Abstract

Tunable microwave signal generation with frequencies ranging from below 1 GHz to values over 40 GHz is demonstrated experimentally with a 1310nm Quantum Dot (QD) Distributed-Feedback (DFB) laser. Microwave signal generation is achieved using the period 1 dynamics induced in the QD DFB under optical injection. Continuous tuning in the positive detuning frequency range of the quantum dot’s unique stability map is demonstrated. The simplicity of the experimental configuration offers promise for novel uses of these nanostructure lasers in Radio-over-Fiber (RoF) applications and future mobile networks.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron.17(5), 1198–1211 (2011).
    [CrossRef]
  2. S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron.46(3), 421–428 (2010).
    [CrossRef]
  3. S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett.31(15), 2254–2256 (2006).
    [CrossRef] [PubMed]
  4. Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J.3(4), 644–650 (2011).
    [CrossRef]
  5. M. Pochet, T. Locke, and N. G. Usechak, “Generation and modulation of a millimeter-wave subcarrier on an optical frequency generated via optical injection,” IEEE Photon. J.4(5), 1881–1891 (2012).
    [CrossRef]
  6. T. B. Simpson, J.-M. Liu, M. AlMulla, N. Usechak, and V. Kovanis, “Tunable photonic microwave oscillator self-locked by polarization-rotated optical feedback” IEEE International Frequency Control Symposium, Proceedings, 1–5, (2012).
    [CrossRef]
  7. A. Quirce and A. Valle, “High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection,” Opt. Express20(12), 13390–13401 (2012).
    [CrossRef] [PubMed]
  8. J. F. Hayau, O. Vaudel, P. Besnard, F. Lelarge, B. Rousseau, L. Le Gouezigou, F. Pommereau, F. Poingt, O. Le Gouezigou, A. Shen, G.-H. Duan, O. Dehaese, F. Grillot, R. Piron, S. Loualiche, A. Martinez, K. Merghem, and A. Ramdane, “Optical injection of quantum dot and quantum dash semiconductor lasers” European Conf. of Laser and Electrooptics, CLEO-Europe 2009, Munich, 14–19 June 2009.
    [CrossRef]
  9. E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz,” IEEE Photon. Technol. Lett.23(20), 1544–1546 (2011).
    [CrossRef]
  10. T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum-dot lasers,” Opt. Lett.35(7), 937–939 (2010).
    [CrossRef] [PubMed]
  11. B. Kelleher, D. Goulding, S. P. Hegarty, G. Huyet, E. A. Viktorov, and T. Erneux, Optically Injected Single-Mode Quantum Dot Lasers in Quantum Dot Devices (Springer, 2012), Chap. 1, pp. 1–22
  12. A. Hurtado, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Bistability patterns and nonlinear switching with very high contrast ratio in a 1550nm quantum dash semiconductor laser,” Appl. Phys. Lett.101(16), 161117 (2012).
    [CrossRef]
  13. F. van Dijk, B. Charbonnier, S. Constant, A. Enard, S. Fedderwitz, S. Formont, I. F. Lealman, F. Lecoche, F. Lelarge, D. Moodie, L. Ponnampalam, C. Renaud, M. J. Robertson, A. J. Seeds, A. Stohr, and M. Weiss, “Quantum dash mode-locked lasers for millimeter wave signal generation and transmission” 23rd Annual Meeting of the IEEE Photonics Society, 187–188 (2010).
    [CrossRef]
  14. N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, “Characterization of wavelength-tunable quantum dot external cavity laser for 1.3-µm-waveband coherent light sources,” Jpn. J. Appl. Phys.51(2), 02BG08 (2012).
    [CrossRef]
  15. G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low noise performance of passively mode-locked 10-GHz quantum-dot laser diode,” IEEE Photon. Technol. Lett.21(6), 389–391 (2009).
    [CrossRef]
  16. M. J. Fice, E. Rouvalis, F. van Dijk, A. Accard, F. Lelarge, C. C. Renaud, G. Carpintero, and A. J. Seeds, “146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system,” Opt. Express20(2), 1769–1774 (2012).
    [CrossRef] [PubMed]
  17. M. Pochet, N. A. Naderi, V. Yan Li, Kovanis, and L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett.22(11), 763–765 (2010).
    [CrossRef]
  18. P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron.6(3), 426–438 (2000).
    [CrossRef]
  19. H. Y. Liu, T. J. Badcock, K. M. Groom, M. Hopkinson, M. Gutiérrez, D. T. Childs, C. Jin, R. A. Hogg, I. R. Sellers, D. J. Mowbray, M. S. Skolnick, R. Beanland, and D. J. Robbins, “High-performance 1.3µm InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” Proc. SPIE Vol. 6184, 618417 (2006).
  20. T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett.11(12), 1527–1529 (1999).
    [CrossRef]
  21. S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep.416(1-2), 1–128 (2005).
    [CrossRef]
  22. H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, and L. F. Lester, “High External Feedback Resistance of Laterally Loss-Coupled Distributed Feedback Quantum Dot Semiconductor Lasers,” IEEE Photon. Technol. Lett.15(11), 1504–1506 (2003).
    [CrossRef]
  23. L. Zhang, R. Wang, Z. Zou, A. Gray, L. Olana, T. Newell, D. Webb, P. Varangis, and L. F. Lester, “InAs quantum dot DFB lasers on GaAs for uncooled 1310 nm fiber communications” Optical Fiber Communication Conference (OFC), Atlanta, GA (2003).
  24. H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D Appl. Phys.38(13), 2112–2118 (2005).
    [CrossRef]
  25. A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. J. Adams, “Nonlinear dynamics induced by parallel and orthogonal optical injection in 1550 nm Vertical-Cavity Surface-Emitting Lasers (VCSELs),” Opt. Express18(9), 9423–9428 (2010).
    [CrossRef] [PubMed]

