Abstract

A tunable dual-band ferrite-based metamaterial has been investigated by experiments and simulations. The negative permeability is realized around the ferromagnetic resonance (FMR) frequency which can be influenced by the dimension of the ferrites. Due to having two negative permeability frequency regions around the two FMR frequencies, the metamaterials consisting of metallic wires and ferrite rods with different sizes possess two passbands in the transmission spectra. The microwave transmission properties of the ferrite-based metamaterials can be not only tuned by the applied magnetic field, but also adjusted by the dimension of the ferrite rods. A good agreement between experimental and simulated results is demonstrated, which confirms that the tunable dual-band ferrite-based metamaterials can be used for cloaks, antennas and absorbers.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substance simultaneously negative values of ε and μ,” Sov. Phys. Usp.10(4), 509–514 (1968).
    [CrossRef]
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996).
    [CrossRef] [PubMed]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
    [CrossRef]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  5. A. Grbic and G. V. Eleftheriades, “Periodic Analysis of a 2-D Negative Refractive Index Transmission Line Structure,” IEEE Trans. Antenn. Propag.51(10), 2604–2611 (2003).
    [CrossRef]
  6. D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and Negative Refractive Index,” Science305(5685), 788–792 (2004).
    [CrossRef] [PubMed]
  7. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  8. N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science302(5650), 1537–1540 (2003).
    [CrossRef] [PubMed]
  9. C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett.84(17), 3232–3234 (2004).
    [CrossRef]
  10. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
    [CrossRef] [PubMed]
  11. P. Gay-Balmaz and O. J. F. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys.92(5), 2929–2936 (2002).
    [CrossRef]
  12. H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett.86(15), 151909 (2005).
    [CrossRef]
  13. K. Aydin and E. Ozbay, “Identifying magnetic response of split-ring resonators at microwave frequencies,” Opto-Electron. Rev.14(3), 193–199 (2006).
    [CrossRef]
  14. X. J. He, Y. Wang, Z. X. Geng, J. M. Wang, and T. L. Gui, “3D broadband isotropic NRI metamaterial based on metallic cross-pairs,” J. Magn. Magn. Mater.323(20), 2425–2428 (2011).
    [CrossRef]
  15. S. Kim, H. K. Choi, J. I. Choi, and J. H. Park, “A new approach to the design of a dual-band IFA with a metamaterial unit cell,” Microw. Opt. Technol. Lett.54(2), 545–549 (2012).
    [CrossRef]
  16. C. Sabah and H. G. Roskos, “Dual-band polarization-independent sub-terahertz fishnet metamaterial,” Curr. Appl. Phys.12(2), 443–450 (2012).
    [CrossRef]
  17. Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process.108(1), 19–24 (2012).
    [CrossRef]
  18. G. Dewar, “Candidates for μ < 0, ε < 0 nanostructures,” Int. J. Mod. Phys. B15(24n25), 3258–3265 (2001).
    [CrossRef]
  19. L. Kang, Q. Zhao, H. J. Zhao, and J. Zhou, “Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires,” Opt. Express16(22), 17269–17275 (2008).
    [CrossRef] [PubMed]
  20. H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, “Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires,” Appl. Phys. Lett.91(13), 131107 (2007).
    [CrossRef]
  21. H. J. Zhao, J. Zhou, L. Kang, and Q. Zhao, “Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires,” Opt. Express17(16), 13373–13380 (2009).
    [CrossRef] [PubMed]
  22. P. He, J. Gao, Y. Chen, P. V. Parimi, C. Vittoria, and V. G. Harris, “Q-band tunable negative refractive index metamaterial using Sc-doped BaM hexaferrite,” J. Phys. D Appl. Phys.42(15), 155005 (2009).
    [CrossRef]
  23. F. Xu, Y. Bai, F. Ai, L. Qiao, H. J. Zhao, and J. Zhou, “Realization and modulation of negative permeability using an array of hexaferrite rods,” J. Phys. D Appl. Phys.42(6), 065416 (2009).
    [CrossRef]
  24. D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
    [CrossRef] [PubMed]
  25. C. Tserkezis, N. Papanikolaou, G. Gantzounis, and N. Stefanou, “Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures,” Phys. Rev. B78(16), 165114 (2008).
    [CrossRef]

