Abstract

We demonstrate experimentally that spontaneous parametric down-conversion in an AlxGa1−xAs semiconductor Bragg reflection waveguide can make for paired photons highly entangled in the polarization degree of freedom at the telecommunication wavelength of 1550 nm. The pairs of photons show visibility higher than 90% in several polarization bases and violate a Clauser-Horne-Shimony-Holt Bell-like inequality by more than 3 standard deviations. This represents a significant step toward the realization of efficient and versatile self pumped sources of entangled photon pairs on-chip.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, (Cambridge University Press, 2000).
  2. D. Bouwmeester, A. K. Ekert, and A. Zeilinger, eds., The Physics of Quantum Information, (Springer Verlag, 2000).
    [CrossRef]
  3. E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett.103, 013601 (2009).
    [CrossRef] [PubMed]
  4. J. P. Torres, K. Banaszek, and I. A. Walmsley, “Engineering nonlinear optic sources of photonic entanglement,” Prog. Optics56, 227–331 (2011).
    [CrossRef]
  5. F. Steinlechner, P. Trojek, M. Jofre, H. Weier, D. Perez, T. Jennewein, R. Ursin, J. Rarity, M. W. Mitchell, J. P. Torres, H. Weinfurter, and Valerio Pruneri, “A high-brightness source of polarization-entangled photons optimized for applications in free space,” Opt. Express20, 9640–9649 (2012).
    [CrossRef] [PubMed]
  6. K. Banaszek, A. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett.26, 1367–1369 (2001).
    [CrossRef]
  7. M. Fiorentino, S. Spillane, R. G. Beausoleil, T. D. Roberts, P. Battle, and M. W. Munro, “Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals,” Opt. Express15, 7479–7488 (2007).
    [CrossRef] [PubMed]
  8. A. S. Helmy, B. Bijlani, and P. Abolghasem, “Phase matching in monolithic Bragg reflection waveguides,” Opt. Lett.32, 2399–2401 (2007).
    [CrossRef] [PubMed]
  9. P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Continuous-wave second harmonic generation in Bragg reflection waveguides,” Opt. Express17, 9460–9467 (2009).
    [CrossRef] [PubMed]
  10. J. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett.35, 2334–2336 (2010).
    [CrossRef] [PubMed]
  11. R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic Source of Photon Pairs,” Phys. Rev. Lett.108, 153605 (2012).
    [CrossRef] [PubMed]
  12. B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett.34, 3734–3736 (2009).
    [CrossRef] [PubMed]
  13. B. J. Bijlani, P. Abolghasem, A. Reijnders, and A. S. Helmy, “Intracavity Parametric Fluorescence in Diode Lasers,” in CLEO: 2011 Postdeadline Papers (Optical Society of America, Washington, DC, 2011), Report No. PDPA3.
  14. P. Abolghasem, J. Han, D. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic Photonics Using Second-Order Optical Nonlinearities in Multilayer-Core Bragg Reflection Waveguides,” IEEE J. Selected Topics Quantum Electron.2, 812–825 (2012).
    [CrossRef]
  15. A. S. Helmy, “Phase matching using Bragg reflection waveguides for monolithic nonlinear optics applications,” Opt. Express14, 1243–1252 (2006).
    [CrossRef] [PubMed]
  16. P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides,” Opt. Lett.34, 2000–2002 (2009).
    [CrossRef] [PubMed]
  17. J. Svozilík, M. Hendrych, A. S. Helmy, and J. P. Torres, “Generation of paired photons in a quantum separable state in Bragg reflection waveguides,” Opt. Express, 19, 3115–3123 (2011).
    [CrossRef] [PubMed]
  18. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett.23, 880 (1969).
    [CrossRef]
  19. N. Gisin, “Bell’s inequality holds for all non-product states,” Phys. Lett. A154, 201–202 (1991).
    [CrossRef]
  20. A. Fine, “Hidden Variables, Joint Probability, and the Bell Inequalities,” Phys. Rev. Lett.48, 291 (1982).
    [CrossRef]
  21. N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep.2, 817 (2012).
    [CrossRef] [PubMed]
  22. A. Orieux, A. Eckstein, A. Lemaitre, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Bell states generation on a III–V semiconductor chip at room temperature,” arXiv:1301.1764 (2013).
  23. P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Tech. Lett.21, 1462 (2009).
    [CrossRef]
  24. S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Generation of maximally-polarization-entangled photons on a chip,” Phys. Rev. A85, 013838 (2012).
    [CrossRef]
  25. The chosen polarization states mirror the experimental arrangement implemented.
  26. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett.75, 4337 (1995).
    [CrossRef] [PubMed]
  27. J. Svozilík, M. Hendrych, and J. P. Torres, “Bragg reflection waveguide as a source of wavelength-multiplexed polarization-entangled photon pairs,” Opt. Express20, 15015–15023 (2012).
    [CrossRef] [PubMed]
  28. D. Kang and A. S. Helmy, “Generation of polarization entangled photons using concurrent type-I and type-0 processes in AlGaAs ridge waveguides,” Opt. Lett.37, 1481–1483 (2012).
    [CrossRef] [PubMed]
  29. S. V. Zhukovsky, L. G. Helt, P. Abolghasem, D. Kang, J. E. Sipe, and A. S. Helmy, “Bragg reflection waveguides as integrated sources of entangled photon pairs,” J. Opt. Soc. Am. B29, 2516–2523 (2012).
    [CrossRef]