2012 (5)

M. Pochet, T. Locke, and N. G. Usechak, “Generation and modulation of a millimeter-wave subcarrier on an optical frequency generated via optical injection,” IEEE Photon. J.4(5), 1881–1891 (2012).
[CrossRef]

A. Quirce and A. Valle, “High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection,” Opt. Express20(12), 13390–13401 (2012).
[CrossRef] [PubMed]

A. Hurtado, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Bistability patterns and nonlinear switching with very high contrast ratio in a 1550nm quantum dash semiconductor laser,” Appl. Phys. Lett.101(16), 161117 (2012).
[CrossRef]

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, “Characterization of wavelength-tunable quantum dot external cavity laser for 1.3-µm-waveband coherent light sources,” Jpn. J. Appl. Phys.51(2), 02BG08 (2012).
[CrossRef]

M. J. Fice, E. Rouvalis, F. van Dijk, A. Accard, F. Lelarge, C. C. Renaud, G. Carpintero, and A. J. Seeds, “146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system,” Opt. Express20(2), 1769–1774 (2012).
[CrossRef] [PubMed]

2011 (3)

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J.3(4), 644–650 (2011).
[CrossRef]

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron.17(5), 1198–1211 (2011).
[CrossRef]

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz,” IEEE Photon. Technol. Lett.23(20), 1544–1546 (2011).
[CrossRef]

2010 (4)

T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum-dot lasers,” Opt. Lett.35(7), 937–939 (2010).
[CrossRef] [PubMed]

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron.46(3), 421–428 (2010).
[CrossRef]

M. Pochet, N. A. Naderi, V. Yan Li, Kovanis, and L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett.22(11), 763–765 (2010).
[CrossRef]

A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. J. Adams, “Nonlinear dynamics induced by parallel and orthogonal optical injection in 1550 nm Vertical-Cavity Surface-Emitting Lasers (VCSELs),” Opt. Express18(9), 9423–9428 (2010).
[CrossRef] [PubMed]

2009 (1)

G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low noise performance of passively mode-locked 10-GHz quantum-dot laser diode,” IEEE Photon. Technol. Lett.21(6), 389–391 (2009).
[CrossRef]

2006 (2)

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett.31(15), 2254–2256 (2006).
[CrossRef] [PubMed]

H. Y. Liu, T. J. Badcock, K. M. Groom, M. Hopkinson, M. Gutiérrez, D. T. Childs, C. Jin, R. A. Hogg, I. R. Sellers, D. J. Mowbray, M. S. Skolnick, R. Beanland, and D. J. Robbins, “High-performance 1.3µm InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” Proc. SPIE Vol. 6184, 618417 (2006).

2005 (2)

H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D Appl. Phys.38(13), 2112–2118 (2005).
[CrossRef]

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep.416(1-2), 1–128 (2005).
[CrossRef]

2003 (1)

H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, and L. F. Lester, “High External Feedback Resistance of Laterally Loss-Coupled Distributed Feedback Quantum Dot Semiconductor Lasers,” IEEE Photon. Technol. Lett.15(11), 1504–1506 (2003).
[CrossRef]

2000 (1)

P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron.6(3), 426–438 (2000).
[CrossRef]

1999 (1)

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett.11(12), 1527–1529 (1999).
[CrossRef]

Accard, A.