2012 (3)

S. Kim, H. K. Choi, J. I. Choi, and J. H. Park, “A new approach to the design of a dual-band IFA with a metamaterial unit cell,” Microw. Opt. Technol. Lett.54(2), 545–549 (2012).
[CrossRef]

C. Sabah and H. G. Roskos, “Dual-band polarization-independent sub-terahertz fishnet metamaterial,” Curr. Appl. Phys.12(2), 443–450 (2012).
[CrossRef]

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process.108(1), 19–24 (2012).
[CrossRef]

2011 (1)

X. J. He, Y. Wang, Z. X. Geng, J. M. Wang, and T. L. Gui, “3D broadband isotropic NRI metamaterial based on metallic cross-pairs,” J. Magn. Magn. Mater.323(20), 2425–2428 (2011).
[CrossRef]

2009 (3)

H. J. Zhao, J. Zhou, L. Kang, and Q. Zhao, “Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires,” Opt. Express17(16), 13373–13380 (2009).
[CrossRef] [PubMed]

P. He, J. Gao, Y. Chen, P. V. Parimi, C. Vittoria, and V. G. Harris, “Q-band tunable negative refractive index metamaterial using Sc-doped BaM hexaferrite,” J. Phys. D Appl. Phys.42(15), 155005 (2009).
[CrossRef]

F. Xu, Y. Bai, F. Ai, L. Qiao, H. J. Zhao, and J. Zhou, “Realization and modulation of negative permeability using an array of hexaferrite rods,” J. Phys. D Appl. Phys.42(6), 065416 (2009).
[CrossRef]

2008 (2)

L. Kang, Q. Zhao, H. J. Zhao, and J. Zhou, “Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires,” Opt. Express16(22), 17269–17275 (2008).
[CrossRef] [PubMed]

C. Tserkezis, N. Papanikolaou, G. Gantzounis, and N. Stefanou, “Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures,” Phys. Rev. B78(16), 165114 (2008).
[CrossRef]

2007 (1)

H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, “Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires,” Appl. Phys. Lett.91(13), 131107 (2007).
[CrossRef]

2006 (1)

K. Aydin and E. Ozbay, “Identifying magnetic response of split-ring resonators at microwave frequencies,” Opto-Electron. Rev.14(3), 193–199 (2006).
[CrossRef]

2005 (2)

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett.86(15), 151909 (2005).
[CrossRef]

2004 (2)

C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett.84(17), 3232–3234 (2004).
[CrossRef]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and Negative Refractive Index,” Science305(5685), 788–792 (2004).
[CrossRef] [PubMed]

2003 (2)

A. Grbic and G. V. Eleftheriades, “Periodic Analysis of a 2-D Negative Refractive Index Transmission Line Structure,” IEEE Trans. Antenn. Propag.51(10), 2604–2611 (2003).
[CrossRef]

N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science302(5650), 1537–1540 (2003).
[CrossRef] [PubMed]

2002 (1)

P. Gay-Balmaz and O. J. F. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys.92(5), 2929–2936 (2002).
[CrossRef]

2001 (2)

G. Dewar, “Candidates for μ < 0, ε < 0 nanostructures,” Int. J. Mod. Phys. B15(24n25), 3258–3265 (2001).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

2000 (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

1968 (1)

V. G. Veselago, “The electrodynamics of substance simultaneously negative values of ε and μ,” Sov. Phys. Usp.10(4), 509–514 (1968).
[CrossRef]

Ai, F.

F. Xu, Y. Bai, F. Ai, L. Qiao, H. J. Zhao, and J. Zhou, “Realization and modulation of negative permeability using an array of hexaferrite rods,” J. Phys. D Appl. Phys.42(6), 065416 (2009).
[CrossRef]

Aydin, K.

K. Aydin and E. Ozbay, “Identifying magnetic response of split-ring resonators at microwave frequencies,” Opto-Electron. Rev.14(3), 193–199 (2006).
[CrossRef]

Bai, Y.

