Abstract

We propose an ultra-thin planar metasurface with phase discontinuities for highly efficient beam steering. The effect benefits from the broadband transparency and flexible phase modulation of stacked metal/dielectric multi-layers that is perforated with coaxial annular apertures. Proof-of-principle experiments verify that an efficiency of 65% and a deflection angle of 18o at 10GHz are achieved for the transmitted beam, which are also in good agreement with the finite-difference-method-in-time-domain (FDTD) simulations. The scheme shall be general for the design of beam-steering transmitters in all frequencies.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Pergamon Press, Oxford, Angleterre, 1980).
  2. N. Engheta and R. W. Ziolkowski, Metamaterials: physics and engineering explorations (Wiley-IEEE Press, New York, 2006).
  3. W. Cai and V. Shalaev, Optical metamaterials: fundamentals and applications (Springer, New York, 2009).
  4. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
    [CrossRef] [PubMed]
  5. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
    [CrossRef] [PubMed]
  6. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004).
    [CrossRef] [PubMed]
  7. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  8. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  9. Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion Optics: The Optical Transformation of an Object into Another Object,” Phys. Rev. Lett.102(25), 253902 (2009).
    [CrossRef] [PubMed]
  10. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006).
    [CrossRef] [PubMed]
  11. C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
    [CrossRef] [PubMed]
  12. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012).
    [CrossRef] [PubMed]
  13. Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011).
    [CrossRef]
  14. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
    [CrossRef]
  15. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  16. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
    [CrossRef]
  17. S. Carretero-Palacios, F. J. Garcia-Vidal, L. Martin-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B85(3), 035417 (2012).
    [CrossRef]
  18. Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures8(2), 94–101 (2010).
    [CrossRef]
  19. Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006).
    [CrossRef] [PubMed]
  20. N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
    [CrossRef] [PubMed]
  21. F. Aieta, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities,” Nano Lett.12(3), 1702–1706 (2012).
    [CrossRef] [PubMed]
  22. R. Blanchard, G. Aoust, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B85(15), 155457 (2012).
    [CrossRef]
  23. P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012).
    [CrossRef]
  24. X. J. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science335(6067), 427–427 (2012).
    [CrossRef] [PubMed]
  25. S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11(5), 426–431 (2012).
    [CrossRef] [PubMed]
  26. X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. T. Yu, “Integrated Compact Optical Vortex Beam Emitters,” Science338(6105), 363–366 (2012).
    [CrossRef] [PubMed]
  27. A. Djalalian-Assl, D. E. Gómez, A. Roberts, and T. J. Davis, “Frequency-dependent optical steering from subwavelength plasmonic structures,” Opt. Lett.37(20), 4206–4208 (2012).
    [CrossRef] [PubMed]
  28. M. Kang, J. Chen, X. L. Wang, and H. T. Wang, “Twisted vector field from an inhomogeneous and anisotropic metamaterial,” J. Opt. Soc. Am. B29(4), 572–576 (2012).
    [CrossRef]
  29. M. Kang, T. H. Feng, H. T. Wang, and J. S. Li, “Wave front engineering from an array of thin aperture antennas,” Opt. Express20(14), 15882–15890 (2012).
    [CrossRef] [PubMed]
  30. N. Lawrence, J. Trevino, and L. Dal Negro, “Aperiodic arrays of active nanopillars for radiation engineering,” J. Appl. Phys.111(11), 113101 (2012).
    [CrossRef]
  31. N. M. Litchinitser, “Applied Physics. Structured Light Meets Structured Matter,” Science337(6098), 1054–1055 (2012).
    [CrossRef] [PubMed]
  32. T. Matsui, H. T. Miyazaki, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, M. Ochiai, Y. Sugimoto, M. Ozaki, M. Hangyo, and K. Asakawa, “Transmission phase control by stacked metal-dielectric hole array with two-dimensional geometric design,” Opt. Express20(14), 16092–16103 (2012).
    [CrossRef] [PubMed]
  33. Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express19(22), 21425–21431 (2011).
    [CrossRef] [PubMed]
  34. P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B26(6), 2907–2916 (1982).
    [CrossRef]
  35. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A.: Pure Appl. Opt.2, 48–51 (2000).

