Abstract

We propose an exactly solvable electrodynamical model for surface plasmon amplification by stimulated emission of radiation (spaser). The gain medium is described in terms of the nonlinear permittivity with negative losses. The model demonstrates the main feature of a spaser: a self-oscillating state (spasing) arising without an external driving field if the pumping exceeds some threshold value. In addition, it properly describes synchronization of a spaser by an external field within the Arnold tongue and the possibility of compensating for Joule losses when the pumping is below threshold. The model also gives correct qualitative dependencies of spaser characteristics on pumping.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. Shalaev and S. Kawata, eds., Nanophotonics with Surface Plasmons (Elsevier, 2007).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. S. I. Bozhevolniy, ed., Plasmonic. Nanoguides and Circuits (Pan Stanford Publishing, 2009).
  4. S. V. Gaponenko, Introduction to Nanophotonics (Cambridge University, 2010).
  5. Z. M. Wang and A. Neogi, eds., Nanoscale Photonics and Optoelectronics (Springer, 2010).
  6. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011).
    [CrossRef] [PubMed]
  7. R. Marques, F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications (Wiley, 2008).
  8. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).
  9. S. A. Ramakrishna and J. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B67(20), 201101 (2003).
    [CrossRef]
  10. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett.31(20), 3022–3024 (2006).
    [CrossRef] [PubMed]
  11. A. K. Popov and V. M. Shalaev, “Compensating losses in negative-index metamaterials by optical parametric amplification,” Opt. Lett.31, 2169–2171 (2006).
    [CrossRef] [PubMed]
  12. A. K. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B75(8), 085436 (2007).
    [CrossRef]
  13. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics2(6), 351–354 (2008).
    [CrossRef]
  14. A. Fang, T. Koschny, and C. M. Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt.12(2), 024013 (2010).
    [CrossRef]
  15. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
    [CrossRef] [PubMed]
  16. E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Forced synchronization of spaser by an external optical wave,” Opt. Express19(25), 24849–24857 (2011).
    [CrossRef] [PubMed]
  17. E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Dipole response of spaser on an external optical wave,” Opt. Lett.36(21), 4302–4304 (2011).
    [CrossRef] [PubMed]
  18. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003).
    [CrossRef] [PubMed]
  19. I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O’Reilly, “Dipole nanolaser,” Phys. Rev. A71(6), 063812 (2005).
    [CrossRef]
  20. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
    [CrossRef] [PubMed]
  21. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
    [CrossRef] [PubMed]
  22. R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10(2), 110–113 (2011).
    [CrossRef] [PubMed]
  23. C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett.11(10), 4256–4260 (2011).
    [CrossRef] [PubMed]
  24. Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science337(6093), 450–453 (2012).
    [CrossRef] [PubMed]
  25. K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B71(11), 115409 (2005).
    [CrossRef]
  26. M. I. Stockman, “Spasers explained,” Nat. Photonics2(6), 327–329 (2008).
    [CrossRef]
  27. M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt.12(2), 024004 (2010).
    [CrossRef]
  28. I. R. Gabitov, B. Kennedy, and A. I. Maimistov, “Coherent amplification of optical pulses in metamaterials,” IEEE J. Sel. Top. Quantum Electron.16(2), 401–409 (2010).
    [CrossRef]
  29. V. V. Klimov, Y. N. Istomin, and Y. A. Kosevich, “Plasma phenomena in nanostructures and neutron stars,” Phys. Usp.51(8), 839–859 (2008).
    [CrossRef]
  30. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  31. S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming Losses with Gain in a Negative Refractive Index Metamaterial,” Phys. Rev. Lett.105(12), 127401 (2010).
    [CrossRef] [PubMed]
  32. E. S. Andrianov, D. G. Baranov, A. A. Puhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Loss compensation by spasers in metamaterials,” http://arxiv.org/abs/1209.0422 .
  33. A. S. Rosenthal and T. Ghannam, “Dipole nanolasers: A study of their quantum properties,” Phys. Rev. A79(4), 043824 (2009).
    [CrossRef]
  34. E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Rabi oscillations in spasers during nonradiative plasmon excitation,” Phys. Rev. B85(3), 035405 (2012).
    [CrossRef]
  35. A. N. Lagarkov, A. K. Sarychev, V. N. Kissel, and G. Tartakovsky, “Superresolution and enhancement in metamaterials,” Phys. Usp.52(9), 959–967 (2009).
    [CrossRef]
  36. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).
  37. A. A. Zyablovsky, A. V. Dorofeenko, A. A. Pukhov, and A. P. Vinogradov, “Lasing in a gain slab as a consequence of the causality principle,” J. Commun. Technol. Electron.56(9), 1139–1145 (2011).
    [CrossRef]
  38. S. Solimeno, B. Crosignani, and P. Di Porto, Guiding, Diffraction, and Confinement of Optical Radiation (Academic, 1986).
  39. J. A. Gordon and R. W. Ziolkowski, “The design and simulated performance of a coated nano-particle laser,” Opt. Express15(5), 2622–2653 (2007).
    [CrossRef] [PubMed]
  40. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett.33(11), 1261–1263 (2008).
    [CrossRef] [PubMed]
  41. X. F. Li and S. F. Yu, “Design of low-threshold compact Au-nanoparticle lasers,” Opt. Lett.35(15), 2535–2537 (2010).
    [CrossRef] [PubMed]
  42. A. Veltri and A. Aradian, “Optical response of a metallic nanoparticle immersed in a medium with optical gain,” Phys. Rev. B85(11), 115429 (2012).
    [CrossRef]
  43. N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett.85(21), 5040–5042 (2004).
    [CrossRef]
  44. R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (John Wiley & Sons Inc, 1969).
  45. P. Sperber, W. Spangler, B. Meier, and A. Penzkofer, “Experimental and theoretical investigation of tunable picosecond pulse generation in longitudinally pumped dye laser generators and amplifiers,” Opt. Quantum Electron.20(5), 395–431 (1988).
    [CrossRef]
  46. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  47. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  48. C. F. Boheren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley, 1983)
  49. A. P. Vinogradov, E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, and A. A. Lisyansky, “Quantum plasmonics of metamaterials: loss compensation using spasers,” Phys. Usp.55(10), 1046–1053 (2012).
    [CrossRef]
  50. M. Wegener, J. L. García-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express16(24), 19785–19798 (2008).
    [CrossRef] [PubMed]
  51. M. Premaratne and G. P. Agrawal, Light Propagation in Gain Medium (Cambridge University, 2011).
  52. M. I. Stockman, “Spaser action, loss compensation, and stability in plasmonic systems with gain,” Phys. Rev. Lett.106(15), 156802 (2011).
    [CrossRef] [PubMed]
  53. A. A. Lisyansky, E. S. Andrianov, A. V. Dorofeenko, A. A. Pukhov, and A. P. Vinogradov, “Forced spaser oscillations,” Proc. SPIE8457, 84570X (2012).
    [CrossRef]
  54. J. B. Khurgin and G. Sun, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” Appl. Phys. Lett.100(1), 011105 (2012).
    [CrossRef]
  55. J. B. Khurgin and G. Sun, “Injection pumped single mode surface plasmon generators: threshold, linewidth, and coherence,” Opt. Express20(14), 15309–15325 (2012).
    [CrossRef] [PubMed]
  56. P. W. Milonni and J. H. Eberly, Laser Physics (Wiley, 2010).
  57. A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations (Wiley-VCH, 1995).
  58. A. A. Zharov, R. E. Noskov, and M. V. Tsarev, “Plasmon-induced terahertz radiation generation due to symmetry breaking in a nonlinear metallic nanodimer,” J. Appl. Phys.106(7), 073104 (2009).
    [CrossRef]
  59. R. E. Noskov, P. A. Belov, and Y. S. Kivshar, “Subwavelength modulational instability and plasmon oscillons in nanoparticle arrays,” Phys. Rev. Lett.108(9), 093901 (2012).
    [CrossRef] [PubMed]
  60. A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences (Cambridge University, 2001).

