Abstract

We report for the first time on the limitations in the operational power range of few-mode fiber based transmission systems, employing 28Gbaud quadrature phase shift keying transponders, over 1,600km. It is demonstrated that if an additional mode is used on a preexisting few-mode transmission link, and allowed to optimize its performance, it will have a significant impact on the pre-existing mode. In particular, we show that for low mode coupling strengths (weak coupling regime), the newly added variable power mode does not considerably impact the fixed power existing mode, with performance penalties less than 2dB (in Q-factor). On the other hand, as mode coupling strength is increased (strong coupling regime), the individual launch power optimization significantly degrades the system performance, with penalties up to ~6dB. Our results further suggest that mutual power optimization, of both fixed power and variable power modes, reduces power allocation related penalties to less than 3dB, for any given coupling strength, for both high and low differential mode delays.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Essiambre and A. Mecozzi, “Capacity limits in single mode fiber and scaling for spatial multiplexing,” Optical Fiber Communication Conference, OFC ‘12, OW3D.1, (2012).
  2. P. J. Winzer, “Energy-efficient optical transport capacity scaling through spatial multiplexing,” IEEE Photon. Technol. Lett.23(13), 851–853 (2011).
    [CrossRef]
  3. E. Ip, N. Bai, Y. Huang, E. Mateo, F. Yaman, S. Bickham, H. Tam, C. Lu, M. Li, S. Ten, A. P. T. Lau, V. Tse, G. Peng, C. Montero, X. Prieto, and G. Li, “88x3x112-Gb/s WDM transmission over 50-km of three-Mode fiber with inline multimode fiber amplifier,” European Conference on Optical Communication, ECOC’11, Th.13.C.2, (2011).
  4. T. Hayashi, T. Sasaki, and E. Sasaoka, “Multi-core fibers for high capacity transmission,” Optical Fiber Communication Conference, OFC ‘12, OTu1D.4, (2012).
  5. S. Randel, R. Ryf, A. Gnauck, M. A. Mestre, C. Schmidt, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, and R. Lingle, “Mode-multiplexed 6×20-GBd QPSK transmission over 1200-km DGD-compensated few-mode fiber,” Optical Fiber Communication Conference, OFC ‘12, PDP5C.5, (2012).
  6. A. Mecozzi, C. Antonelli, and M. Shtaif, “Nonlinear propagation in multi-mode fibers in the strong coupling regime,” Opt. Express20(11), 11673–11678 (2012).
    [CrossRef] [PubMed]
  7. M. Salsi, G. Charlet, and S. Bigo, “Nonlinear effects in mode-division-multiplexed transmission over few-mode optical fiber,” IEEE Photon. Technol. Lett.23(18), 1316–1318 (2011).
    [CrossRef]
  8. N. MacSuibhne, R. Watts, S. Sygletos, F. C. G. Gunning, L. GrüNernielsen, and A. D. Ellis, “Nonlinear pulse distortion in few-mode fiber,” European Conference on Optical Communication, ECOC’12, Th.2.F.5, (2012).
  9. J. M. Kahn, K. Ho, and M. B. Shemirani, “Mode coupling effects in multi-mode fibers,” Optical Fiber Communication Conference, OFC ‘12, OW3D.3, (2012).
  10. J. Vuong, P. Ramantanis, A. Seck, D. Bendimerad, and Y. Frignac, “Understanding discrete linear mode coupling in few-mode fiber transmission systems,” European Conference on Optical Communication, ECOC’11, Tu5B2, (2011).
  11. P. Sillard, M. Bigot-Astruc, D. Boivin, H. Maerten, and L. Provost, “Few-mode fiber for uncoupled mode-division multiplexing transmissions,” European Conference on Optical Communication, ECOC’11, Tu5C7, (2011).
  12. G. Rademacher, S. Warm, and K. Petermann, “Analytical description of cross-modal nonlinear interaction in mode multiplexed multmode fibers,” IEEE Photon. Technol. Lett.24(21), 1929–1932 (2012).
    [CrossRef]
  13. D. Marcuse, Theory of Dielectric Optical Waveguides chapters 3&5, (New York: Academic, 1974).
  14. F. Ferreira, S. Jansen, P. Monteiro, and H. Silva, “Nonlinear semi-analytical model for simulation of few-mode fiber transmission,” IEEE Photon. Technol. Lett.24(4), 240–242 (2012).
    [CrossRef]
  15. G. Agrawal, Applications of nonlinear Fibre Optics chapter 2, (Academic Press, 2001).
  16. F. Gardner, “A BPSK/QPSK timing-error detector for sampled receivers,” IEEE Commun. Mag.34, 423–429 (1986).
  17. S. Savory, “Digital signal processing for coherent systems,” Optical Fiber Communication Conference, OFC ‘12, OTh3C.7, (2012).
  18. D. v. d Borne, C. R. S. Fludger, T. Duthel, T. Wuth, E. D. Schmidt, C. Schulien, E. Gottwald, G. D. Khoe, and H. de Waardt, “Carrier phase estimation for coherent equalization of 43-Gb/s POLMUXNRZ-DQPSK transmission with 10.7-Gb/s NRZ neighbours,” European Conference on Optical Communication, ECOC’107, 7.2.3, (2007).
  19. S. Mumtaz, R. Essiambre, and G. P. Agrawal, “Reduction of nonlinear penalties due to linear coupling in multicore optical fibers,” IEEE Photon. Technol. Lett.24(18), 1574–1576 (2012).
    [CrossRef]
  20. X. Chen, J. E. Hurley, M.-J. Li, and R. S. Vodhanel, “Effects of multipath interference (MPI) on the performance of transmission systems using Fabry-Perot lasers and short bend insensitive jumper fibers,” Optical Fiber Communication Conference, OFC ‘09, NWC5, (2009).

