Abstract

Using femtosecond upconversion we investigate the time and wavelength structure of infrared supercontinuum generation. It is shown that radiation is scattered into higher order spatial modes (HOMs) when generating a supercontinuum using fibers that are not single-moded, such as a step-index ZBLAN fiber. As a consequence of intermodal scattering and the difference in group velocity for the modes, the supercontinuum splits up spatially and temporally. Experimental results indicate that a significant part of the radiation propagates in HOMs. Conventional simulations of super-continuum generation do not include scattering into HOMs, and including this provides an extra degree of freedom for tailoring supercontinuum sources.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78,1135 (2006).
    [CrossRef]
  2. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett.24,584–587 (1970).
    [CrossRef]
  3. C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B: Lasers and Optics92,367–378 (2008).
    [CrossRef]
  4. J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqué, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett.,33, 285–287 (2008).
    [CrossRef]
  5. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
    [CrossRef]
  6. T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature, 416, 233–237 (2002).
    [CrossRef] [PubMed]
  7. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express, 20, 4887–4892 (2012).
    [CrossRef] [PubMed]
  8. O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, J. Fred, L. Terry, M. Neelakandan, and A. Chan, “Supercontinuum generation from ∼1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B28, 2486–2498 (2011).
    [CrossRef]
  9. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett.,31, 2553–2555 (2006).
    [CrossRef]
  10. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers–detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B,29, 635–645 (2012).
    [CrossRef]
  11. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).
  12. J. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments,” Opt. Express, 10, 1215–1221 (2002).
    [CrossRef] [PubMed]
  13. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51, 2602–2607 (1995).
    [CrossRef] [PubMed]
  14. F. Gan, “Optical properties of fluoride glasses - a review,” J. of Non-Cryst. Solids, 184, 9–20 (1995).
    [CrossRef]
  15. P. Hamm, “Coherent effects in femtosecond infrared spectroscopy,” Chem. Phys., 200, 415–429 (1995).
    [CrossRef]
  16. H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: Periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett.66, 1834–1837 (1991).
    [CrossRef] [PubMed]
  17. F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B,25, 1645–1654 (2008).
    [CrossRef]
  18. F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express176134–6147 (2009).
    [CrossRef] [PubMed]
  19. Y. Vidne and M. Rosenbluh, “Spatial modes in a PCF fiber generated continuum,” Opt. Express, 13, 9721–9728 (2005).
    [CrossRef] [PubMed]
  20. J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal C̆erenkov radiation in a higher-order-mode fiber,” Opt. Lett.,37, 4410–4412 (2012).
    [CrossRef]
  21. M. Ziemienczuk, A. M. Walser, A. Abdolvand, and P. S. J. Russell, “Intermodal stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” J. Opt. Soc. Am. B,29, 1563–1568 (2012).
    [CrossRef]

2012 (4)

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers–detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B,29, 635–645 (2012).
[CrossRef]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express, 20, 4887–4892 (2012).
[CrossRef] [PubMed]

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal C̆erenkov radiation in a higher-order-mode fiber,” Opt. Lett.,37, 4410–4412 (2012).
[CrossRef]

M. Ziemienczuk, A. M. Walser, A. Abdolvand, and P. S. J. Russell, “Intermodal stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” J. Opt. Soc. Am. B,29, 1563–1568 (2012).
[CrossRef]

2011 (1)

2009 (1)

2008 (3)

F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B,25, 1645–1654 (2008).
[CrossRef]

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B: Lasers and Optics92,367–378 (2008).
[CrossRef]

J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqué, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett.,33, 285–287 (2008).
[CrossRef]

2006 (2)

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78,1135 (2006).
[CrossRef]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett.,31, 2553–2555 (2006).
[CrossRef]

2005 (1)

2002 (2)

2000 (1)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef]

1995 (3)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51, 2602–2607 (1995).
[CrossRef] [PubMed]

F. Gan, “Optical properties of fluoride glasses - a review,” J. of Non-Cryst. Solids, 184, 9–20 (1995).
[CrossRef]

P. Hamm, “Coherent effects in femtosecond infrared spectroscopy,” Chem. Phys., 200, 415–429 (1995).
[CrossRef]

1991 (1)

H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: Periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett.66, 1834–1837 (1991).
[CrossRef] [PubMed]

1970 (1)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett.24,584–587 (1970).
[CrossRef]

Abdolvand, A.