F. Xu, Y. Bai, F. Ai, L. Qiao, H. J. Zhao, and J. Zhou, “Realization and modulation of negative permeability using an array of hexaferrite rods,” J. Phys. D Appl. Phys.42(6), 065416 (2009).
[CrossRef]

H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, “Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires,” Appl. Phys. Lett.91(13), 131107 (2007).
[CrossRef]

Bearpark, T.

N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science302(5650), 1537–1540 (2003).
[CrossRef] [PubMed]

Chen, H.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett.86(15), 151909 (2005).
[CrossRef]

Chen, K.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett.86(15), 151909 (2005).
[CrossRef]

Chen, Y.

P. He, J. Gao, Y. Chen, P. V. Parimi, C. Vittoria, and V. G. Harris, “Q-band tunable negative refractive index metamaterial using Sc-doped BaM hexaferrite,” J. Phys. D Appl. Phys.42(15), 155005 (2009).
[CrossRef]

Choi, H. K.

S. Kim, H. K. Choi, J. I. Choi, and J. H. Park, “A new approach to the design of a dual-band IFA with a metamaterial unit cell,” Microw. Opt. Technol. Lett.54(2), 545–549 (2012).
[CrossRef]

Choi, J. I.

S. Kim, H. K. Choi, J. I. Choi, and J. H. Park, “A new approach to the design of a dual-band IFA with a metamaterial unit cell,” Microw. Opt. Technol. Lett.54(2), 545–549 (2012).
[CrossRef]

Dewar, G.

G. Dewar, “Candidates for μ < 0, ε < 0 nanostructures,” Int. J. Mod. Phys. B15(24n25), 3258–3265 (2001).
[CrossRef]

Eleftheriades, G. V.

A. Grbic and G. V. Eleftheriades, “Periodic Analysis of a 2-D Negative Refractive Index Transmission Line Structure,” IEEE Trans. Antenn. Propag.51(10), 2604–2611 (2003).
[CrossRef]

Gantzounis, G.

C. Tserkezis, N. Papanikolaou, G. Gantzounis, and N. Stefanou, “Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures,” Phys. Rev. B78(16), 165114 (2008).
[CrossRef]

Gao, J.

P. He, J. Gao, Y. Chen, P. V. Parimi, C. Vittoria, and V. G. Harris, “Q-band tunable negative refractive index metamaterial using Sc-doped BaM hexaferrite,” J. Phys. D Appl. Phys.42(15), 155005 (2009).
[CrossRef]

Gay-Balmaz, P.

P. Gay-Balmaz and O. J. F. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys.92(5), 2929–2936 (2002).
[CrossRef]

Geng, Z. X.

X. J. He, Y. Wang, Z. X. Geng, J. M. Wang, and T. L. Gui, “3D broadband isotropic NRI metamaterial based on metallic cross-pairs,” J. Magn. Magn. Mater.323(20), 2425–2428 (2011).
[CrossRef]

Grbic, A.

A. Grbic and G. V. Eleftheriades, “Periodic Analysis of a 2-D Negative Refractive Index Transmission Line Structure,” IEEE Trans. Antenn. Propag.51(10), 2604–2611 (2003).
[CrossRef]

Greegor, R. B.

C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett.84(17), 3232–3234 (2004).
[CrossRef]

Grzegorczyk, T. M.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett.86(15), 151909 (2005).
[CrossRef]

Gu, S.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process.108(1), 19–24 (2012).
[CrossRef]

Gui, T. L.

X. J. He, Y. Wang, Z. X. Geng, J. M. Wang, and T. L. Gui, “3D broadband isotropic NRI metamaterial based on metallic cross-pairs,” J. Magn. Magn. Mater.323(20), 2425–2428 (2011).
[CrossRef]

Harris, V. G.

P. He, J. Gao, Y. Chen, P. V. Parimi, C. Vittoria, and V. G. Harris, “Q-band tunable negative refractive index metamaterial using Sc-doped BaM hexaferrite,” J. Phys. D Appl. Phys.42(15), 155005 (2009).
[CrossRef]

He, P.

P. He, J. Gao, Y. Chen, P. V. Parimi, C. Vittoria, and V. G. Harris, “Q-band tunable negative refractive index metamaterial using Sc-doped BaM hexaferrite,” J. Phys. D Appl. Phys.42(15), 155005 (2009).
[CrossRef]

He, X. J.