2012 (14)

F. Aieta, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities,” Nano Lett.12(3), 1702–1706 (2012).
[CrossRef] [PubMed]

R. Blanchard, G. Aoust, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B85(15), 155457 (2012).
[CrossRef]

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012).
[CrossRef]

X. J. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science335(6067), 427–427 (2012).
[CrossRef] [PubMed]

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11(5), 426–431 (2012).
[CrossRef] [PubMed]

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. T. Yu, “Integrated Compact Optical Vortex Beam Emitters,” Science338(6105), 363–366 (2012).
[CrossRef] [PubMed]

N. Lawrence, J. Trevino, and L. Dal Negro, “Aperiodic arrays of active nanopillars for radiation engineering,” J. Appl. Phys.111(11), 113101 (2012).
[CrossRef]

N. M. Litchinitser, “Applied Physics. Structured Light Meets Structured Matter,” Science337(6098), 1054–1055 (2012).
[CrossRef] [PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012).
[CrossRef] [PubMed]

S. Carretero-Palacios, F. J. Garcia-Vidal, L. Martin-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B85(3), 035417 (2012).
[CrossRef]

M. Kang, J. Chen, X. L. Wang, and H. T. Wang, “Twisted vector field from an inhomogeneous and anisotropic metamaterial,” J. Opt. Soc. Am. B29(4), 572–576 (2012).
[CrossRef]

M. Kang, T. H. Feng, H. T. Wang, and J. S. Li, “Wave front engineering from an array of thin aperture antennas,” Opt. Express20(14), 15882–15890 (2012).
[CrossRef] [PubMed]

T. Matsui, H. T. Miyazaki, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, M. Ochiai, Y. Sugimoto, M. Ozaki, M. Hangyo, and K. Asakawa, “Transmission phase control by stacked metal-dielectric hole array with two-dimensional geometric design,” Opt. Express20(14), 16092–16103 (2012).
[CrossRef] [PubMed]

A. Djalalian-Assl, D. E. Gómez, A. Roberts, and T. J. Davis, “Frequency-dependent optical steering from subwavelength plasmonic structures,” Opt. Lett.37(20), 4206–4208 (2012).
[CrossRef] [PubMed]

2011 (3)

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express19(22), 21425–21431 (2011).
[CrossRef] [PubMed]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011).
[CrossRef]

2010 (3)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures8(2), 94–101 (2010).
[CrossRef]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

2009 (1)

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion Optics: The Optical Transformation of an Object into Another Object,” Phys. Rev. Lett.102(25), 253902 (2009).
[CrossRef] [PubMed]

2008 (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

2006 (4)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006).
[CrossRef] [PubMed]

Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006).
[CrossRef] [PubMed]

2005 (1)

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004).
[CrossRef] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2000 (1)

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A.: Pure Appl. Opt.2, 48–51 (2000).

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

1982 (1)

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B26(6), 2907–2916 (1982).
[CrossRef]

Aieta, F.

F. Aieta, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities,” Nano Lett.12(3), 1702–1706 (2012).
[CrossRef] [PubMed]

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012).
[CrossRef]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012).
[CrossRef] [PubMed]

Aoust, G.

R. Blanchard, G. Aoust, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B85(15), 155457 (2012).
[CrossRef]

Asakawa, K.

Astilean, S.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A.: Pure Appl. Opt.2, 48–51 (2000).

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012).
[CrossRef] [PubMed]

Blanchard, R.

R. Blanchard, G. Aoust, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B85(15), 155457 (2012).
[CrossRef]

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012).
[CrossRef]

Boltasseva, A.

X. J. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science335(6067), 427–427 (2012).
[CrossRef] [PubMed]

Burger, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

Cai, X. L.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. T. Yu, “Integrated Compact Optical Vortex Beam Emitters,” Science338(6105), 363–366 (2012).
[CrossRef] [PubMed]

Cao, Y.