2012

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science337(6093), 450–453 (2012).
[CrossRef] [PubMed]

E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Rabi oscillations in spasers during nonradiative plasmon excitation,” Phys. Rev. B85(3), 035405 (2012).
[CrossRef]

A. Veltri and A. Aradian, “Optical response of a metallic nanoparticle immersed in a medium with optical gain,” Phys. Rev. B85(11), 115429 (2012).
[CrossRef]

A. P. Vinogradov, E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, and A. A. Lisyansky, “Quantum plasmonics of metamaterials: loss compensation using spasers,” Phys. Usp.55(10), 1046–1053 (2012).
[CrossRef]

A. A. Lisyansky, E. S. Andrianov, A. V. Dorofeenko, A. A. Pukhov, and A. P. Vinogradov, “Forced spaser oscillations,” Proc. SPIE8457, 84570X (2012).
[CrossRef]

J. B. Khurgin and G. Sun, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” Appl. Phys. Lett.100(1), 011105 (2012).
[CrossRef]

J. B. Khurgin and G. Sun, “Injection pumped single mode surface plasmon generators: threshold, linewidth, and coherence,” Opt. Express20(14), 15309–15325 (2012).
[CrossRef] [PubMed]

R. E. Noskov, P. A. Belov, and Y. S. Kivshar, “Subwavelength modulational instability and plasmon oscillons in nanoparticle arrays,” Phys. Rev. Lett.108(9), 093901 (2012).
[CrossRef] [PubMed]

2011

M. I. Stockman, “Spaser action, loss compensation, and stability in plasmonic systems with gain,” Phys. Rev. Lett.106(15), 156802 (2011).
[CrossRef] [PubMed]

A. A. Zyablovsky, A. V. Dorofeenko, A. A. Pukhov, and A. P. Vinogradov, “Lasing in a gain slab as a consequence of the causality principle,” J. Commun. Technol. Electron.56(9), 1139–1145 (2011).
[CrossRef]

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10(2), 110–113 (2011).
[CrossRef] [PubMed]

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett.11(10), 4256–4260 (2011).
[CrossRef] [PubMed]

E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Forced synchronization of spaser by an external optical wave,” Opt. Express19(25), 24849–24857 (2011).
[CrossRef] [PubMed]

E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Dipole response of spaser on an external optical wave,” Opt. Lett.36(21), 4302–4304 (2011).
[CrossRef] [PubMed]

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011).
[CrossRef] [PubMed]

2010

A. Fang, T. Koschny, and C. M. Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt.12(2), 024013 (2010).
[CrossRef]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

X. F. Li and S. F. Yu, “Design of low-threshold compact Au-nanoparticle lasers,” Opt. Lett.35(15), 2535–2537 (2010).
[CrossRef] [PubMed]

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming Losses with Gain in a Negative Refractive Index Metamaterial,” Phys. Rev. Lett.105(12), 127401 (2010).
[CrossRef] [PubMed]

M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt.12(2), 024004 (2010).
[CrossRef]