Adams, M. J.

A. Hurtado, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Bistability patterns and nonlinear switching with very high contrast ratio in a 1550nm quantum dash semiconductor laser,” Appl. Phys. Lett.101(16), 161117 (2012).
[CrossRef]

A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. J. Adams, “Nonlinear dynamics induced by parallel and orthogonal optical injection in 1550 nm Vertical-Cavity Surface-Emitting Lasers (VCSELs),” Opt. Express18(9), 9423–9428 (2010).
[CrossRef] [PubMed]

Akahane, K.

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, “Characterization of wavelength-tunable quantum dot external cavity laser for 1.3-µm-waveband coherent light sources,” Jpn. J. Appl. Phys.51(2), 02BG08 (2012).
[CrossRef]

AlMulla, M.

T. B. Simpson, J.-M. Liu, M. AlMulla, N. Usechak, and V. Kovanis, “Tunable photonic microwave oscillator self-locked by polarization-rotated optical feedback” IEEE International Frequency Control Symposium, Proceedings, 1–5, (2012).
[CrossRef]

Badcock, T. J.

H. Y. Liu, T. J. Badcock, K. M. Groom, M. Hopkinson, M. Gutiérrez, D. T. Childs, C. Jin, R. A. Hogg, I. R. Sellers, D. J. Mowbray, M. S. Skolnick, R. Beanland, and D. J. Robbins, “High-performance 1.3µm InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” Proc. SPIE Vol. 6184, 618417 (2006).

Beanland, R.

H. Y. Liu, T. J. Badcock, K. M. Groom, M. Hopkinson, M. Gutiérrez, D. T. Childs, C. Jin, R. A. Hogg, I. R. Sellers, D. J. Mowbray, M. S. Skolnick, R. Beanland, and D. J. Robbins, “High-performance 1.3µm InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” Proc. SPIE Vol. 6184, 618417 (2006).

Bhattacharya, P.

P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron.6(3), 426–438 (2000).
[CrossRef]

Bossert, D. J.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett.11(12), 1527–1529 (1999).
[CrossRef]

Carpintero, G.

M. J. Fice, E. Rouvalis, F. van Dijk, A. Accard, F. Lelarge, C. C. Renaud, G. Carpintero, and A. J. Seeds, “146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system,” Opt. Express20(2), 1769–1774 (2012).
[CrossRef] [PubMed]

G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low noise performance of passively mode-locked 10-GHz quantum-dot laser diode,” IEEE Photon. Technol. Lett.21(6), 389–391 (2009).
[CrossRef]

Chan, S. C.

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron.46(3), 421–428 (2010).
[CrossRef]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett.31(15), 2254–2256 (2006).
[CrossRef] [PubMed]

Childs, D. T.

H. Y. Liu, T. J. Badcock, K. M. Groom, M. Hopkinson, M. Gutiérrez, D. T. Childs, C. Jin, R. A. Hogg, I. R. Sellers, D. J. Mowbray, M. S. Skolnick, R. Beanland, and D. J. Robbins, “High-performance 1.3µm InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” Proc. SPIE Vol. 6184, 618417 (2006).

Erneux, T.

Fice, M. J.

Fuchs, B.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett.11(12), 1527–1529 (1999).
[CrossRef]

Goulding, D.

Gray, A.

L. Zhang, R. Wang, Z. Zou, A. Gray, L. Olana, T. Newell, D. Webb, P. Varangis, and L. F. Lester, “InAs quantum dot DFB lasers on GaAs for uncooled 1310 nm fiber communications” Optical Fiber Communication Conference (OFC), Atlanta, GA (2003).

Gray, A. L.

H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, and L. F. Lester, “High External Feedback Resistance of Laterally Loss-Coupled Distributed Feedback Quantum Dot Semiconductor Lasers,” IEEE Photon. Technol. Lett.15(11), 1504–1506 (2003).
[CrossRef]

Groom, K. M.

H. Y. Liu, T. J. Badcock, K. M. Groom, M. Hopkinson, M. Gutiérrez, D. T. Childs, C. Jin, R. A. Hogg, I. R. Sellers, D. J. Mowbray, M. S. Skolnick, R. Beanland, and D. J. Robbins, “High-performance 1.3µm InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” Proc. SPIE Vol. 6184, 618417 (2006).

Gutiérrez, M.