M. Ziemienczuk, A. M. Walser, A. Abdolvand, and P. S. J. Russell, “Intermodal stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” J. Opt. Soc. Am. B,29, 1563–1568 (2012).
[CrossRef]

Agger, C.

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers–detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B,29, 635–645 (2012).
[CrossRef]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express, 20, 4887–4892 (2012).
[CrossRef] [PubMed]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51, 2602–2607 (1995).
[CrossRef] [PubMed]

Alexander, V. V.

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett.24,584–587 (1970).
[CrossRef]

Bang, O.

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers–detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B,29, 635–645 (2012).
[CrossRef]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express, 20, 4887–4892 (2012).
[CrossRef] [PubMed]

Chan, A.

Charan, K.

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal C̆erenkov radiation in a higher-order-mode fiber,” Opt. Lett.,37, 4410–4412 (2012).
[CrossRef]

Cheng, J.

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal C̆erenkov radiation in a higher-order-mode fiber,” Opt. Lett.,37, 4410–4412 (2012).
[CrossRef]

Coen, S.

Cundiff, S. T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef]

Diddams, S. A.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef]

Dudley, J.

Dupont, S.

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express, 20, 4887–4892 (2012).
[CrossRef] [PubMed]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers–detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B,29, 635–645 (2012).
[CrossRef]

Elder, A.

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B: Lasers and Optics92,367–378 (2008).
[CrossRef]

Frank, J.

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B: Lasers and Optics92,367–378 (2008).
[CrossRef]

Fred, J.

O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, J. Fred, L. Terry, M. Neelakandan, and A. Chan, “Supercontinuum generation from ∼1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B28, 2486–2498 (2011).
[CrossRef]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett.,31, 2553–2555 (2006).
[CrossRef]

Freeman, M. J.

O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, J. Fred, L. Terry, M. Neelakandan, and A. Chan, “Supercontinuum generation from ∼1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B28, 2486–2498 (2011).
[CrossRef]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett.,31, 2553–2555 (2006).
[CrossRef]

Gan, F.

F. Gan, “Optical properties of fluoride glasses - a review,” J. of Non-Cryst. Solids, 184, 9–20 (1995).
[CrossRef]

Genty, G.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78,1135 (2006).
[CrossRef]

Grischkowsky, D.

H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: Periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett.66, 1834–1837 (1991).
[CrossRef] [PubMed]

Grüner-Nielsen, L.

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal C̆erenkov radiation in a higher-order-mode fiber,” Opt. Lett.,37, 4410–4412 (2012).
[CrossRef]

Gu, X.

Guelachvili, G.

J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqué, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett.,33, 285–287 (2008).
[CrossRef]

Hall, J. L.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef]

Hamm, P.

P. Hamm, “Coherent effects in femtosecond infrared spectroscopy,” Chem. Phys., 200, 415–429 (1995).
[CrossRef]

Hansch, T. W.

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature, 416, 233–237 (2002).
[CrossRef] [PubMed]

Hänsch, T. W.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef]

Harde, H.

H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: Periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett.66, 1834–1837 (1991).
[CrossRef] [PubMed]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature, 416, 233–237 (2002).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef]

Horak, P.

F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express176134–6147 (2009).
[CrossRef] [PubMed]

F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B,25, 1645–1654 (2008).
[CrossRef]

Hult, J.

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B: Lasers and Optics92,367–378 (2008).
[CrossRef]

Islam, M. N.