I. R. Gabitov, B. Kennedy, and A. I. Maimistov, “Coherent amplification of optical pulses in metamaterials,” IEEE J. Sel. Top. Quantum Electron.16(2), 401–409 (2010).
[CrossRef]

2009

A. S. Rosenthal and T. Ghannam, “Dipole nanolasers: A study of their quantum properties,” Phys. Rev. A79(4), 043824 (2009).
[CrossRef]

A. N. Lagarkov, A. K. Sarychev, V. N. Kissel, and G. Tartakovsky, “Superresolution and enhancement in metamaterials,” Phys. Usp.52(9), 959–967 (2009).
[CrossRef]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

A. A. Zharov, R. E. Noskov, and M. V. Tsarev, “Plasmon-induced terahertz radiation generation due to symmetry breaking in a nonlinear metallic nanodimer,” J. Appl. Phys.106(7), 073104 (2009).
[CrossRef]

2008

M. Wegener, J. L. García-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express16(24), 19785–19798 (2008).
[CrossRef] [PubMed]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics2(6), 351–354 (2008).
[CrossRef]

V. V. Klimov, Y. N. Istomin, and Y. A. Kosevich, “Plasma phenomena in nanostructures and neutron stars,” Phys. Usp.51(8), 839–859 (2008).
[CrossRef]

M. I. Stockman, “Spasers explained,” Nat. Photonics2(6), 327–329 (2008).
[CrossRef]

A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett.33(11), 1261–1263 (2008).
[CrossRef] [PubMed]

2007

J. A. Gordon and R. W. Ziolkowski, “The design and simulated performance of a coated nano-particle laser,” Opt. Express15(5), 2622–2653 (2007).
[CrossRef] [PubMed]

A. K. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B75(8), 085436 (2007).
[CrossRef]

2006

2005

K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B71(11), 115409 (2005).
[CrossRef]

I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O’Reilly, “Dipole nanolaser,” Phys. Rev. A71(6), 063812 (2005).
[CrossRef]

2004

N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett.85(21), 5040–5042 (2004).
[CrossRef]

2003

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003).
[CrossRef] [PubMed]

S. A. Ramakrishna and J. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B67(20), 201101 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

1988

P. Sperber, W. Spangler, B. Meier, and A. Penzkofer, “Experimental and theoretical investigation of tunable picosecond pulse generation in longitudinally pumped dye laser generators and amplifiers,” Opt. Quantum Electron.20(5), 395–431 (1988).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Adegoke, J.

Ahn, H.

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett.11(10), 4256–4260 (2011).
[CrossRef] [PubMed]

Andrianov, E. S.

E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Rabi oscillations in spasers during nonradiative plasmon excitation,” Phys. Rev. B85(3), 035405 (2012).
[CrossRef]

A. P. Vinogradov, E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, and A. A. Lisyansky, “Quantum plasmonics of metamaterials: loss compensation using spasers,” Phys. Usp.55(10), 1046–1053 (2012).
[CrossRef]

A. A. Lisyansky, E. S. Andrianov, A. V. Dorofeenko, A. A. Pukhov, and A. P. Vinogradov, “Forced spaser oscillations,” Proc. SPIE8457, 84570X (2012).
[CrossRef]

E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Forced synchronization of spaser by an external optical wave,” Opt. Express19(25), 24849–24857 (2011).
[CrossRef] [PubMed]

E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Dipole response of spaser on an external optical wave,” Opt. Lett.36(21), 4302–4304 (2011).
[CrossRef] [PubMed]

Aradian, A.

A. Veltri and A. Aradian, “Optical response of a metallic nanoparticle immersed in a medium with optical gain,” Phys. Rev. B85(11), 115429 (2012).
[CrossRef]

Bahoura, M.

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Bartal, G.

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10(2), 110–113 (2011).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Belov, P. A.

R. E. Noskov, P. A. Belov, and Y. S. Kivshar, “Subwavelength modulational instability and plasmon oscillons in nanoparticle arrays,” Phys. Rev. Lett.108(9), 093901 (2012).
[CrossRef] [PubMed]

Bergman, D. J.

K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B71(11), 115409 (2005).
[CrossRef]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003).
[CrossRef] [PubMed]

Chang, W.-H.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Chen, H.-Y.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Chen, L.-J.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Chettiar, U. K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Dabidian, N.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Dorofeenko, A. V.

E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Rabi oscillations in spasers during nonradiative plasmon excitation,” Phys. Rev. B85(3), 035405 (2012).
[CrossRef]

A. A. Lisyansky, E. S. Andrianov, A. V. Dorofeenko, A. A. Pukhov, and A. P. Vinogradov, “Forced spaser oscillations,” Proc. SPIE8457, 84570X (2012).
[CrossRef]

A. P. Vinogradov, E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, and A. A. Lisyansky, “Quantum plasmonics of metamaterials: loss compensation using spasers,” Phys. Usp.55(10), 1046–1053 (2012).
[CrossRef]

A. A. Zyablovsky, A. V. Dorofeenko, A. A. Pukhov, and A. P. Vinogradov, “Lasing in a gain slab as a consequence of the causality principle,” J. Commun. Technol. Electron.56(9), 1139–1145 (2011).
[CrossRef]

E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Dipole response of spaser on an external optical wave,” Opt. Lett.36(21), 4302–4304 (2011).
[CrossRef] [PubMed]

E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Forced synchronization of spaser by an external optical wave,” Opt. Express19(25), 24849–24857 (2011).
[CrossRef] [PubMed]

Drachev, V. P.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett.31(20), 3022–3024 (2006).
[CrossRef] [PubMed]

Fainman, Y.