H. Y. Liu, T. J. Badcock, K. M. Groom, M. Hopkinson, M. Gutiérrez, D. T. Childs, C. Jin, R. A. Hogg, I. R. Sellers, D. J. Mowbray, M. S. Skolnick, R. Beanland, and D. J. Robbins, “High-performance 1.3µm InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” Proc. SPIE Vol. 6184, 618417 (2006).

Hegarty, S. P.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz,” IEEE Photon. Technol. Lett.23(20), 1544–1546 (2011).
[CrossRef]

T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum-dot lasers,” Opt. Lett.35(7), 937–939 (2010).
[CrossRef] [PubMed]

Henning, I. D.

A. Hurtado, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Bistability patterns and nonlinear switching with very high contrast ratio in a 1550nm quantum dash semiconductor laser,” Appl. Phys. Lett.101(16), 161117 (2012).
[CrossRef]

Hogg, R. A.

H. Y. Liu, T. J. Badcock, K. M. Groom, M. Hopkinson, M. Gutiérrez, D. T. Childs, C. Jin, R. A. Hogg, I. R. Sellers, D. J. Mowbray, M. S. Skolnick, R. Beanland, and D. J. Robbins, “High-performance 1.3µm InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” Proc. SPIE Vol. 6184, 618417 (2006).

Hopkinson, M.

H. Y. Liu, T. J. Badcock, K. M. Groom, M. Hopkinson, M. Gutiérrez, D. T. Childs, C. Jin, R. A. Hogg, I. R. Sellers, D. J. Mowbray, M. S. Skolnick, R. Beanland, and D. J. Robbins, “High-performance 1.3µm InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” Proc. SPIE Vol. 6184, 618417 (2006).

Hurtado, A.

A. Hurtado, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Bistability patterns and nonlinear switching with very high contrast ratio in a 1550nm quantum dash semiconductor laser,” Appl. Phys. Lett.101(16), 161117 (2012).
[CrossRef]

A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. J. Adams, “Nonlinear dynamics induced by parallel and orthogonal optical injection in 1550 nm Vertical-Cavity Surface-Emitting Lasers (VCSELs),” Opt. Express18(9), 9423–9428 (2010).
[CrossRef] [PubMed]

Huyet, G.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz,” IEEE Photon. Technol. Lett.23(20), 1544–1546 (2011).
[CrossRef]

T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum-dot lasers,” Opt. Lett.35(7), 937–939 (2010).
[CrossRef] [PubMed]

Hwang, S. K.

Jin, C.

H. Y. Liu, T. J. Badcock, K. M. Groom, M. Hopkinson, M. Gutiérrez, D. T. Childs, C. Jin, R. A. Hogg, I. R. Sellers, D. J. Mowbray, M. S. Skolnick, R. Beanland, and D. J. Robbins, “High-performance 1.3µm InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” Proc. SPIE Vol. 6184, 618417 (2006).

Juan, Y. S.

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J.3(4), 644–650 (2011).
[CrossRef]

Kawanishi, T.

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, “Characterization of wavelength-tunable quantum dot external cavity laser for 1.3-µm-waveband coherent light sources,” Jpn. J. Appl. Phys.51(2), 02BG08 (2012).
[CrossRef]

Kelleher, B.

Klotzkin, D.

P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron.6(3), 426–438 (2000).
[CrossRef]

Kovanis,

M. Pochet, N. A. Naderi, V. Yan Li, Kovanis, and L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett.22(11), 763–765 (2010).
[CrossRef]

Kovanis, V.

T. B. Simpson, J.-M. Liu, M. AlMulla, N. Usechak, and V. Kovanis, “Tunable photonic microwave oscillator self-locked by polarization-rotated optical feedback” IEEE International Frequency Control Symposium, Proceedings, 1–5, (2012).
[CrossRef]

Krauskopf, B.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep.416(1-2), 1–128 (2005).
[CrossRef]

Krishna, S.

P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron.6(3), 426–438 (2000).
[CrossRef]

Lelarge, F.

M. J. Fice, E. Rouvalis, F. van Dijk, A. Accard, F. Lelarge, C. C. Renaud, G. Carpintero, and A. J. Seeds, “146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system,” Opt. Express20(2), 1769–1774 (2012).
[CrossRef] [PubMed]

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz,” IEEE Photon. Technol. Lett.23(20), 1544–1546 (2011).
[CrossRef]

Lenstra, D.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep.416(1-2), 1–128 (2005).
[CrossRef]

Lester, L. F.