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express19(22), 21425–21431 (2011).
[CrossRef] [PubMed]

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011).
[CrossRef]

Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures8(2), 94–101 (2010).
[CrossRef]

Capasso, F.

R. Blanchard, G. Aoust, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B85(15), 155457 (2012).
[CrossRef]

F. Aieta, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities,” Nano Lett.12(3), 1702–1706 (2012).
[CrossRef] [PubMed]

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012).
[CrossRef]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Carretero-Palacios, S.

S. Carretero-Palacios, F. J. Garcia-Vidal, L. Martin-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B85(3), 035417 (2012).
[CrossRef]

Chan, C. T.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion Optics: The Optical Transformation of an Object into Another Object,” Phys. Rev. Lett.102(25), 253902 (2009).
[CrossRef] [PubMed]

Chen, H. Y.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion Optics: The Optical Transformation of an Object into Another Object,” Phys. Rev. Lett.102(25), 253902 (2009).
[CrossRef] [PubMed]

Chen, J.

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Dal Negro, L.

N. Lawrence, J. Trevino, and L. Dal Negro, “Aperiodic arrays of active nanopillars for radiation engineering,” J. Appl. Phys.111(11), 113101 (2012).
[CrossRef]

Davis, T. J.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Djalalian-Assl, A.

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Emani, N. K.

X. J. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science335(6067), 427–427 (2012).
[CrossRef] [PubMed]

Enkrich, C.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

Fan, Y. C.

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011).
[CrossRef]

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express19(22), 21425–21431 (2011).
[CrossRef] [PubMed]

Fedotov, V. A.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006).
[CrossRef] [PubMed]

Feng, T. H.

Fu, J. X.

Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures8(2), 94–101 (2010).
[CrossRef]

Fujikawa, H.

Gaburro, Z.

F. Aieta, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities,” Nano Lett.12(3), 1702–1706 (2012).
[CrossRef] [PubMed]

R. Blanchard, G. Aoust, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B85(15), 155457 (2012).
[CrossRef]

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012).
[CrossRef]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

S. Carretero-Palacios, F. J. Garcia-Vidal, L. Martin-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B85(3), 035417 (2012).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Genevet, P.

F. Aieta, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities,” Nano Lett.12(3), 1702–1706 (2012).
[CrossRef] [PubMed]

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012).
[CrossRef]

R. Blanchard, G. Aoust, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B85(15), 155457 (2012).
[CrossRef]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Gómez, D. E.

Han, D. Z.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion Optics: The Optical Transformation of an Object into Another Object,” Phys. Rev. Lett.102(25), 253902 (2009).
[CrossRef] [PubMed]

Hangyo, M.

He, Q.

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11(5), 426–431 (2012).
[CrossRef] [PubMed]

Helgert, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Hugonin, J. P.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A.: Pure Appl. Opt.2, 48–51 (2000).

Ikeda, N.

Johnson-Morris, B.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. T. Yu, “Integrated Compact Optical Vortex Beam Emitters,” Science338(6105), 363–366 (2012).
[CrossRef] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kang, M.

Kats, M. A.

R. Blanchard, G. Aoust, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B85(15), 155457 (2012).
[CrossRef]

F. Aieta, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities,” Nano Lett.12(3), 1702–1706 (2012).
[CrossRef] [PubMed]

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012).
[CrossRef]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Kildishev, A. V.

X. J. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science335(6067), 427–427 (2012).
[CrossRef] [PubMed]

Kley, E. B.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Koschny, T.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Lai, Y.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion Optics: The Optical Transformation of an Object into Another Object,” Phys. Rev. Lett.102(25), 253902 (2009).
[CrossRef] [PubMed]

Lalanne, P.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A.: Pure Appl. Opt.2, 48–51 (2000).

Lawrence, N.

N. Lawrence, J. Trevino, and L. Dal Negro, “Aperiodic arrays of active nanopillars for radiation engineering,” J. Appl. Phys.111(11), 113101 (2012).
[CrossRef]

Lederer, F.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Li, H. Q.

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011).
[CrossRef]

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express19(22), 21425–21431 (2011).
[CrossRef] [PubMed]

Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures8(2), 94–101 (2010).
[CrossRef]

Li, J. S.