2012 (8)

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic Source of Photon Pairs,” Phys. Rev. Lett.108, 153605 (2012).
[CrossRef] [PubMed]

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep.2, 817 (2012).
[CrossRef] [PubMed]

S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Generation of maximally-polarization-entangled photons on a chip,” Phys. Rev. A85, 013838 (2012).
[CrossRef]

P. Abolghasem, J. Han, D. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic Photonics Using Second-Order Optical Nonlinearities in Multilayer-Core Bragg Reflection Waveguides,” IEEE J. Selected Topics Quantum Electron.2, 812–825 (2012).
[CrossRef]

F. Steinlechner, P. Trojek, M. Jofre, H. Weier, D. Perez, T. Jennewein, R. Ursin, J. Rarity, M. W. Mitchell, J. P. Torres, H. Weinfurter, and Valerio Pruneri, “A high-brightness source of polarization-entangled photons optimized for applications in free space,” Opt. Express20, 9640–9649 (2012).
[CrossRef] [PubMed]

D. Kang and A. S. Helmy, “Generation of polarization entangled photons using concurrent type-I and type-0 processes in AlGaAs ridge waveguides,” Opt. Lett.37, 1481–1483 (2012).
[CrossRef] [PubMed]

J. Svozilík, M. Hendrych, and J. P. Torres, “Bragg reflection waveguide as a source of wavelength-multiplexed polarization-entangled photon pairs,” Opt. Express20, 15015–15023 (2012).
[CrossRef] [PubMed]

S. V. Zhukovsky, L. G. Helt, P. Abolghasem, D. Kang, J. E. Sipe, and A. S. Helmy, “Bragg reflection waveguides as integrated sources of entangled photon pairs,” J. Opt. Soc. Am. B29, 2516–2523 (2012).
[CrossRef]

2011 (2)

J. Svozilík, M. Hendrych, A. S. Helmy, and J. P. Torres, “Generation of paired photons in a quantum separable state in Bragg reflection waveguides,” Opt. Express, 19, 3115–3123 (2011).
[CrossRef] [PubMed]

J. P. Torres, K. Banaszek, and I. A. Walmsley, “Engineering nonlinear optic sources of photonic entanglement,” Prog. Optics56, 227–331 (2011).
[CrossRef]

2010 (1)

2009 (5)

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett.103, 013601 (2009).
[CrossRef] [PubMed]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Tech. Lett.21, 1462 (2009).
[CrossRef]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Continuous-wave second harmonic generation in Bragg reflection waveguides,” Opt. Express17, 9460–9467 (2009).
[CrossRef] [PubMed]

P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides,” Opt. Lett.34, 2000–2002 (2009).
[CrossRef] [PubMed]

B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett.34, 3734–3736 (2009).
[CrossRef] [PubMed]

2007 (2)

2006 (1)

2001 (1)

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett.75, 4337 (1995).
[CrossRef] [PubMed]

1991 (1)

N. Gisin, “Bell’s inequality holds for all non-product states,” Phys. Lett. A154, 201–202 (1991).
[CrossRef]

1982 (1)

A. Fine, “Hidden Variables, Joint Probability, and the Bell Inequalities,” Phys. Rev. Lett.48, 291 (1982).
[CrossRef]

1969 (1)

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett.23, 880 (1969).
[CrossRef]

Abolghasem, P.