A. Hurtado, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Bistability patterns and nonlinear switching with very high contrast ratio in a 1550nm quantum dash semiconductor laser,” Appl. Phys. Lett.101(16), 161117 (2012).
[CrossRef]

M. Pochet, N. A. Naderi, V. Yan Li, Kovanis, and L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett.22(11), 763–765 (2010).
[CrossRef]

H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D Appl. Phys.38(13), 2112–2118 (2005).
[CrossRef]

H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, and L. F. Lester, “High External Feedback Resistance of Laterally Loss-Coupled Distributed Feedback Quantum Dot Semiconductor Lasers,” IEEE Photon. Technol. Lett.15(11), 1504–1506 (2003).
[CrossRef]

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett.11(12), 1527–1529 (1999).
[CrossRef]

L. Zhang, R. Wang, Z. Zou, A. Gray, L. Olana, T. Newell, D. Webb, P. Varangis, and L. F. Lester, “InAs quantum dot DFB lasers on GaAs for uncooled 1310 nm fiber communications” Optical Fiber Communication Conference (OFC), Atlanta, GA (2003).

Lin, F. Y.

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J.3(4), 644–650 (2011).
[CrossRef]

Liu, H. Y.

H. Y. Liu, T. J. Badcock, K. M. Groom, M. Hopkinson, M. Gutiérrez, D. T. Childs, C. Jin, R. A. Hogg, I. R. Sellers, D. J. Mowbray, M. S. Skolnick, R. Beanland, and D. J. Robbins, “High-performance 1.3µm InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” Proc. SPIE Vol. 6184, 618417 (2006).

Liu, J. M.

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron.17(5), 1198–1211 (2011).
[CrossRef]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett.31(15), 2254–2256 (2006).
[CrossRef] [PubMed]

Liu, J.-M.

T. B. Simpson, J.-M. Liu, M. AlMulla, N. Usechak, and V. Kovanis, “Tunable photonic microwave oscillator self-locked by polarization-rotated optical feedback” IEEE International Frequency Control Symposium, Proceedings, 1–5, (2012).
[CrossRef]

Locke, T.

M. Pochet, T. Locke, and N. G. Usechak, “Generation and modulation of a millimeter-wave subcarrier on an optical frequency generated via optical injection,” IEEE Photon. J.4(5), 1881–1891 (2012).
[CrossRef]

Malloy, K. J.

H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, and L. F. Lester, “High External Feedback Resistance of Laterally Loss-Coupled Distributed Feedback Quantum Dot Semiconductor Lasers,” IEEE Photon. Technol. Lett.15(11), 1504–1506 (2003).
[CrossRef]

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett.11(12), 1527–1529 (1999).
[CrossRef]

Martinez, A.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz,” IEEE Photon. Technol. Lett.23(20), 1544–1546 (2011).
[CrossRef]

McInerney, J. G.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz,” IEEE Photon. Technol. Lett.23(20), 1544–1546 (2011).
[CrossRef]

Merghem, K.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz,” IEEE Photon. Technol. Lett.23(20), 1544–1546 (2011).
[CrossRef]

Mowbray, D. J.

H. Y. Liu, T. J. Badcock, K. M. Groom, M. Hopkinson, M. Gutiérrez, D. T. Childs, C. Jin, R. A. Hogg, I. R. Sellers, D. J. Mowbray, M. S. Skolnick, R. Beanland, and D. J. Robbins, “High-performance 1.3µm InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” Proc. SPIE Vol. 6184, 618417 (2006).

Naderi, N. A.

M. Pochet, N. A. Naderi, V. Yan Li, Kovanis, and L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett.22(11), 763–765 (2010).
[CrossRef]

Nami, M.

A. Hurtado, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Bistability patterns and nonlinear switching with very high contrast ratio in a 1550nm quantum dash semiconductor laser,” Appl. Phys. Lett.101(16), 161117 (2012).
[CrossRef]

Newell, T.

L. Zhang, R. Wang, Z. Zou, A. Gray, L. Olana, T. Newell, D. Webb, P. Varangis, and L. F. Lester, “InAs quantum dot DFB lasers on GaAs for uncooled 1310 nm fiber communications” Optical Fiber Communication Conference (OFC), Atlanta, GA (2003).

Newell, T. C.

H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, and L. F. Lester, “High External Feedback Resistance of Laterally Loss-Coupled Distributed Feedback Quantum Dot Semiconductor Lasers,” IEEE Photon. Technol. Lett.15(11), 1504–1506 (2003).
[CrossRef]

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett.11(12), 1527–1529 (1999).
[CrossRef]

Olana, L.