O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, J. Fred, L. Terry, M. Neelakandan, and A. Chan, “Supercontinuum generation from ∼1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B28, 2486–2498 (2011).
[CrossRef]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett.,31, 2553–2555 (2006).
[CrossRef]

Jakobsen, D.

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal C̆erenkov radiation in a higher-order-mode fiber,” Opt. Lett.,37, 4410–4412 (2012).
[CrossRef]

Jones, D. J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef]

Kaminski, C.

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B: Lasers and Optics92,367–378 (2008).
[CrossRef]

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51, 2602–2607 (1995).
[CrossRef] [PubMed]

Keiding, S.

H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: Periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett.66, 1834–1837 (1991).
[CrossRef] [PubMed]

Keiding, S. R.

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express, 20, 4887–4892 (2012).
[CrossRef] [PubMed]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers–detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B,29, 635–645 (2012).
[CrossRef]

Kimmel, M.

Kulkarni, O. P.

O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, J. Fred, L. Terry, M. Neelakandan, and A. Chan, “Supercontinuum generation from ∼1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B28, 2486–2498 (2011).
[CrossRef]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett.,31, 2553–2555 (2006).
[CrossRef]

Kumar, M.

O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, J. Fred, L. Terry, M. Neelakandan, and A. Chan, “Supercontinuum generation from ∼1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B28, 2486–2498 (2011).
[CrossRef]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett.,31, 2553–2555 (2006).
[CrossRef]

Lyngsø, J. K.

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers–detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B,29, 635–645 (2012).
[CrossRef]

Mandon, J.

J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqué, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett.,33, 285–287 (2008).
[CrossRef]

Mazé, G.

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett.,31, 2553–2555 (2006).
[CrossRef]

Neelakandan, M.

O’Shea, P.

Pedersen, M. E. V.

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal C̆erenkov radiation in a higher-order-mode fiber,” Opt. Lett.,37, 4410–4412 (2012).
[CrossRef]

Petersen, C.

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers–detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B,29, 635–645 (2012).
[CrossRef]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express, 20, 4887–4892 (2012).
[CrossRef] [PubMed]

Picqué, N.

J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqué, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett.,33, 285–287 (2008).
[CrossRef]

Poletti, F.

F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express176134–6147 (2009).
[CrossRef] [PubMed]

F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B,25, 1645–1654 (2008).
[CrossRef]

Poulain, M.

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett.,31, 2553–2555 (2006).
[CrossRef]

Ranka, J. K.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef]

Rosenbluh, M.

Russell, P. S. J.

M. Ziemienczuk, A. M. Walser, A. Abdolvand, and P. S. J. Russell, “Intermodal stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” J. Opt. Soc. Am. B,29, 1563–1568 (2012).
[CrossRef]

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett.24,584–587 (1970).
[CrossRef]

Sorokin, E.

J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqué, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett.,33, 285–287 (2008).
[CrossRef]

Sorokina, I. T.

J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqué, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett.,33, 285–287 (2008).
[CrossRef]

Steffensen, H.

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers–detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B,29, 635–645 (2012).
[CrossRef]

Terry, L.

O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, J. Fred, L. Terry, M. Neelakandan, and A. Chan, “Supercontinuum generation from ∼1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B28, 2486–2498 (2011).
[CrossRef]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett.,31, 2553–2555 (2006).
[CrossRef]

Thøgersen, J.

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers–detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B,29, 635–645 (2012).
[CrossRef]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express, 20, 4887–4892 (2012).
[CrossRef] [PubMed]

Thomsen, C. L.

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers–detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B,29, 635–645 (2012).
[CrossRef]

Trebino, R.

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature, 416, 233–237 (2002).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef]

Vidne, Y.

Walser, A. M.