X. J. He, Y. Wang, Z. X. Geng, J. M. Wang, and T. L. Gui, “3D broadband isotropic NRI metamaterial based on metallic cross-pairs,” J. Magn. Magn. Mater.323(20), 2425–2428 (2011).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Huangfu, J.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett.86(15), 151909 (2005).
[CrossRef]

Kang, L.

Kim, S.

S. Kim, H. K. Choi, J. I. Choi, and J. H. Park, “A new approach to the design of a dual-band IFA with a metamaterial unit cell,” Microw. Opt. Technol. Lett.54(2), 545–549 (2012).
[CrossRef]

Kong, J. A.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett.86(15), 151909 (2005).
[CrossRef]

Koschny, Th.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

Li, B.

H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, “Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires,” Appl. Phys. Lett.91(13), 131107 (2007).
[CrossRef]

Li, K.

C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett.84(17), 3232–3234 (2004).
[CrossRef]

Liu, Y.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process.108(1), 19–24 (2012).
[CrossRef]

Luo, C.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process.108(1), 19–24 (2012).
[CrossRef]

Martin, O. J. F.

P. Gay-Balmaz and O. J. F. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys.92(5), 2929–2936 (2002).
[CrossRef]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Nielsen, J. A.

C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett.84(17), 3232–3234 (2004).
[CrossRef]

Ozbay, E.

K. Aydin and E. Ozbay, “Identifying magnetic response of split-ring resonators at microwave frequencies,” Opto-Electron. Rev.14(3), 193–199 (2006).
[CrossRef]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Papanikolaou, N.

C. Tserkezis, N. Papanikolaou, G. Gantzounis, and N. Stefanou, “Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures,” Phys. Rev. B78(16), 165114 (2008).
[CrossRef]

Parazzoli, C. G.

C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett.84(17), 3232–3234 (2004).
[CrossRef]

Parimi, P. V.

P. He, J. Gao, Y. Chen, P. V. Parimi, C. Vittoria, and V. G. Harris, “Q-band tunable negative refractive index metamaterial using Sc-doped BaM hexaferrite,” J. Phys. D Appl. Phys.42(15), 155005 (2009).
[CrossRef]

Park, J. H.

S. Kim, H. K. Choi, J. I. Choi, and J. H. Park, “A new approach to the design of a dual-band IFA with a metamaterial unit cell,” Microw. Opt. Technol. Lett.54(2), 545–549 (2012).
[CrossRef]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and Negative Refractive Index,” Science305(5685), 788–792 (2004).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Qiao, L.

F. Xu, Y. Bai, F. Ai, L. Qiao, H. J. Zhao, and J. Zhou, “Realization and modulation of negative permeability using an array of hexaferrite rods,” J. Phys. D Appl. Phys.42(6), 065416 (2009).
[CrossRef]

Ran, L.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett.86(15), 151909 (2005).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

Roskos, H. G.

C. Sabah and H. G. Roskos, “Dual-band polarization-independent sub-terahertz fishnet metamaterial,” Curr. Appl. Phys.12(2), 443–450 (2012).
[CrossRef]

Sabah, C.

C. Sabah and H. G. Roskos, “Dual-band polarization-independent sub-terahertz fishnet metamaterial,” Curr. Appl. Phys.12(2), 443–450 (2012).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Seddon, N.

N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science302(5650), 1537–1540 (2003).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Smith, D. R.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and Negative Refractive Index,” Science305(5685), 788–792 (2004).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Soukoulis, C. M.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

Stefanou, N.

C. Tserkezis, N. Papanikolaou, G. Gantzounis, and N. Stefanou, “Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures,” Phys. Rev. B78(16), 165114 (2008).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Tanielian, M. H.

C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett.84(17), 3232–3234 (2004).
[CrossRef]

Thompson, M. A.

C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett.84(17), 3232–3234 (2004).
[CrossRef]

Tserkezis, C.

C. Tserkezis, N. Papanikolaou, G. Gantzounis, and N. Stefanou, “Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures,” Phys. Rev. B78(16), 165114 (2008).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substance simultaneously negative values of ε and μ,” Sov. Phys. Usp.10(4), 509–514 (1968).
[CrossRef]

Vetter, A. M.