L. Zhang, R. Wang, Z. Zou, A. Gray, L. Olana, T. Newell, D. Webb, P. Varangis, and L. F. Lester, “InAs quantum dot DFB lasers on GaAs for uncooled 1310 nm fiber communications” Optical Fiber Communication Conference (OFC), Atlanta, GA (2003).

Penty, R. V.

G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low noise performance of passively mode-locked 10-GHz quantum-dot laser diode,” IEEE Photon. Technol. Lett.21(6), 389–391 (2009).
[CrossRef]

Pesquera, L.

Pochet, M.

M. Pochet, T. Locke, and N. G. Usechak, “Generation and modulation of a millimeter-wave subcarrier on an optical frequency generated via optical injection,” IEEE Photon. J.4(5), 1881–1891 (2012).
[CrossRef]

M. Pochet, N. A. Naderi, V. Yan Li, Kovanis, and L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett.22(11), 763–765 (2010).
[CrossRef]

Qasaimeh, O.

P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron.6(3), 426–438 (2000).
[CrossRef]

Qi, X. Q.

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron.17(5), 1198–1211 (2011).
[CrossRef]

Quirce, A.

Ramdane, A.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz,” IEEE Photon. Technol. Lett.23(20), 1544–1546 (2011).
[CrossRef]

Renaud, C. C.

Robbins, D. J.

H. Y. Liu, T. J. Badcock, K. M. Groom, M. Hopkinson, M. Gutiérrez, D. T. Childs, C. Jin, R. A. Hogg, I. R. Sellers, D. J. Mowbray, M. S. Skolnick, R. Beanland, and D. J. Robbins, “High-performance 1.3µm InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” Proc. SPIE Vol. 6184, 618417 (2006).

Rosales, R.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz,” IEEE Photon. Technol. Lett.23(20), 1544–1546 (2011).
[CrossRef]

Rouvalis, E.

Seeds, A. J.

Sellers, I. R.

H. Y. Liu, T. J. Badcock, K. M. Groom, M. Hopkinson, M. Gutiérrez, D. T. Childs, C. Jin, R. A. Hogg, I. R. Sellers, D. J. Mowbray, M. S. Skolnick, R. Beanland, and D. J. Robbins, “High-performance 1.3µm InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” Proc. SPIE Vol. 6184, 618417 (2006).

Simpson, T. B.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep.416(1-2), 1–128 (2005).
[CrossRef]

T. B. Simpson, J.-M. Liu, M. AlMulla, N. Usechak, and V. Kovanis, “Tunable photonic microwave oscillator self-locked by polarization-rotated optical feedback” IEEE International Frequency Control Symposium, Proceedings, 1–5, (2012).
[CrossRef]

Skolnick, M. S.

H. Y. Liu, T. J. Badcock, K. M. Groom, M. Hopkinson, M. Gutiérrez, D. T. Childs, C. Jin, R. A. Hogg, I. R. Sellers, D. J. Mowbray, M. S. Skolnick, R. Beanland, and D. J. Robbins, “High-performance 1.3µm InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” Proc. SPIE Vol. 6184, 618417 (2006).

Sooudi, E.

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz,” IEEE Photon. Technol. Lett.23(20), 1544–1546 (2011).
[CrossRef]

Sotobayashi, H.

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, “Characterization of wavelength-tunable quantum dot external cavity laser for 1.3-µm-waveband coherent light sources,” Jpn. J. Appl. Phys.51(2), 02BG08 (2012).
[CrossRef]

Stintz, A.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett.11(12), 1527–1529 (1999).
[CrossRef]

Su, H.

H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D Appl. Phys.38(13), 2112–2118 (2005).
[CrossRef]

H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, and L. F. Lester, “High External Feedback Resistance of Laterally Loss-Coupled Distributed Feedback Quantum Dot Semiconductor Lasers,” IEEE Photon. Technol. Lett.15(11), 1504–1506 (2003).
[CrossRef]

Takai, H.

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, “Characterization of wavelength-tunable quantum dot external cavity laser for 1.3-µm-waveband coherent light sources,” Jpn. J. Appl. Phys.51(2), 02BG08 (2012).
[CrossRef]

Thompson, M. G.

G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low noise performance of passively mode-locked 10-GHz quantum-dot laser diode,” IEEE Photon. Technol. Lett.21(6), 389–391 (2009).
[CrossRef]

Usechak, N.

T. B. Simpson, J.-M. Liu, M. AlMulla, N. Usechak, and V. Kovanis, “Tunable photonic microwave oscillator self-locked by polarization-rotated optical feedback” IEEE International Frequency Control Symposium, Proceedings, 1–5, (2012).
[CrossRef]

Usechak, N. G.