S. V. Zhukovsky, L. G. Helt, P. Abolghasem, D. Kang, J. E. Sipe, and A. S. Helmy, “Bragg reflection waveguides as integrated sources of entangled photon pairs,” J. Opt. Soc. Am. B29, 2516–2523 (2012).
[CrossRef]

P. Abolghasem, J. Han, D. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic Photonics Using Second-Order Optical Nonlinearities in Multilayer-Core Bragg Reflection Waveguides,” IEEE J. Selected Topics Quantum Electron.2, 812–825 (2012).
[CrossRef]

S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Generation of maximally-polarization-entangled photons on a chip,” Phys. Rev. A85, 013838 (2012).
[CrossRef]

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic Source of Photon Pairs,” Phys. Rev. Lett.108, 153605 (2012).
[CrossRef] [PubMed]

J. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett.35, 2334–2336 (2010).
[CrossRef] [PubMed]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Continuous-wave second harmonic generation in Bragg reflection waveguides,” Opt. Express17, 9460–9467 (2009).
[CrossRef] [PubMed]

P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides,” Opt. Lett.34, 2000–2002 (2009).
[CrossRef] [PubMed]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Tech. Lett.21, 1462 (2009).
[CrossRef]

A. S. Helmy, B. Bijlani, and P. Abolghasem, “Phase matching in monolithic Bragg reflection waveguides,” Opt. Lett.32, 2399–2401 (2007).
[CrossRef] [PubMed]

B. J. Bijlani, P. Abolghasem, A. Reijnders, and A. S. Helmy, “Intracavity Parametric Fluorescence in Diode Lasers,” in CLEO: 2011 Postdeadline Papers (Optical Society of America, Washington, DC, 2011), Report No. PDPA3.

Arjmand, A.

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Continuous-wave second harmonic generation in Bragg reflection waveguides,” Opt. Express17, 9460–9467 (2009).
[CrossRef] [PubMed]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Tech. Lett.21, 1462 (2009).
[CrossRef]

Banaszek, K.

J. P. Torres, K. Banaszek, and I. A. Walmsley, “Engineering nonlinear optic sources of photonic entanglement,” Prog. Optics56, 227–331 (2011).
[CrossRef]

K. Banaszek, A. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett.26, 1367–1369 (2001).
[CrossRef]

Battle, P.

Beausoleil, R. G.

Bijlani, B.

Bijlani, B. J.

P. Abolghasem, J. Han, D. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic Photonics Using Second-Order Optical Nonlinearities in Multilayer-Core Bragg Reflection Waveguides,” IEEE J. Selected Topics Quantum Electron.2, 812–825 (2012).
[CrossRef]

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic Source of Photon Pairs,” Phys. Rev. Lett.108, 153605 (2012).
[CrossRef] [PubMed]

J. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett.35, 2334–2336 (2010).
[CrossRef] [PubMed]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Continuous-wave second harmonic generation in Bragg reflection waveguides,” Opt. Express17, 9460–9467 (2009).
[CrossRef] [PubMed]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Tech. Lett.21, 1462 (2009).
[CrossRef]

B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett.34, 3734–3736 (2009).
[CrossRef] [PubMed]

B. J. Bijlani, P. Abolghasem, A. Reijnders, and A. S. Helmy, “Intracavity Parametric Fluorescence in Diode Lasers,” in CLEO: 2011 Postdeadline Papers (Optical Society of America, Washington, DC, 2011), Report No. PDPA3.

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, (Cambridge University Press, 2000).

Clauser, J. F.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett.23, 880 (1969).
[CrossRef]

Coudreau, T.

A. Orieux, A. Eckstein, A. Lemaitre, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Bell states generation on a III–V semiconductor chip at room temperature,” arXiv:1301.1764 (2013).

De Martini, F.

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett.103, 013601 (2009).
[CrossRef] [PubMed]

Ducci, S.