C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett.84(17), 3232–3234 (2004).
[CrossRef]

Vier, D. C.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett.84(17), 3232–3234 (2004).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Vittoria, C.

P. He, J. Gao, Y. Chen, P. V. Parimi, C. Vittoria, and V. G. Harris, “Q-band tunable negative refractive index metamaterial using Sc-doped BaM hexaferrite,” J. Phys. D Appl. Phys.42(15), 155005 (2009).
[CrossRef]

Wang, J. M.

X. J. He, Y. Wang, Z. X. Geng, J. M. Wang, and T. L. Gui, “3D broadband isotropic NRI metamaterial based on metallic cross-pairs,” J. Magn. Magn. Mater.323(20), 2425–2428 (2011).
[CrossRef]

Wang, Y.

X. J. He, Y. Wang, Z. X. Geng, J. M. Wang, and T. L. Gui, “3D broadband isotropic NRI metamaterial based on metallic cross-pairs,” J. Magn. Magn. Mater.323(20), 2425–2428 (2011).
[CrossRef]

Wiltshire, M. C.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and Negative Refractive Index,” Science305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Xu, F.

F. Xu, Y. Bai, F. Ai, L. Qiao, H. J. Zhao, and J. Zhou, “Realization and modulation of negative permeability using an array of hexaferrite rods,” J. Phys. D Appl. Phys.42(6), 065416 (2009).
[CrossRef]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Zhang, X.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett.86(15), 151909 (2005).
[CrossRef]

Zhao, H. J.

H. J. Zhao, J. Zhou, L. Kang, and Q. Zhao, “Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires,” Opt. Express17(16), 13373–13380 (2009).
[CrossRef] [PubMed]

F. Xu, Y. Bai, F. Ai, L. Qiao, H. J. Zhao, and J. Zhou, “Realization and modulation of negative permeability using an array of hexaferrite rods,” J. Phys. D Appl. Phys.42(6), 065416 (2009).
[CrossRef]

L. Kang, Q. Zhao, H. J. Zhao, and J. Zhou, “Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires,” Opt. Express16(22), 17269–17275 (2008).
[CrossRef] [PubMed]

H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, “Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires,” Appl. Phys. Lett.91(13), 131107 (2007).
[CrossRef]

Zhao, Q.

Zhao, X.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process.108(1), 19–24 (2012).
[CrossRef]

Zhou, J.

H. J. Zhao, J. Zhou, L. Kang, and Q. Zhao, “Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires,” Opt. Express17(16), 13373–13380 (2009).
[CrossRef] [PubMed]

F. Xu, Y. Bai, F. Ai, L. Qiao, H. J. Zhao, and J. Zhou, “Realization and modulation of negative permeability using an array of hexaferrite rods,” J. Phys. D Appl. Phys.42(6), 065416 (2009).
[CrossRef]

L. Kang, Q. Zhao, H. J. Zhao, and J. Zhou, “Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires,” Opt. Express16(22), 17269–17275 (2008).
[CrossRef] [PubMed]

H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, “Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires,” Appl. Phys. Lett.91(13), 131107 (2007).
[CrossRef]

Appl. Phys. Lett. (3)

C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett.84(17), 3232–3234 (2004).
[CrossRef]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Negative refraction of a combined double S-shaped metamaterial,” Appl. Phys. Lett.86(15), 151909 (2005).
[CrossRef]

H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, “Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires,” Appl. Phys. Lett.91(13), 131107 (2007).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process.108(1), 19–24 (2012).
[CrossRef]

Curr. Appl. Phys. (1)

C. Sabah and H. G. Roskos, “Dual-band polarization-independent sub-terahertz fishnet metamaterial,” Curr. Appl. Phys.12(2), 443–450 (2012).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

A. Grbic and G. V. Eleftheriades, “Periodic Analysis of a 2-D Negative Refractive Index Transmission Line Structure,” IEEE Trans. Antenn. Propag.51(10), 2604–2611 (2003).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

Int. J. Mod. Phys. B (1)