M. Pochet, T. Locke, and N. G. Usechak, “Generation and modulation of a millimeter-wave subcarrier on an optical frequency generated via optical injection,” IEEE Photon. J.4(5), 1881–1891 (2012).
[CrossRef]

Valle, A.

van Dijk, F.

Varangis, P.

L. Zhang, R. Wang, Z. Zou, A. Gray, L. Olana, T. Newell, D. Webb, P. Varangis, and L. F. Lester, “InAs quantum dot DFB lasers on GaAs for uncooled 1310 nm fiber communications” Optical Fiber Communication Conference (OFC), Atlanta, GA (2003).

Viktorov, E. A.

Wang, R.

H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, and L. F. Lester, “High External Feedback Resistance of Laterally Loss-Coupled Distributed Feedback Quantum Dot Semiconductor Lasers,” IEEE Photon. Technol. Lett.15(11), 1504–1506 (2003).
[CrossRef]

L. Zhang, R. Wang, Z. Zou, A. Gray, L. Olana, T. Newell, D. Webb, P. Varangis, and L. F. Lester, “InAs quantum dot DFB lasers on GaAs for uncooled 1310 nm fiber communications” Optical Fiber Communication Conference (OFC), Atlanta, GA (2003).

Webb, D.

L. Zhang, R. Wang, Z. Zou, A. Gray, L. Olana, T. Newell, D. Webb, P. Varangis, and L. F. Lester, “InAs quantum dot DFB lasers on GaAs for uncooled 1310 nm fiber communications” Optical Fiber Communication Conference (OFC), Atlanta, GA (2003).

White, I. H.

G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low noise performance of passively mode-locked 10-GHz quantum-dot laser diode,” IEEE Photon. Technol. Lett.21(6), 389–391 (2009).
[CrossRef]

Wieczorek, S.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep.416(1-2), 1–128 (2005).
[CrossRef]

Yamamoto, N.

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, “Characterization of wavelength-tunable quantum dot external cavity laser for 1.3-µm-waveband coherent light sources,” Jpn. J. Appl. Phys.51(2), 02BG08 (2012).
[CrossRef]

Yan Li, V.

M. Pochet, N. A. Naderi, V. Yan Li, Kovanis, and L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett.22(11), 763–765 (2010).
[CrossRef]

Yoshioka, Y.

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, “Characterization of wavelength-tunable quantum dot external cavity laser for 1.3-µm-waveband coherent light sources,” Jpn. J. Appl. Phys.51(2), 02BG08 (2012).
[CrossRef]

Zhang, L.

H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, and L. F. Lester, “High External Feedback Resistance of Laterally Loss-Coupled Distributed Feedback Quantum Dot Semiconductor Lasers,” IEEE Photon. Technol. Lett.15(11), 1504–1506 (2003).
[CrossRef]

L. Zhang, R. Wang, Z. Zou, A. Gray, L. Olana, T. Newell, D. Webb, P. Varangis, and L. F. Lester, “InAs quantum dot DFB lasers on GaAs for uncooled 1310 nm fiber communications” Optical Fiber Communication Conference (OFC), Atlanta, GA (2003).

Zhou, W.

P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron.6(3), 426–438 (2000).
[CrossRef]

Zhu, D.

P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron.6(3), 426–438 (2000).
[CrossRef]

Zou, Z.

L. Zhang, R. Wang, Z. Zou, A. Gray, L. Olana, T. Newell, D. Webb, P. Varangis, and L. F. Lester, “InAs quantum dot DFB lasers on GaAs for uncooled 1310 nm fiber communications” Optical Fiber Communication Conference (OFC), Atlanta, GA (2003).

Appl. Phys. Lett. (1)

A. Hurtado, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Bistability patterns and nonlinear switching with very high contrast ratio in a 1550nm quantum dash semiconductor laser,” Appl. Phys. Lett.101(16), 161117 (2012).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron.46(3), 421–428 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron.17(5), 1198–1211 (2011).
[CrossRef]

P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron.6(3), 426–438 (2000).
[CrossRef]

IEEE Photon. J. (2)

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J.3(4), 644–650 (2011).
[CrossRef]

M. Pochet, T. Locke, and N. G. Usechak, “Generation and modulation of a millimeter-wave subcarrier on an optical frequency generated via optical injection,” IEEE Photon. J.4(5), 1881–1891 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz,” IEEE Photon. Technol. Lett.23(20), 1544–1546 (2011).
[CrossRef]