2012

G. Rademacher, S. Warm, and K. Petermann, “Analytical description of cross-modal nonlinear interaction in mode multiplexed multmode fibers,” IEEE Photon. Technol. Lett.24(21), 1929–1932 (2012).
[CrossRef]

F. Ferreira, S. Jansen, P. Monteiro, and H. Silva, “Nonlinear semi-analytical model for simulation of few-mode fiber transmission,” IEEE Photon. Technol. Lett.24(4), 240–242 (2012).
[CrossRef]

S. Mumtaz, R. Essiambre, and G. P. Agrawal, “Reduction of nonlinear penalties due to linear coupling in multicore optical fibers,” IEEE Photon. Technol. Lett.24(18), 1574–1576 (2012).
[CrossRef]

A. Mecozzi, C. Antonelli, and M. Shtaif, “Nonlinear propagation in multi-mode fibers in the strong coupling regime,” Opt. Express20(11), 11673–11678 (2012).
[CrossRef] [PubMed]

2011

M. Salsi, G. Charlet, and S. Bigo, “Nonlinear effects in mode-division-multiplexed transmission over few-mode optical fiber,” IEEE Photon. Technol. Lett.23(18), 1316–1318 (2011).
[CrossRef]

P. J. Winzer, “Energy-efficient optical transport capacity scaling through spatial multiplexing,” IEEE Photon. Technol. Lett.23(13), 851–853 (2011).
[CrossRef]

1986

F. Gardner, “A BPSK/QPSK timing-error detector for sampled receivers,” IEEE Commun. Mag.34, 423–429 (1986).

Agrawal, G. P.

S. Mumtaz, R. Essiambre, and G. P. Agrawal, “Reduction of nonlinear penalties due to linear coupling in multicore optical fibers,” IEEE Photon. Technol. Lett.24(18), 1574–1576 (2012).
[CrossRef]

Antonelli, C.

Bigo, S.

M. Salsi, G. Charlet, and S. Bigo, “Nonlinear effects in mode-division-multiplexed transmission over few-mode optical fiber,” IEEE Photon. Technol. Lett.23(18), 1316–1318 (2011).
[CrossRef]

Charlet, G.