M. Ziemienczuk, A. M. Walser, A. Abdolvand, and P. S. J. Russell, “Intermodal stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” J. Opt. Soc. Am. B,29, 1563–1568 (2012).
[CrossRef]

Wang, K.

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal C̆erenkov radiation in a higher-order-mode fiber,” Opt. Lett.,37, 4410–4412 (2012).
[CrossRef]

Watt, R.

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B: Lasers and Optics92,367–378 (2008).
[CrossRef]

Windeler, R.

Windeler, R. S.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef]

Xia, C.

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett.,31, 2553–2555 (2006).
[CrossRef]

Xu, C.

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal C̆erenkov radiation in a higher-order-mode fiber,” Opt. Lett.,37, 4410–4412 (2012).
[CrossRef]

Xu, L.

Ye, J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef]

Zeek, E.

Ziemienczuk, M.

M. Ziemienczuk, A. M. Walser, A. Abdolvand, and P. S. J. Russell, “Intermodal stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” J. Opt. Soc. Am. B,29, 1563–1568 (2012).
[CrossRef]

Appl. Phys. B: Lasers and Optics (1)

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B: Lasers and Optics92,367–378 (2008).
[CrossRef]

Chem. Phys. (1)

P. Hamm, “Coherent effects in femtosecond infrared spectroscopy,” Chem. Phys., 200, 415–429 (1995).
[CrossRef]

J. of Non-Cryst. Solids (1)

F. Gan, “Optical properties of fluoride glasses - a review,” J. of Non-Cryst. Solids, 184, 9–20 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Am. B, (3)

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers–detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B,29, 635–645 (2012).
[CrossRef]

F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B,25, 1645–1654 (2008).
[CrossRef]

M. Ziemienczuk, A. M. Walser, A. Abdolvand, and P. S. J. Russell, “Intermodal stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” J. Opt. Soc. Am. B,29, 1563–1568 (2012).
[CrossRef]

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature, 416, 233–237 (2002).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett., (3)

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal C̆erenkov radiation in a higher-order-mode fiber,” Opt. Lett.,37, 4410–4412 (2012).
[CrossRef]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett.,31, 2553–2555 (2006).
[CrossRef]

J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqué, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett.,33, 285–287 (2008).
[CrossRef]

Phys. Rev. A (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51, 2602–2607 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000).
[CrossRef]

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett.24,584–587 (1970).
[CrossRef]

H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: Periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett.66, 1834–1837 (1991).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78,1135 (2006).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Spectrum of the supercontinuum. The fiber is pumped with a central wavelength at 1.8 μm (red dashed line), with pulse energies of 30 nJ, including coupling losses.

Fig. 3
Fig. 3

Spectrograms resulting from the crosscorrelation are obtained by changing crystal phase matching angle. The fiber is pumped with a central wavelength of (a) 1.8 μm and (b) 2.2 μm, respectively (red dashed lines). The intensities are plotted on a dB scale. The pulse energy including coupling losses is in both cases approximately 30 nJ

Fig. 4
Fig. 4

The spectrograms from Fig. 3 plotted with arrival time calculations for the LP01, LP11 and LP21 modes. The spectrograms are in good agreement with the calculated arrival times. (a) Pump at 1.8 μm (b) Pump at 2.2 μm. The intensities are plotted on a dB scale.

Fig. 5
Fig. 5

Effective areas (inverse overlap integrals 1 / f01,xy, where LPxy is given by legend) for Raman scattering into 6 modes from the LP01 mode. The blue dashed lines are the pump wavelengths used for the upconversion experiments.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

V = 2 π a λ NA
N 2 = γ P 0 T 0 2 | β 2 | ,
f 01 , 01 , 01 , 11 = F 01 * F 01 * F 01 F 11 [ | F 01 | 2 | F 01 | 2 | F 01 | 2 | F 11 | 2 ] 1 / 2
f 01 , 11 = | F 01 | 2 | F 11 | 2 | F 01 | 2 | F 11 | 2 ,

Metrics