Fang, A.

A. Fang, T. Koschny, and C. M. Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt.12(2), 024013 (2010).
[CrossRef]

Fedotov, V. A.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics2(6), 351–354 (2008).
[CrossRef]

Feng, L.

Gabitov, I. R.

I. R. Gabitov, B. Kennedy, and A. I. Maimistov, “Coherent amplification of optical pulses in metamaterials,” IEEE J. Sel. Top. Quantum Electron.16(2), 401–409 (2010).
[CrossRef]

García-Pomar, J. L.

Ghannam, T.

A. S. Rosenthal and T. Ghannam, “Dipole nanolasers: A study of their quantum properties,” Phys. Rev. A79(4), 043824 (2009).
[CrossRef]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Gordon, J. A.

Gwo, S.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science337(6093), 450–453 (2012).
[CrossRef] [PubMed]

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett.11(10), 4256–4260 (2011).
[CrossRef] [PubMed]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Hamm, J. M.

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming Losses with Gain in a Negative Refractive Index Metamaterial,” Phys. Rev. Lett.105(12), 127401 (2010).
[CrossRef] [PubMed]

He, C.-L.

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett.11(10), 4256–4260 (2011).
[CrossRef] [PubMed]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Hess, O.

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming Losses with Gain in a Negative Refractive Index Metamaterial,” Phys. Rev. Lett.105(12), 127401 (2010).
[CrossRef] [PubMed]

Istomin, Y. N.

V. V. Klimov, Y. N. Istomin, and Y. A. Kosevich, “Plasma phenomena in nanostructures and neutron stars,” Phys. Usp.51(8), 839–859 (2008).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Kennedy, B.

I. R. Gabitov, B. Kennedy, and A. I. Maimistov, “Coherent amplification of optical pulses in metamaterials,” IEEE J. Sel. Top. Quantum Electron.16(2), 401–409 (2010).
[CrossRef]

Khurgin, J. B.

J. B. Khurgin and G. Sun, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” Appl. Phys. Lett.100(1), 011105 (2012).
[CrossRef]

J. B. Khurgin and G. Sun, “Injection pumped single mode surface plasmon generators: threshold, linewidth, and coherence,” Opt. Express20(14), 15309–15325 (2012).
[CrossRef] [PubMed]

Kildishev, A. V.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Kim, J.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Kissel, V. N.

A. N. Lagarkov, A. K. Sarychev, V. N. Kissel, and G. Tartakovsky, “Superresolution and enhancement in metamaterials,” Phys. Usp.52(9), 959–967 (2009).
[CrossRef]

Kivshar, Y. S.

R. E. Noskov, P. A. Belov, and Y. S. Kivshar, “Subwavelength modulational instability and plasmon oscillons in nanoparticle arrays,” Phys. Rev. Lett.108(9), 093901 (2012).
[CrossRef] [PubMed]

Klimov, V. V.

V. V. Klimov, Y. N. Istomin, and Y. A. Kosevich, “Plasma phenomena in nanostructures and neutron stars,” Phys. Usp.51(8), 839–859 (2008).
[CrossRef]

Koschny, T.

A. Fang, T. Koschny, and C. M. Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt.12(2), 024013 (2010).
[CrossRef]

Kosevich, Y. A.

V. V. Klimov, Y. N. Istomin, and Y. A. Kosevich, “Plasma phenomena in nanostructures and neutron stars,” Phys. Usp.51(8), 839–859 (2008).
[CrossRef]

Kuo, C.-T.

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett.11(10), 4256–4260 (2011).
[CrossRef] [PubMed]

Lagarkov, A. N.

A. N. Lagarkov, A. K. Sarychev, V. N. Kissel, and G. Tartakovsky, “Superresolution and enhancement in metamaterials,” Phys. Usp.52(9), 959–967 (2009).
[CrossRef]

Lawandy, N. M.

N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett.85(21), 5040–5042 (2004).
[CrossRef]

Li, B.-H.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Li, K.

K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B71(11), 115409 (2005).
[CrossRef]

Li, X.

K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B71(11), 115409 (2005).
[CrossRef]

Li, X. F.

Lin, M.-H.

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett.11(10), 4256–4260 (2011).
[CrossRef] [PubMed]

Linden, S.

Lisyansky, A. A.

A. A. Lisyansky, E. S. Andrianov, A. V. Dorofeenko, A. A. Pukhov, and A. P. Vinogradov, “Forced spaser oscillations,” Proc. SPIE8457, 84570X (2012).
[CrossRef]

A. P. Vinogradov, E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, and A. A. Lisyansky, “Quantum plasmonics of metamaterials: loss compensation using spasers,” Phys. Usp.55(10), 1046–1053 (2012).
[CrossRef]

E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Rabi oscillations in spasers during nonradiative plasmon excitation,” Phys. Rev. B85(3), 035405 (2012).
[CrossRef]

E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Forced synchronization of spaser by an external optical wave,” Opt. Express19(25), 24849–24857 (2011).
[CrossRef] [PubMed]

E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Dipole response of spaser on an external optical wave,” Opt. Lett.36(21), 4302–4304 (2011).
[CrossRef] [PubMed]

Lomakin, V.

Lu, M.-Y.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Lu, Y.-J.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Ma, R.-M.

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10(2), 110–113 (2011).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Maimistov, A. I.

I. R. Gabitov, B. Kennedy, and A. I. Maimistov, “Coherent amplification of optical pulses in metamaterials,” IEEE J. Sel. Top. Quantum Electron.16(2), 401–409 (2010).
[CrossRef]

Meier, B.