A. Orieux, A. Eckstein, A. Lemaitre, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Bell states generation on a III–V semiconductor chip at room temperature,” arXiv:1301.1764 (2013).

Eckstein, A.

A. Orieux, A. Eckstein, A. Lemaitre, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Bell states generation on a III–V semiconductor chip at room temperature,” arXiv:1301.1764 (2013).

Favero, I.

A. Orieux, A. Eckstein, A. Lemaitre, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Bell states generation on a III–V semiconductor chip at room temperature,” arXiv:1301.1764 (2013).

Filloux, P.

A. Orieux, A. Eckstein, A. Lemaitre, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Bell states generation on a III–V semiconductor chip at room temperature,” arXiv:1301.1764 (2013).

Fine, A.

A. Fine, “Hidden Variables, Joint Probability, and the Bell Inequalities,” Phys. Rev. Lett.48, 291 (1982).
[CrossRef]

Fiorentino, M.

Fukuda, H.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep.2, 817 (2012).
[CrossRef] [PubMed]

Gisin, N.

N. Gisin, “Bell’s inequality holds for all non-product states,” Phys. Lett. A154, 201–202 (1991).
[CrossRef]

Han, J.

P. Abolghasem, J. Han, D. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic Photonics Using Second-Order Optical Nonlinearities in Multilayer-Core Bragg Reflection Waveguides,” IEEE J. Selected Topics Quantum Electron.2, 812–825 (2012).
[CrossRef]

J. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett.35, 2334–2336 (2010).
[CrossRef] [PubMed]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Continuous-wave second harmonic generation in Bragg reflection waveguides,” Opt. Express17, 9460–9467 (2009).
[CrossRef] [PubMed]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Tech. Lett.21, 1462 (2009).
[CrossRef]

Helmy, A. S.

P. Abolghasem, J. Han, D. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic Photonics Using Second-Order Optical Nonlinearities in Multilayer-Core Bragg Reflection Waveguides,” IEEE J. Selected Topics Quantum Electron.2, 812–825 (2012).
[CrossRef]

S. V. Zhukovsky, L. G. Helt, P. Abolghasem, D. Kang, J. E. Sipe, and A. S. Helmy, “Bragg reflection waveguides as integrated sources of entangled photon pairs,” J. Opt. Soc. Am. B29, 2516–2523 (2012).
[CrossRef]

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic Source of Photon Pairs,” Phys. Rev. Lett.108, 153605 (2012).
[CrossRef] [PubMed]

D. Kang and A. S. Helmy, “Generation of polarization entangled photons using concurrent type-I and type-0 processes in AlGaAs ridge waveguides,” Opt. Lett.37, 1481–1483 (2012).
[CrossRef] [PubMed]

S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Generation of maximally-polarization-entangled photons on a chip,” Phys. Rev. A85, 013838 (2012).
[CrossRef]

J. Svozilík, M. Hendrych, A. S. Helmy, and J. P. Torres, “Generation of paired photons in a quantum separable state in Bragg reflection waveguides,” Opt. Express, 19, 3115–3123 (2011).
[CrossRef] [PubMed]

J. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett.35, 2334–2336 (2010).
[CrossRef] [PubMed]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Continuous-wave second harmonic generation in Bragg reflection waveguides,” Opt. Express17, 9460–9467 (2009).
[CrossRef] [PubMed]

P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides,” Opt. Lett.34, 2000–2002 (2009).
[CrossRef] [PubMed]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Tech. Lett.21, 1462 (2009).
[CrossRef]

B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett.34, 3734–3736 (2009).
[CrossRef] [PubMed]

A. S. Helmy, B. Bijlani, and P. Abolghasem, “Phase matching in monolithic Bragg reflection waveguides,” Opt. Lett.32, 2399–2401 (2007).
[CrossRef] [PubMed]

A. S. Helmy, “Phase matching using Bragg reflection waveguides for monolithic nonlinear optics applications,” Opt. Express14, 1243–1252 (2006).
[CrossRef] [PubMed]

B. J. Bijlani, P. Abolghasem, A. Reijnders, and A. S. Helmy, “Intracavity Parametric Fluorescence in Diode Lasers,” in CLEO: 2011 Postdeadline Papers (Optical Society of America, Washington, DC, 2011), Report No. PDPA3.

