nanostructures,” Proc. SPIE 8457, 845724 (2012).
[CrossRef]

Other (1)

B. Berland and ITN Energy Systems, Inc and National Renewable Energy Laboratory (U.S.), “Photovoltaic technologies beyond the horizon: Optical rectenna solar cell,” National Renewable Energy Laboratory, (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) SEM image of a 10 × 6 array of antenna devices in a series arrangement. (b) A 20×12 array of antenna devices in a series-to-parallel arrangement. Insets: Close-up of the arrays. The individual bow-tie antennas are optimised to couple vertical polarized radiation at 10.6 μm wavelength.

Fig. 2
Fig. 2

(a) Diagram of the experimental setup. Inset: typical response map in logarithmic scale obtained after an x–y scan of a 10×6 array of antennas. (b) Polarization sensitivity of the array. Voltage reading is normalized by the power from the monitor detector.

Fig. 3
Fig. 3

Response maps in logarithmic scale corresponding to large scans around: (a) a 20× 12 series device and, (b) a 38 × 24 series-to-parallel array of antennas. The insets are the diagrams of the arrays’ connections at the same scale.

Fig. 4
Fig. 4

(a) FE model of an array with square and rounded connections. (b) FE model of a grid proposed in literature for a solar energy harvesting array of antennas. Gray scale represents the normalized magnitude of the current density.

Fig. 5
Fig. 5

Comparison between experimental and simulated results. The left column is a map of the power dissipated in a 6 × 3 series array of antennas generated with COMSOL. The second column is the result of the convolution with a Gaussian distribution. At the right column are the measurements performed in a 20 × 12 series array. Each row corresponds to a different polarization state of the incoming beam.

Fig. 6
Fig. 6

The effect of increasing the number of parallel lines (N) in a 3 × 3 array and a 6 × 3 array (3 and 6 respectively), along with their convolutions. The reduction of biasing current diminish the efficiency of antennas. Note that, for both arrays, the incoming light polarization is optimal (vertical).

Fig. 7
Fig. 7

Comparison between experimental and simulated results. The left column is a map of the power dissipated in a 6×3 series-to-parallel array of antennas generated with COM-SOL. The second column is the result of the convolution with a Gaussian distribution. At the right column are the measurements performed in a 20×12 series-to-parallel array. Each row corresponds to a different polarization state of the incoming beam.

Fig. 8
Fig. 8

Power dissipated at the different grid arrangements (antennas replaced by shorted lines). Each row corresponds to a different polarization state of the incoming beam.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ V a = V bias R e ( R e + R a ) 2 Δ R a .
Δ I Δ T = R a α R e + R a I .

Metrics