M. Salsi, G. Charlet, and S. Bigo, “Nonlinear effects in mode-division-multiplexed transmission over few-mode optical fiber,” IEEE Photon. Technol. Lett.23(18), 1316–1318 (2011).
[CrossRef]

Essiambre, R.

S. Mumtaz, R. Essiambre, and G. P. Agrawal, “Reduction of nonlinear penalties due to linear coupling in multicore optical fibers,” IEEE Photon. Technol. Lett.24(18), 1574–1576 (2012).
[CrossRef]

Ferreira, F.

F. Ferreira, S. Jansen, P. Monteiro, and H. Silva, “Nonlinear semi-analytical model for simulation of few-mode fiber transmission,” IEEE Photon. Technol. Lett.24(4), 240–242 (2012).
[CrossRef]

Gardner, F.

F. Gardner, “A BPSK/QPSK timing-error detector for sampled receivers,” IEEE Commun. Mag.34, 423–429 (1986).

Jansen, S.

F. Ferreira, S. Jansen, P. Monteiro, and H. Silva, “Nonlinear semi-analytical model for simulation of few-mode fiber transmission,” IEEE Photon. Technol. Lett.24(4), 240–242 (2012).
[CrossRef]

Mecozzi, A.

Monteiro, P.

F. Ferreira, S. Jansen, P. Monteiro, and H. Silva, “Nonlinear semi-analytical model for simulation of few-mode fiber transmission,” IEEE Photon. Technol. Lett.24(4), 240–242 (2012).
[CrossRef]

Mumtaz, S.

S. Mumtaz, R. Essiambre, and G. P. Agrawal, “Reduction of nonlinear penalties due to linear coupling in multicore optical fibers,” IEEE Photon. Technol. Lett.24(18), 1574–1576 (2012).
[CrossRef]

Petermann, K.

G. Rademacher, S. Warm, and K. Petermann, “Analytical description of cross-modal nonlinear interaction in mode multiplexed multmode fibers,” IEEE Photon. Technol. Lett.24(21), 1929–1932 (2012).
[CrossRef]

Rademacher, G.

G. Rademacher, S. Warm, and K. Petermann, “Analytical description of cross-modal nonlinear interaction in mode multiplexed multmode fibers,” IEEE Photon. Technol. Lett.24(21), 1929–1932 (2012).
[CrossRef]

Salsi, M.

M. Salsi, G. Charlet, and S. Bigo, “Nonlinear effects in mode-division-multiplexed transmission over few-mode optical fiber,” IEEE Photon. Technol. Lett.23(18), 1316–1318 (2011).
[CrossRef]

Shtaif, M.

Silva, H.

F. Ferreira, S. Jansen, P. Monteiro, and H. Silva, “Nonlinear semi-analytical model for simulation of few-mode fiber transmission,” IEEE Photon. Technol. Lett.24(4), 240–242 (2012).
[CrossRef]

Warm, S.

G. Rademacher, S. Warm, and K. Petermann, “Analytical description of cross-modal nonlinear interaction in mode multiplexed multmode fibers,” IEEE Photon. Technol. Lett.24(21), 1929–1932 (2012).
[CrossRef]

Winzer, P. J.

P. J. Winzer, “Energy-efficient optical transport capacity scaling through spatial multiplexing,” IEEE Photon. Technol. Lett.23(13), 851–853 (2011).
[CrossRef]

IEEE Commun. Mag.

F. Gardner, “A BPSK/QPSK timing-error detector for sampled receivers,” IEEE Commun. Mag.34, 423–429 (1986).

IEEE Photon. Technol. Lett.