G. Dewar, “Candidates for μ < 0, ε < 0 nanostructures,” Int. J. Mod. Phys. B15(24n25), 3258–3265 (2001).
[CrossRef]

J. Appl. Phys. (1)

P. Gay-Balmaz and O. J. F. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys.92(5), 2929–2936 (2002).
[CrossRef]

J. Magn. Magn. Mater. (1)

X. J. He, Y. Wang, Z. X. Geng, J. M. Wang, and T. L. Gui, “3D broadband isotropic NRI metamaterial based on metallic cross-pairs,” J. Magn. Magn. Mater.323(20), 2425–2428 (2011).
[CrossRef]

J. Phys. D Appl. Phys. (2)

P. He, J. Gao, Y. Chen, P. V. Parimi, C. Vittoria, and V. G. Harris, “Q-band tunable negative refractive index metamaterial using Sc-doped BaM hexaferrite,” J. Phys. D Appl. Phys.42(15), 155005 (2009).
[CrossRef]

F. Xu, Y. Bai, F. Ai, L. Qiao, H. J. Zhao, and J. Zhou, “Realization and modulation of negative permeability using an array of hexaferrite rods,” J. Phys. D Appl. Phys.42(6), 065416 (2009).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

S. Kim, H. K. Choi, J. I. Choi, and J. H. Park, “A new approach to the design of a dual-band IFA with a metamaterial unit cell,” Microw. Opt. Technol. Lett.54(2), 545–549 (2012).
[CrossRef]

Opt. Express (2)

Opto-Electron. Rev. (1)

K. Aydin and E. Ozbay, “Identifying magnetic response of split-ring resonators at microwave frequencies,” Opto-Electron. Rev.14(3), 193–199 (2006).
[CrossRef]

Phys. Rev. B (1)

C. Tserkezis, N. Papanikolaou, G. Gantzounis, and N. Stefanou, “Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures,” Phys. Rev. B78(16), 165114 (2008).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Science (3)

N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science302(5650), 1537–1540 (2003).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and Negative Refractive Index,” Science305(5685), 788–792 (2004).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substance simultaneously negative values of ε and μ,” Sov. Phys. Usp.10(4), 509–514 (1968).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of (a) dual-band NRI ferrite-based metamaterials and (b) single-band NRI ferrite-based metamaterials.

Fig. 2
Fig. 2

(a) Unit cell of a ferrite rod alone; (b) real part of effective permeability retrieved from simulated scattering parameters with a series of rod length l at H0 = 2300 Oe.

Fig. 3
Fig. 3

(a) Measured transmission spectra for rods-only, wires-only and the single-band NRI ferrite-based metamaterials with the rod length l = 0.8 mm at H0 = 2300 Oe; (b) Measured transmission spectra for the single-band NRI ferrite-based metamaterials with a series of rod length l at H0 = 2300 Oe.

Fig. 4
Fig. 4

(a) Unit cell of two ferrite rods; (b) real part of effective permeability retrieved from simulated scattering parameters with a series of length l of rod B at H0 = 2300 Oe.

Fig. 5
Fig. 5

(a) Measured transmission spectra for rods A and rods B, wires-only and the dual-band NRI ferrite-based metamaterials with the rod B length l = 2.4 mm at H0 = 2300 Oe; (b) Measured transmission spectra for the dual-band NRI ferrite-based metamaterials with a series of rod B length l at H0 = 2300 Oe.

Fig. 6
Fig. 6

(a) Unit cell of ferrite rod A-copper wire-ferrite rod B; (b) retrieved real part of effective refractive index of the rod-wire-rod unit with a series of length l of rod B at H0 = 2300 Oe.

Fig. 7
Fig. 7

(a) Simulated transmission spectra for the dual-band NRI ferrite-based metamaterials and (b) retrieved real part of effective refractive index of the rod-wire-rod unit with rod B length l = 2.4 mm under a series of applied magnetic fields.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

μ eff ( ω )=1 F ω mp 2 ω 2 ω mp 2 iΓ( ω )ω
Γ( ω )=( ω 2 ω r + ω m + ω r + ω m )α
ω mp = ω r ( ω r + ω m )
ω r =γ [ H 0 +( N x N z )4π M s ][ H 0 +( N y N z )4π M s ]

Metrics