P. Sperber, W. Spangler, B. Meier, and A. Penzkofer, “Experimental and theoretical investigation of tunable picosecond pulse generation in longitudinally pumped dye laser generators and amplifiers,” Opt. Quantum Electron.20(5), 395–431 (1988).
[CrossRef]

Meinzer, N.

Mizrahi, A.

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Nezhad, M. P.

Ni, X.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett.31(20), 3022–3024 (2006).
[CrossRef] [PubMed]

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Noskov, R. E.

R. E. Noskov, P. A. Belov, and Y. S. Kivshar, “Subwavelength modulational instability and plasmon oscillons in nanoparticle arrays,” Phys. Rev. Lett.108(9), 093901 (2012).
[CrossRef] [PubMed]

A. A. Zharov, R. E. Noskov, and M. V. Tsarev, “Plasmon-induced terahertz radiation generation due to symmetry breaking in a nonlinear metallic nanodimer,” J. Appl. Phys.106(7), 073104 (2009).
[CrossRef]

O’Reilly, E. P.

I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O’Reilly, “Dipole nanolaser,” Phys. Rev. A71(6), 063812 (2005).
[CrossRef]

Oulton, R. F.

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10(2), 110–113 (2011).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Papasimakis, N.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics2(6), 351–354 (2008).
[CrossRef]

Pendry, J.

S. A. Ramakrishna and J. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B67(20), 201101 (2003).
[CrossRef]

Penzkofer, A.

P. Sperber, W. Spangler, B. Meier, and A. Penzkofer, “Experimental and theoretical investigation of tunable picosecond pulse generation in longitudinally pumped dye laser generators and amplifiers,” Opt. Quantum Electron.20(5), 395–431 (1988).
[CrossRef]

Popov, A. K.

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Prosvirnin, S. L.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics2(6), 351–354 (2008).
[CrossRef]

Protsenko, I. E.

I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O’Reilly, “Dipole nanolaser,” Phys. Rev. A71(6), 063812 (2005).
[CrossRef]

Pukhov, A. A.

E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Rabi oscillations in spasers during nonradiative plasmon excitation,” Phys. Rev. B85(3), 035405 (2012).
[CrossRef]

A. P. Vinogradov, E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, and A. A. Lisyansky, “Quantum plasmonics of metamaterials: loss compensation using spasers,” Phys. Usp.55(10), 1046–1053 (2012).
[CrossRef]

A. A. Lisyansky, E. S. Andrianov, A. V. Dorofeenko, A. A. Pukhov, and A. P. Vinogradov, “Forced spaser oscillations,” Proc. SPIE8457, 84570X (2012).
[CrossRef]

A. A. Zyablovsky, A. V. Dorofeenko, A. A. Pukhov, and A. P. Vinogradov, “Lasing in a gain slab as a consequence of the causality principle,” J. Commun. Technol. Electron.56(9), 1139–1145 (2011).
[CrossRef]

E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Dipole response of spaser on an external optical wave,” Opt. Lett.36(21), 4302–4304 (2011).
[CrossRef] [PubMed]

E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Forced synchronization of spaser by an external optical wave,” Opt. Express19(25), 24849–24857 (2011).
[CrossRef] [PubMed]

Pusch, A.

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming Losses with Gain in a Negative Refractive Index Metamaterial,” Phys. Rev. Lett.105(12), 127401 (2010).
[CrossRef] [PubMed]

Qiu, X.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Ramakrishna, S. A.

S. A. Ramakrishna and J. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B67(20), 201101 (2003).
[CrossRef]

Ritzo, B. A.

Rosenthal, A. S.

A. S. Rosenthal and T. Ghannam, “Dipole nanolasers: A study of their quantum properties,” Phys. Rev. A79(4), 043824 (2009).
[CrossRef]

Ruther, M.

Samoilov, V. N.

I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O’Reilly, “Dipole nanolaser,” Phys. Rev. A71(6), 063812 (2005).
[CrossRef]

Sanders, C. E.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Sarychev, A. K.

A. N. Lagarkov, A. K. Sarychev, V. N. Kissel, and G. Tartakovsky, “Superresolution and enhancement in metamaterials,” Phys. Usp.52(9), 959–967 (2009).
[CrossRef]

A. K. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B75(8), 085436 (2007).
[CrossRef]

Shalaev, V. M.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

A. K. Popov and V. M. Shalaev, “Compensating losses in negative-index metamaterials by optical parametric amplification,” Opt. Lett.31, 2169–2171 (2006).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett.31(20), 3022–3024 (2006).
[CrossRef] [PubMed]

Shih, C.-K.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Shvets, G.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Slutsky, B. A.

Small, C. E.

Sorger, V. J.

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10(2), 110–113 (2011).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Soukoulis, C. M.

Spangler, W.

P. Sperber, W. Spangler, B. Meier, and A. Penzkofer, “Experimental and theoretical investigation of tunable picosecond pulse generation in longitudinally pumped dye laser generators and amplifiers,” Opt. Quantum Electron.20(5), 395–431 (1988).
[CrossRef]

Sperber, P.

P. Sperber, W. Spangler, B. Meier, and A. Penzkofer, “Experimental and theoretical investigation of tunable picosecond pulse generation in longitudinally pumped dye laser generators and amplifiers,” Opt. Quantum Electron.20(5), 395–431 (1988).
[CrossRef]

Stockman, M. I.