S. Mumtaz, R. Essiambre, and G. P. Agrawal, “Reduction of nonlinear penalties due to linear coupling in multicore optical fibers,” IEEE Photon. Technol. Lett.24(18), 1574–1576 (2012).
[CrossRef]

P. J. Winzer, “Energy-efficient optical transport capacity scaling through spatial multiplexing,” IEEE Photon. Technol. Lett.23(13), 851–853 (2011).
[CrossRef]

M. Salsi, G. Charlet, and S. Bigo, “Nonlinear effects in mode-division-multiplexed transmission over few-mode optical fiber,” IEEE Photon. Technol. Lett.23(18), 1316–1318 (2011).
[CrossRef]

G. Rademacher, S. Warm, and K. Petermann, “Analytical description of cross-modal nonlinear interaction in mode multiplexed multmode fibers,” IEEE Photon. Technol. Lett.24(21), 1929–1932 (2012).
[CrossRef]

F. Ferreira, S. Jansen, P. Monteiro, and H. Silva, “Nonlinear semi-analytical model for simulation of few-mode fiber transmission,” IEEE Photon. Technol. Lett.24(4), 240–242 (2012).
[CrossRef]

Opt. Express

Other

G. Agrawal, Applications of nonlinear Fibre Optics chapter 2, (Academic Press, 2001).

D. Marcuse, Theory of Dielectric Optical Waveguides chapters 3&5, (New York: Academic, 1974).

N. MacSuibhne, R. Watts, S. Sygletos, F. C. G. Gunning, L. GrüNernielsen, and A. D. Ellis, “Nonlinear pulse distortion in few-mode fiber,” European Conference on Optical Communication, ECOC’12, Th.2.F.5, (2012).

J. M. Kahn, K. Ho, and M. B. Shemirani, “Mode coupling effects in multi-mode fibers,” Optical Fiber Communication Conference, OFC ‘12, OW3D.3, (2012).

J. Vuong, P. Ramantanis, A. Seck, D. Bendimerad, and Y. Frignac, “Understanding discrete linear mode coupling in few-mode fiber transmission systems,” European Conference on Optical Communication, ECOC’11, Tu5B2, (2011).

P. Sillard, M. Bigot-Astruc, D. Boivin, H. Maerten, and L. Provost, “Few-mode fiber for uncoupled mode-division multiplexing transmissions,” European Conference on Optical Communication, ECOC’11, Tu5C7, (2011).

E. Ip, N. Bai, Y. Huang, E. Mateo, F. Yaman, S. Bickham, H. Tam, C. Lu, M. Li, S. Ten, A. P. T. Lau, V. Tse, G. Peng, C. Montero, X. Prieto, and G. Li, “88x3x112-Gb/s WDM transmission over 50-km of three-Mode fiber with inline multimode fiber amplifier,” European Conference on Optical Communication, ECOC’11, Th.13.C.2, (2011).

T. Hayashi, T. Sasaki, and E. Sasaoka, “Multi-core fibers for high capacity transmission,” Optical Fiber Communication Conference, OFC ‘12, OTu1D.4, (2012).

S. Randel, R. Ryf, A. Gnauck, M. A. Mestre, C. Schmidt, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, and R. Lingle, “Mode-multiplexed 6×20-GBd QPSK transmission over 1200-km DGD-compensated few-mode fiber,” Optical Fiber Communication Conference, OFC ‘12, PDP5C.5, (2012).

X. Chen, J. E. Hurley, M.-J. Li, and R. S. Vodhanel, “Effects of multipath interference (MPI) on the performance of transmission systems using Fabry-Perot lasers and short bend insensitive jumper fibers,” Optical Fiber Communication Conference, OFC ‘09, NWC5, (2009).

R. Essiambre and A. Mecozzi, “Capacity limits in single mode fiber and scaling for spatial multiplexing,” Optical Fiber Communication Conference, OFC ‘12, OW3D.1, (2012).

S. Savory, “Digital signal processing for coherent systems,” Optical Fiber Communication Conference, OFC ‘12, OTh3C.7, (2012).

D. v. d Borne, C. R. S. Fludger, T. Duthel, T. Wuth, E. D. Schmidt, C. Schulien, E. Gottwald, G. D. Khoe, and H. de Waardt, “Carrier phase estimation for coherent equalization of 43-Gb/s POLMUXNRZ-DQPSK transmission with 10.7-Gb/s NRZ neighbours,” European Conference on Optical Communication, ECOC’107, 7.2.3, (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Simulation setup for few-mode fiber transmission over 1,600km, employing 28Gbaud QPSK modulation, and digital signal processing at the receiver. I: Inphase, Q: Quadrature, ĸ: Coupling efficiency, EDFA: Erbium doped fiber amplifier, ADC: Analog-to-digital-converter.