G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low noise performance of passively mode-locked 10-GHz quantum-dot laser diode,” IEEE Photon. Technol. Lett.21(6), 389–391 (2009).
[CrossRef]

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett.11(12), 1527–1529 (1999).
[CrossRef]

H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, and L. F. Lester, “High External Feedback Resistance of Laterally Loss-Coupled Distributed Feedback Quantum Dot Semiconductor Lasers,” IEEE Photon. Technol. Lett.15(11), 1504–1506 (2003).
[CrossRef]

M. Pochet, N. A. Naderi, V. Yan Li, Kovanis, and L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett.22(11), 763–765 (2010).
[CrossRef]

J. Phys. D Appl. Phys. (1)

H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D Appl. Phys.38(13), 2112–2118 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, “Characterization of wavelength-tunable quantum dot external cavity laser for 1.3-µm-waveband coherent light sources,” Jpn. J. Appl. Phys.51(2), 02BG08 (2012).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rep. (1)

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep.416(1-2), 1–128 (2005).
[CrossRef]

Proc. SPIE (1)

H. Y. Liu, T. J. Badcock, K. M. Groom, M. Hopkinson, M. Gutiérrez, D. T. Childs, C. Jin, R. A. Hogg, I. R. Sellers, D. J. Mowbray, M. S. Skolnick, R. Beanland, and D. J. Robbins, “High-performance 1.3µm InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” Proc. SPIE Vol. 6184, 618417 (2006).

Other (5)

F. van Dijk, B. Charbonnier, S. Constant, A. Enard, S. Fedderwitz, S. Formont, I. F. Lealman, F. Lecoche, F. Lelarge, D. Moodie, L. Ponnampalam, C. Renaud, M. J. Robertson, A. J. Seeds, A. Stohr, and M. Weiss, “Quantum dash mode-locked lasers for millimeter wave signal generation and transmission” 23rd Annual Meeting of the IEEE Photonics Society, 187–188 (2010).
[CrossRef]

T. B. Simpson, J.-M. Liu, M. AlMulla, N. Usechak, and V. Kovanis, “Tunable photonic microwave oscillator self-locked by polarization-rotated optical feedback” IEEE International Frequency Control Symposium, Proceedings, 1–5, (2012).
[CrossRef]

B. Kelleher, D. Goulding, S. P. Hegarty, G. Huyet, E. A. Viktorov, and T. Erneux, Optically Injected Single-Mode Quantum Dot Lasers in Quantum Dot Devices (Springer, 2012), Chap. 1, pp. 1–22

J. F. Hayau, O. Vaudel, P. Besnard, F. Lelarge, B. Rousseau, L. Le Gouezigou, F. Pommereau, F. Poingt, O. Le Gouezigou, A. Shen, G.-H. Duan, O. Dehaese, F. Grillot, R. Piron, S. Loualiche, A. Martinez, K. Merghem, and A. Ramdane, “Optical injection of quantum dot and quantum dash semiconductor lasers” European Conf. of Laser and Electrooptics, CLEO-Europe 2009, Munich, 14–19 June 2009.
[CrossRef]

L. Zhang, R. Wang, Z. Zou, A. Gray, L. Olana, T. Newell, D. Webb, P. Varangis, and L. F. Lester, “InAs quantum dot DFB lasers on GaAs for uncooled 1310 nm fiber communications” Optical Fiber Communication Conference (OFC), Atlanta, GA (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Epitaxial layer structure of the QD DFB laser. (b) LI curve at 298 K. Optical spectra of the device when biased with 4.6 mA (a) and with currents from 5 to 20 mA (d).

Fig. 2
Fig. 2

Experimental setup: (a) main body; (b,c) analysis stages for the study of the electrical and optical spectra (b) and the time response (c).

Fig. 3
Fig. 3

(a) Stability map of the QD DFB laser at IBias = 55mA. (b) Superimposed electrical spectra generating signals with frequencies from 830 MHz to 42 GHz. (c-f) Time traces showing tunability of the signals from 9 to 12 GHz ({Pinj, Δf} are equal to: (c) {5.28 mW, 5 GHz}, (e) {5.6 mW, 6 GHz}, (d) {6.36 mW, 7 GHz} and (e) {6.4 mW, 8.5 GHz}). (g-h) SSB microwave signals with frequencies equal to 7.5 GHz (g) and 10 GHz (h).

Fig. 4
Fig. 4

Frequency (a) and RF power (b) of the generated microwave signals vs. Δf and Pinj.

Metrics