Helt, L. G.

S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Generation of maximally-polarization-entangled photons on a chip,” Phys. Rev. A85, 013838 (2012).
[CrossRef]

S. V. Zhukovsky, L. G. Helt, P. Abolghasem, D. Kang, J. E. Sipe, and A. S. Helmy, “Bragg reflection waveguides as integrated sources of entangled photon pairs,” J. Opt. Soc. Am. B29, 2516–2523 (2012).
[CrossRef]

Hendrych, M.

Holt, R. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett.23, 880 (1969).
[CrossRef]

Horn, R.

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic Source of Photon Pairs,” Phys. Rev. Lett.108, 153605 (2012).
[CrossRef] [PubMed]

Horne, M. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett.23, 880 (1969).
[CrossRef]

Jennewein, T.

Jofre, M.

Kang, D.

S. V. Zhukovsky, L. G. Helt, P. Abolghasem, D. Kang, J. E. Sipe, and A. S. Helmy, “Bragg reflection waveguides as integrated sources of entangled photon pairs,” J. Opt. Soc. Am. B29, 2516–2523 (2012).
[CrossRef]

P. Abolghasem, J. Han, D. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic Photonics Using Second-Order Optical Nonlinearities in Multilayer-Core Bragg Reflection Waveguides,” IEEE J. Selected Topics Quantum Electron.2, 812–825 (2012).
[CrossRef]

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic Source of Photon Pairs,” Phys. Rev. Lett.108, 153605 (2012).
[CrossRef] [PubMed]

D. Kang and A. S. Helmy, “Generation of polarization entangled photons using concurrent type-I and type-0 processes in AlGaAs ridge waveguides,” Opt. Lett.37, 1481–1483 (2012).
[CrossRef] [PubMed]

S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Generation of maximally-polarization-entangled photons on a chip,” Phys. Rev. A85, 013838 (2012).
[CrossRef]

J. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett.35, 2334–2336 (2010).
[CrossRef] [PubMed]

Karimi, E.

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett.103, 013601 (2009).
[CrossRef] [PubMed]

Keller, A.

A. Orieux, A. Eckstein, A. Lemaitre, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Bell states generation on a III–V semiconductor chip at room temperature,” arXiv:1301.1764 (2013).

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett.75, 4337 (1995).
[CrossRef] [PubMed]

Le Jeannic, H.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep.2, 817 (2012).
[CrossRef] [PubMed]

Lemaitre, A.

A. Orieux, A. Eckstein, A. Lemaitre, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Bell states generation on a III–V semiconductor chip at room temperature,” arXiv:1301.1764 (2013).

Leo, G.

A. Orieux, A. Eckstein, A. Lemaitre, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Bell states generation on a III–V semiconductor chip at room temperature,” arXiv:1301.1764 (2013).

Marrucci, L.

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett.103, 013601 (2009).
[CrossRef] [PubMed]

Matsuda, N.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep.2, 817 (2012).
[CrossRef] [PubMed]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett.75, 4337 (1995).
[CrossRef] [PubMed]

Milman, P.

A. Orieux, A. Eckstein, A. Lemaitre, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Bell states generation on a III–V semiconductor chip at room temperature,” arXiv:1301.1764 (2013).

Mitchell, M. W.

Munro, M. W.

Munro, W. J.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep.2, 817 (2012).
[CrossRef] [PubMed]

Nagali, E.

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett.103, 013601 (2009).
[CrossRef] [PubMed]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, (Cambridge University Press, 2000).

Orieux, A.

A. Orieux, A. Eckstein, A. Lemaitre, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Bell states generation on a III–V semiconductor chip at room temperature,” arXiv:1301.1764 (2013).

Perez, D.

Piccirillo, B.

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett.103, 013601 (2009).
[CrossRef] [PubMed]

Pruneri, Valerio

Rarity, J.

Reijnders, A.

B. J. Bijlani, P. Abolghasem, A. Reijnders, and A. S. Helmy, “Intracavity Parametric Fluorescence in Diode Lasers,” in CLEO: 2011 Postdeadline Papers (Optical Society of America, Washington, DC, 2011), Report No. PDPA3.