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011).
[CrossRef] [PubMed]

M. I. Stockman, “Spaser action, loss compensation, and stability in plasmonic systems with gain,” Phys. Rev. Lett.106(15), 156802 (2011).
[CrossRef] [PubMed]

M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt.12(2), 024004 (2010).
[CrossRef]

M. I. Stockman, “Spasers explained,” Nat. Photonics2(6), 327–329 (2008).
[CrossRef]

K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B71(11), 115409 (2005).
[CrossRef]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003).
[CrossRef] [PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Sun, G.

J. B. Khurgin and G. Sun, “Injection pumped single mode surface plasmon generators: threshold, linewidth, and coherence,” Opt. Express20(14), 15309–15325 (2012).
[CrossRef] [PubMed]

J. B. Khurgin and G. Sun, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” Appl. Phys. Lett.100(1), 011105 (2012).
[CrossRef]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Tartakovsky, G.

A. N. Lagarkov, A. K. Sarychev, V. N. Kissel, and G. Tartakovsky, “Superresolution and enhancement in metamaterials,” Phys. Usp.52(9), 959–967 (2009).
[CrossRef]

A. K. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B75(8), 085436 (2007).
[CrossRef]

Tsakmakidis, K. L.

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming Losses with Gain in a Negative Refractive Index Metamaterial,” Phys. Rev. Lett.105(12), 127401 (2010).
[CrossRef] [PubMed]

Tsarev, M. V.

A. A. Zharov, R. E. Noskov, and M. V. Tsarev, “Plasmon-induced terahertz radiation generation due to symmetry breaking in a nonlinear metallic nanodimer,” J. Appl. Phys.106(7), 073104 (2009).
[CrossRef]

Uskov, A. V.

I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O’Reilly, “Dipole nanolaser,” Phys. Rev. A71(6), 063812 (2005).
[CrossRef]

Veltri, A.

A. Veltri and A. Aradian, “Optical response of a metallic nanoparticle immersed in a medium with optical gain,” Phys. Rev. B85(11), 115429 (2012).
[CrossRef]

Vinogradov, A. P.

A. P. Vinogradov, E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, and A. A. Lisyansky, “Quantum plasmonics of metamaterials: loss compensation using spasers,” Phys. Usp.55(10), 1046–1053 (2012).
[CrossRef]

E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Rabi oscillations in spasers during nonradiative plasmon excitation,” Phys. Rev. B85(3), 035405 (2012).
[CrossRef]

A. A. Lisyansky, E. S. Andrianov, A. V. Dorofeenko, A. A. Pukhov, and A. P. Vinogradov, “Forced spaser oscillations,” Proc. SPIE8457, 84570X (2012).
[CrossRef]

A. A. Zyablovsky, A. V. Dorofeenko, A. A. Pukhov, and A. P. Vinogradov, “Lasing in a gain slab as a consequence of the causality principle,” J. Commun. Technol. Electron.56(9), 1139–1145 (2011).
[CrossRef]

E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Dipole response of spaser on an external optical wave,” Opt. Lett.36(21), 4302–4304 (2011).
[CrossRef] [PubMed]

E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Forced synchronization of spaser by an external optical wave,” Opt. Express19(25), 24849–24857 (2011).
[CrossRef] [PubMed]

Wang, C.-Y.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science337(6093), 450–453 (2012).
[CrossRef] [PubMed]

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett.11(10), 4256–4260 (2011).
[CrossRef] [PubMed]

Wegener, M.

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Wu, C.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Wu, C.-Y.

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett.11(10), 4256–4260 (2011).
[CrossRef] [PubMed]

Wuestner, S.

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming Losses with Gain in a Negative Refractive Index Metamaterial,” Phys. Rev. Lett.105(12), 127401 (2010).
[CrossRef] [PubMed]

Xiao, S.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Yu, S. F.

Yuan, H.-K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Zaimidoroga, O. A.

I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O’Reilly, “Dipole nanolaser,” Phys. Rev. A71(6), 063812 (2005).
[CrossRef]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhang, X.

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10(2), 110–113 (2011).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zharov, A. A.

A. A. Zharov, R. E. Noskov, and M. V. Tsarev, “Plasmon-induced terahertz radiation generation due to symmetry breaking in a nonlinear metallic nanodimer,” J. Appl. Phys.106(7), 073104 (2009).
[CrossRef]

Zheludev, N. I.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics2(6), 351–354 (2008).
[CrossRef]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett.31(20), 3022–3024 (2006).
[CrossRef] [PubMed]

Ziolkowski, R. W.

Zyablovsky, A. A.

A. A. Zyablovsky, A. V. Dorofeenko, A. A. Pukhov, and A. P. Vinogradov, “Lasing in a gain slab as a consequence of the causality principle,” J. Commun. Technol. Electron.56(9), 1139–1145 (2011).
[CrossRef]

Appl. Phys. Lett.

N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett.85(21), 5040–5042 (2004).
[CrossRef]

J. B. Khurgin and G. Sun, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” Appl. Phys. Lett.100(1), 011105 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

I. R. Gabitov, B. Kennedy, and A. I. Maimistov, “Coherent amplification of optical pulses in metamaterials,” IEEE J. Sel. Top. Quantum Electron.16(2), 401–409 (2010).
[CrossRef]

J. Appl. Phys.

A. A. Zharov, R. E. Noskov, and M. V. Tsarev, “Plasmon-induced terahertz radiation generation due to symmetry breaking in a nonlinear metallic nanodimer,” J. Appl. Phys.106(7), 073104 (2009).
[CrossRef]

J. Commun. Technol. Electron.

A. A. Zyablovsky, A. V. Dorofeenko, A. A. Pukhov, and A. P. Vinogradov, “Lasing in a gain slab as a consequence of the causality principle,” J. Commun. Technol. Electron.56(9), 1139–1145 (2011).
[CrossRef]

J. Opt.

A. Fang, T. Koschny, and C. M. Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt.12(2), 024013 (2010).
[CrossRef]

M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt.12(2), 024004 (2010).
[CrossRef]

Nano Lett.