Fig. 2
Fig. 2

Q-factor [dB] as a function of launch power [dBm], for QPSK transmission over 1,600km of the high DMD fiber with zero mode coupling. a) Launch power of the fast mode (open squares) is varied and launch power of the slow mode (solid circles) is fixed. b) Launch power of the slow mode is varied and launch power of the fast mode is fixed (symbols unchanged). (This figure represents a case of individual/mutual power optimization)

Fig. 3
Fig. 3

a) Q-factor [dB] as a function of launch power per mode [dBm], for QPSK transmission over 1,600km with 5% mode coupling strength, for high DMD fiber (blue squares) showing slow (open) and fast (solid) modes and low DMD fiber (red circles) for slow (solid) and fast (open) modes. b&c) Constellation plots, at optimum launch power of 1dBm, for b) fast mode transmitted over high DMD fiber, and c) slow mode transmitted over low DMD fiber. (This figure represents a case of homogenous power optimization).

Fig. 4
Fig. 4

a) Q-factor as a function of mode coupling strength [%], for QPSK transmission over 1,600km, for high (square) and low (circle) DMD fiber. b) Nonlinear Q-factor penalty difference (Q factor at optimum launch power and Q factor without nonlinearity at the same lauch power) as a function of mode coupling strength [%], for high (square) and low (circle) DMD fiber. (This figure represents a case of homogenous power optimization).

Fig. 5
Fig. 5

Q-factor [dB] as a function of launch power [dBm], for QPSK transmission over 1,600km, employing a) High DGD fiber (square: fast mode, circle: slow mode) and b) Low DMD fiber (square: slow mode, circle: fast mode), where solid symbols represent the channel with fixed power (1dBm) and open symbols the channel with variable power. (This figure represents a case of individual/mutual power optimization)

Fig. 6
Fig. 6

Q-factor penalty [dB] as a function of mode coupling strength [%], for QPSK transmission over 1,600km. a) High DMD fiber (fast mode is with variable power). Squares: Q1_HighDMD = Q [SlowMode(at individual Poptimal.) - SlowMode(at individual Poptimal of FastMode)], Circles: Q2_HighDMD = Q [SlowMode(at individual Poptimal) - SlowMode(at mutual Poptimal)], Up-triangle: Q3_HighDMD = Q [FastMode(at individual Poptimal) - FastMode(at mutual Poptimal)]. b) Low DMD fiber (slow mode is with variable power). Squares: Q1_LowDMD = Q [FastMode(at individual Poptimal) - FastMode(at individual Poptimal of SlowMode)], Circles: Q2_LowDMD = Q [FastMode(at individual Poptimal) - FastMode(at mutual Poptimal)], Up-triangle: Q3_LowDMD = Q [SlowMode(at individual Poptimal) - SlowMode(at mutual Poptimal)].

Tables (2)

Tables Icon

Table 1 Power allocation strategies for bi-modal transmission system

Tables Icon

Table 2 Fiber parameters at 1550nm (D: dispersion, Aeff: effective area, α: loss, n2: nonlinear index, V: normalized frequency)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A 1 z i δ a A 1 + 1 v g1 A 1 t i β 21 2 2 A 1 t 2 + α 2 =iκ A 2 i n 2 ω c ( f 11 | A 1 | 2 +2 f 12 | A 2 | 2 ) A 1
A 2 z +i δ a A 2 + 1 v g2 A 2 t i β 22 2 2 A 2 t 2 + α 2 =iκ A 1 i n 2 ω c ( f 22 | A 2 | 2 +2 f 21 | A 1 | 2 ) A 2
f pq = | F p ( x,y ) | 2 | F q ( x,y ) | 2 dxdy | F p ( x,y ) | 2 dxdy | F q ( x,y ) | 2 dxdy

Metrics