Roberts, T. D.

Santamato, E.

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett.103, 013601 (2009).
[CrossRef] [PubMed]

Sciarrino, F.

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett.103, 013601 (2009).
[CrossRef] [PubMed]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett.75, 4337 (1995).
[CrossRef] [PubMed]

Shi, X.

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett.75, 4337 (1995).
[CrossRef] [PubMed]

Shimizu, K.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep.2, 817 (2012).
[CrossRef] [PubMed]

Shimony, A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett.23, 880 (1969).
[CrossRef]

Sipe, J. E.

S. V. Zhukovsky, L. G. Helt, P. Abolghasem, D. Kang, J. E. Sipe, and A. S. Helmy, “Bragg reflection waveguides as integrated sources of entangled photon pairs,” J. Opt. Soc. Am. B29, 2516–2523 (2012).
[CrossRef]

S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Generation of maximally-polarization-entangled photons on a chip,” Phys. Rev. A85, 013838 (2012).
[CrossRef]

Spillane, S.

Steinlechner, F.

Svozilík, J.

Takesue, H.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep.2, 817 (2012).
[CrossRef] [PubMed]

Tokura, Y.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep.2, 817 (2012).
[CrossRef] [PubMed]

Torres, J. P.

Trojek, P.

Tsuchizawa, T.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep.2, 817 (2012).
[CrossRef] [PubMed]

U’Ren, A.

Ursin, R.

Walmsley, I. A.

J. P. Torres, K. Banaszek, and I. A. Walmsley, “Engineering nonlinear optic sources of photonic entanglement,” Prog. Optics56, 227–331 (2011).
[CrossRef]

K. Banaszek, A. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett.26, 1367–1369 (2001).
[CrossRef]

Weier, H.

Weihs, G.

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic Source of Photon Pairs,” Phys. Rev. Lett.108, 153605 (2012).
[CrossRef] [PubMed]

Weinfurter, H.

Yamada, K.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep.2, 817 (2012).
[CrossRef] [PubMed]

Zeilinger, A.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett.75, 4337 (1995).
[CrossRef] [PubMed]

Zhukovsky, S. V.

S. V. Zhukovsky, L. G. Helt, P. Abolghasem, D. Kang, J. E. Sipe, and A. S. Helmy, “Bragg reflection waveguides as integrated sources of entangled photon pairs,” J. Opt. Soc. Am. B29, 2516–2523 (2012).
[CrossRef]

S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Generation of maximally-polarization-entangled photons on a chip,” Phys. Rev. A85, 013838 (2012).
[CrossRef]

IEEE J. Selected Topics Quantum Electron. (1)

P. Abolghasem, J. Han, D. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic Photonics Using Second-Order Optical Nonlinearities in Multilayer-Core Bragg Reflection Waveguides,” IEEE J. Selected Topics Quantum Electron.2, 812–825 (2012).
[CrossRef]

IEEE Photon. Tech. Lett. (1)

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Tech. Lett.21, 1462 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (6)

Opt. Lett. (6)

Phys. Lett. A (1)

N. Gisin, “Bell’s inequality holds for all non-product states,” Phys. Lett. A154, 201–202 (1991).
[CrossRef]

Phys. Rev. A (1)

S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Generation of maximally-polarization-entangled photons on a chip,” Phys. Rev. A85, 013838 (2012).
[CrossRef]

Phys. Rev. Lett. (5)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett.75, 4337 (1995).
[CrossRef] [PubMed]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett.23, 880 (1969).
[CrossRef]

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic Source of Photon Pairs,” Phys. Rev. Lett.108, 153605 (2012).
[CrossRef] [PubMed]

A. Fine, “Hidden Variables, Joint Probability, and the Bell Inequalities,” Phys. Rev. Lett.48, 291 (1982).
[CrossRef]

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett.103, 013601 (2009).
[CrossRef] [PubMed]

Prog. Optics (1)

J. P. Torres, K. Banaszek, and I. A. Walmsley, “Engineering nonlinear optic sources of photonic entanglement,” Prog. Optics56, 227–331 (2011).
[CrossRef]

Sci. Rep. (1)

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep.2, 817 (2012).
[CrossRef] [PubMed]

Other (5)

A. Orieux, A. Eckstein, A. Lemaitre, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Bell states generation on a III–V semiconductor chip at room temperature,” arXiv:1301.1764 (2013).