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett.11(10), 4256–4260 (2011).
[CrossRef] [PubMed]

Nat. Mater.

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10(2), 110–113 (2011).
[CrossRef] [PubMed]

Nat. Photonics

M. I. Stockman, “Spasers explained,” Nat. Photonics2(6), 327–329 (2008).
[CrossRef]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics2(6), 351–354 (2008).
[CrossRef]

Nature

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

P. Sperber, W. Spangler, B. Meier, and A. Penzkofer, “Experimental and theoretical investigation of tunable picosecond pulse generation in longitudinally pumped dye laser generators and amplifiers,” Opt. Quantum Electron.20(5), 395–431 (1988).
[CrossRef]

Phys. Rev. A

I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O’Reilly, “Dipole nanolaser,” Phys. Rev. A71(6), 063812 (2005).
[CrossRef]

A. S. Rosenthal and T. Ghannam, “Dipole nanolasers: A study of their quantum properties,” Phys. Rev. A79(4), 043824 (2009).
[CrossRef]

Phys. Rev. B

E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Rabi oscillations in spasers during nonradiative plasmon excitation,” Phys. Rev. B85(3), 035405 (2012).
[CrossRef]

K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B71(11), 115409 (2005).
[CrossRef]

S. A. Ramakrishna and J. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B67(20), 201101 (2003).
[CrossRef]

A. K. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B75(8), 085436 (2007).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

A. Veltri and A. Aradian, “Optical response of a metallic nanoparticle immersed in a medium with optical gain,” Phys. Rev. B85(11), 115429 (2012).
[CrossRef]

Phys. Rev. Lett.

M. I. Stockman, “Spaser action, loss compensation, and stability in plasmonic systems with gain,” Phys. Rev. Lett.106(15), 156802 (2011).
[CrossRef] [PubMed]

R. E. Noskov, P. A. Belov, and Y. S. Kivshar, “Subwavelength modulational instability and plasmon oscillons in nanoparticle arrays,” Phys. Rev. Lett.108(9), 093901 (2012).
[CrossRef] [PubMed]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003).
[CrossRef] [PubMed]

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming Losses with Gain in a Negative Refractive Index Metamaterial,” Phys. Rev. Lett.105(12), 127401 (2010).
[CrossRef] [PubMed]

Phys. Usp.

A. N. Lagarkov, A. K. Sarychev, V. N. Kissel, and G. Tartakovsky, “Superresolution and enhancement in metamaterials,” Phys. Usp.52(9), 959–967 (2009).
[CrossRef]

V. V. Klimov, Y. N. Istomin, and Y. A. Kosevich, “Plasma phenomena in nanostructures and neutron stars,” Phys. Usp.51(8), 839–859 (2008).
[CrossRef]

A. P. Vinogradov, E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, and A. A. Lisyansky, “Quantum plasmonics of metamaterials: loss compensation using spasers,” Phys. Usp.55(10), 1046–1053 (2012).
[CrossRef]

Proc. SPIE

A. A. Lisyansky, E. S. Andrianov, A. V. Dorofeenko, A. A. Pukhov, and A. P. Vinogradov, “Forced spaser oscillations,” Proc. SPIE8457, 84570X (2012).
[CrossRef]

Science

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Other

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).

E. S. Andrianov, D. G. Baranov, A. A. Puhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Loss compensation by spasers in metamaterials,” http://arxiv.org/abs/1209.0422 .

S. Solimeno, B. Crosignani, and P. Di Porto, Guiding, Diffraction, and Confinement of Optical Radiation (Academic, 1986).

R. Marques, F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications (Wiley, 2008).

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).

V. M. Shalaev and S. Kawata, eds., Nanophotonics with Surface Plasmons (Elsevier, 2007).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

S. I. Bozhevolniy, ed., Plasmonic. Nanoguides and Circuits (Pan Stanford Publishing, 2009).

S. V. Gaponenko, Introduction to Nanophotonics (Cambridge University, 2010).

Z. M. Wang and A. Neogi, eds., Nanoscale Photonics and Optoelectronics (Springer, 2010).

C. F. Boheren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley, 1983)

M. Premaratne and G. P. Agrawal, Light Propagation in Gain Medium (Cambridge University, 2011).

R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (John Wiley & Sons Inc, 1969).

A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences (Cambridge University, 2001).

P. W. Milonni and J. H. Eberly, Laser Physics (Wiley, 2010).

A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations (Wiley-VCH, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

A schematic drawing of a core-shell spaser.

Fig. 2
Fig. 2

Spaser response on external harmonic field in (top panels) below- and (bottom panels) above-threshold regimes. Solid and dashed lines show real and imaginary parts of the dipole moment, respectively. Frequencies of incident field are (a), (c) ω< = 1.98 eV < ωsp and (b), (d) ω> = 1.99 eV < ωsp. The red and green circles in the bottom panels show the exact loss compensation when the imaginary part of the dipole moment turns to zero.