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, (Cambridge University Press, 2000).

D. Bouwmeester, A. K. Ekert, and A. Zeilinger, eds., The Physics of Quantum Information, (Springer Verlag, 2000).
[CrossRef]

B. J. Bijlani, P. Abolghasem, A. Reijnders, and A. S. Helmy, “Intracavity Parametric Fluorescence in Diode Lasers,” in CLEO: 2011 Postdeadline Papers (Optical Society of America, Washington, DC, 2011), Report No. PDPA3.

The chosen polarization states mirror the experimental arrangement implemented.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Bragg reflection waveguide structure used to generate paired photons correlated in time and polarization (type-II SPDC) at the telecommunication window (1550 nm). The insets show the spatial shape of the pump mode that propagates inside the waveguide as a Bragg mode, and the spatial shape of the down-converted, which are modes guided by total internal reflection (TIR). W: width of the ridge; D: depth of the ridge.

Fig. 2
Fig. 2

(a) Experimental setup for SHG. The pump laser is a tunable external-cavity semiconductor laser (TLK-L1550R, Thorlabs). The Optical System consists of a linear power attenuator, polarization beam splitter and a half-wave plate. The Filtering System consists of a neutral density filter and low-pass filter. SMF: single-mode fiber; AL: aspheric lens; BRW: Bragg reflection waveguide; Obj: Nikon 50×; DM: dichroic mirror; FL: Fourier lens; CCD: Retiga EXi Fast CCD camera; P: polarizer; MMF: multi-mode fiber; Det: single-photon counting module (SPCM, PerkinElmer). (b) Phase-matching curve of the BRW as a function of the wavelength of the fundamental wave. (c) Beam profile of the Bragg mode of the second harmonic wave generated by means of the SHG process, captured with a CCD camera after imaging with a magnification optical system of 100× (Fourier lens with focal length f=400 mm).

Fig. 3
Fig. 3

(a) Experimental setup for SPDC. The Optical System is composed of a linear power attenuator, spatial filter and beam expander. SNOM: scanning near-field optical microscope probe; BRW: Bragg reflection waveguide; Objectives: Obj1 (Nikon 100×) and Obj2 (Nikon 50×); DM: dichroic mirror; Filtering System: 2 DMs, band-pass and long-pass filters; DL: delay line (birefringent plate); BS: beam splitter; P1 and P2: linear film polarizers; MMF: multi-mode fiber; D1 and D2: InGaAs single-photon counting detection modules; D3: low-power silicon detector; C.C.: coincidence-counting electronics. (b) Amplitude profiles of the theoretical Bragg mode and the Gaussian-like pump beam.

Fig. 4
Fig. 4

Normalized coincidence measurements as a function of the polarization state of photon 2 when photon 1 is projected into a polarization state with: (a) θ1 = 0° and (b) θ1 = 45°. The data shown in (a) and (b) is subtracting from the raw data the number of accidental coincidences. (c) Violation of the CHSH inequality. Parameter S as a function of the angle θ. The small blue circles with error bars represent the experimental data with their standard deviations. The blue solid curves in (a) and (b) are theoretical predictions assuming that the visibility is 98% in (a) and 91% in (b). The red (upper) curve in (c) is the theoretical prediction for S. The blue curve in (c) is the best fit. The inequality holds if S ≤ 2. The maximum value attained is S = 2.61 ± 0.16. The data shown in (c) is without subtraction of accidental coincidences.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

| Ψ + = 1 2 { | H 1 | V 2 + | V 1 | H 2 } ,
S = | E ( θ 1 , θ 2 ) E ( θ 1 , θ 2 ) + E ( θ 1 , θ 2 ) + E ( θ 1 , θ 2 ) | 2 ,
E ( θ 1 , θ 2 ) = C ( θ 1 + θ 2 ) + C ( θ 1 , θ 2 ) C ( θ 1 , θ 2 ) C ( θ 1 , θ 2 ) C ( θ 1 , θ 2 ) + C ( θ 1 , θ 2 ) + C ( θ 1 , θ 2 ) + C ( θ 1 , θ 2 )

Metrics