Fig. 3
Fig. 3

Real parts of the instability growth rate Λ for below- (solid line) and above-threshold (dashed line) regimes of a driven spaser at the frequency of incident field ω< = 1.98 eV. For below-threshold spaser the instability growth rate is always negative so that spaser oscillations in external field are always stable. Above threshold, spaser is synchronized by strong external field, while its oscillations in weak external field are unstable and may show stochastic dynamics [16].

Fig. 4
Fig. 4

Stable (filled) and unstable regions of a driven above-threshold spaser for D0 = 0.25. The region of stability corresponds to steady-state solutions with ReΛ<0 . The two vertical lines correspond to the frequencies ω > and ω < , which are also used in Fig. 2. The red and green circles correspond to those in Fig. 2 (c) and 2(d). The red circle, in which Im[d]=0 , lies in the instability region, so loss compensation does not occur, while the green circle lies in the stable region and compensation does take place. The red and green curves show the compensation curves lying in unstable and stable regions, respectively, along which the imaginary part of dipole moment turns to zero.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

××E+ ε 0 c 2 2 E t 2 = 4π c 2 2 P t 2 ,
2 P t 2 + 2 τ p P t + ω 0 2 P= 2 ω 0 | μ | 2 nE,
n t + 1 τ n ( n n 0 )= 1 ω 0 Re( E * P t ),
ε gain (ω)= ε 0 + D 0 ω 0 ω i+( ω 2 ω 0 2 )/2ωΓ 1+β | E(ω) | 2 + [ ( ω 2 ω 0 2 )/2ωΓ ] 2 ,
E shell ( r )=b E in c E in / r 3 +3c( E in n)n/ r 3 ,
E out ( r )=a E in / r 3 +3a( E in n)n/ r 3 ,
D core n | r core = D shell n | r core , E core ×n | r core = E shell ×n | r core , D shell n | r shell = D out n | r shell , E shell ×n | r shell = E out ×n | r shell ,
{ ε gain ( ω, E in , D 0 )=( b+2c/ r core 3 ) ε shell , 1=bc/ r core 3 , (b+2c/ r shell 3 ) ε shell =2a/ r shell 3 , bc/ r shell 3 =a/ r shell 3 .
ε gain ( ω, E in , D 0 )= ε shell 2( ε shell (ω)1 ) r core 3 2( 2+ ε shell (ω) ) r shell 3 2( ε shell (ω)1 ) r core 3 +( 2+ ε shell (ω) ) r shell 3 .
ε 0 + D 0 ω 0 ω i+( ω 2 ω 0 2 )/2ωΓ 1+β | E in | 2 + [ ( ω 2 ω 0 2 )/2ωΓ ] 2 =F(ω),
F( ω )= ε shell 2( ε shell (ω)1 ) r core 3 2( 2+ ε shell (ω) ) r shell 3 2( ε shell (ω)1 ) r core 3 +( 2+ ε shell (ω) ) r shell 3 .
D 0 1+β | E in | 2 + [ ( ω 2 ω 0 2 )/2ωΓ ] 2 = F(ω) ε 0 i+( ω 2 ω 0 2 )/2ωΓ ω ω 0 .
Im F( ω sp ) ε 0 i+( ω sp 2 ω 0 2 )/2 ω sp Γ =0.
D 0 1+β | E in ( D 0 ) | 2 + [ ( ω sp 2 ω 0 2 )/2 ω sp Γ ] 2 = ω sp ω 0 Re F( ω sp ) ε 0 i+( ω sp 2 ω 0 2 )/2 ω sp Γ .
D 0 1+β | E in ( D 0 ) | 2 + [ ( ω sp 2 ω 0 2 )/2 ω sp Γ ] 2 = D th 1+0+ [ ( ω sp 2 ω 0 2 )/2 ω sp Γ ] 2 .
E in = ( D 0 D th )/β D th 1+ [ ( ω sp 2 ω 0 2 )/2 ω sp Γ ] 2 , d=a E in .
D th = ω sp ω 0 ( 1+ [ ( ω sp 2 ω 0 2 )/2 ω sp Γ ] 2 )Re F( ω sp ) ε 0 i+( ω sp 2 ω 0 2 )/2 ω sp Γ .
{ ε gain ( ω, E in , D 0 )=( b+2c/ r core 3 ) ε shell , 1=bc/ r core 3 , (b+2c/ r shell 3 ) ε shell =x+2a/ r shell 3 , bc/ r shell 3 =xa/ r shell 3 .
α ^ 1 ( t, E in (t) )d( t )= E ext ( t ).
α 1 ( ω, E in ( ω ) ) d ˜ ( ω )= E ˜ ext ( ω ),
E ext ( t )= α 1 ( Ω, E in ) d ˜ ( Ω ) e iΩt dΩ = e iωt α 1 ( ω+ν, E in ) d ˜ slow ( ν ) e iνt dν .
E ext ( t ) e iωt [ α 1 ( ω, E in )+ν d α 1 ( ω, E in ) dω ] d ˜ slow ( ν ) e iνt dν = = e iωt α 1 ( ω, E in ) d ˜ slow ( ν ) e iνt dν + e i ω 0 t d α 1 ( ω, E in ) dω ν d ˜ slow ( ν ) e iνt dν = e iωt [ α 1 ( ω, E in ) d slow ( t )+i d α 1 ( ω, E in ) dω d d slow ( t ) dt ],
i d α 1 dω d dt d slow ( t )+ α 1 d slow ( t )= E slow ( t ).
i d α 1 dω δdΛ+ α 1 δd=0.
Λ=i α 1 ( ω, E in ) ( d α 1 ( ω, E in )/dω ) 1 .

Metrics