Li, X.

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11(5), 426–431 (2012).
[CrossRef] [PubMed]

Lin, J.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012).
[CrossRef]

Linden, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

Litchinitser, N. M.

N. M. Litchinitser, “Applied Physics. Structured Light Meets Structured Matter,” Science337(6098), 1054–1055 (2012).
[CrossRef] [PubMed]

Martin-Moreno, L.

S. Carretero-Palacios, F. J. Garcia-Vidal, L. Martin-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B85(3), 035417 (2012).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Matsui, T.

Menzel, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Miura, A.

Miyazaki, H. T.

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Moller, K. D.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A.: Pure Appl. Opt.2, 48–51 (2000).

Ng, J.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion Optics: The Optical Transformation of an Object into Another Object,” Phys. Rev. Lett.102(25), 253902 (2009).
[CrossRef] [PubMed]

Ni, X. J.

X. J. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science335(6067), 427–427 (2012).
[CrossRef] [PubMed]

Nomura, T.

O’Brien, J. L.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. T. Yu, “Integrated Compact Optical Vortex Beam Emitters,” Science338(6105), 363–366 (2012).
[CrossRef] [PubMed]

Ochiai, M.

Ozaki, M.

Palamaru, M.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A.: Pure Appl. Opt.2, 48–51 (2000).

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Pertsch, T.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Qiu, M.

Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006).
[CrossRef] [PubMed]

Roberts, A.

Rockstuhl, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Rodrigo, S. G.

S. Carretero-Palacios, F. J. Garcia-Vidal, L. Martin-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B85(3), 035417 (2012).
[CrossRef]

Rogacheva, A. V.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006).
[CrossRef] [PubMed]

Ruan, Z. C.

Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006).
[CrossRef] [PubMed]

Sanda, P. N.

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B26(6), 2907–2916 (1982).
[CrossRef]

Sato, K.

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Schwanecke, A. S.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006).
[CrossRef] [PubMed]

Scully, M. O.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012).
[CrossRef]

Shalaev, V. M.

X. J. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science335(6067), 427–427 (2012).
[CrossRef] [PubMed]

Sheng, P.

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B26(6), 2907–2916 (1982).
[CrossRef]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Sorel, M.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. T. Yu, “Integrated Compact Optical Vortex Beam Emitters,” Science338(6105), 363–366 (2012).
[CrossRef] [PubMed]

Soukoulis, C. M.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Stepleman, R. S.

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B26(6), 2907–2916 (1982).
[CrossRef]

Strain, M. J.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. T. Yu, “Integrated Compact Optical Vortex Beam Emitters,” Science338(6105), 363–366 (2012).
[CrossRef] [PubMed]

Sugimoto, Y.

Sun, S. L.

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11(5), 426–431 (2012).
[CrossRef] [PubMed]

Tetienne, J. P.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Thompson, M. G.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. T. Yu, “Integrated Compact Optical Vortex Beam Emitters,” Science338(6105), 363–366 (2012).
[CrossRef] [PubMed]

Trevino, J.

N. Lawrence, J. Trevino, and L. Dal Negro, “Aperiodic arrays of active nanopillars for radiation engineering,” J. Appl. Phys.111(11), 113101 (2012).
[CrossRef]

Tsuya, D.

Tünnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Wang, H. T.

Wang, J. W.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. T. Yu, “Integrated Compact Optical Vortex Beam Emitters,” Science338(6105), 363–366 (2012).
[CrossRef] [PubMed]

Wang, X. L.

Wegener, M.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

Wei, Z. Y.

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011).
[CrossRef]

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express19(22), 21425–21431 (2011).
[CrossRef] [PubMed]

Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures8(2), 94–101 (2010).
[CrossRef]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Wu, C.

Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures8(2), 94–101 (2010).
[CrossRef]

Xiao, J. J.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion Optics: The Optical Transformation of an Object into Another Object,” Phys. Rev. Lett.102(25), 253902 (2009).
[CrossRef] [PubMed]

Xiao, S. Y.

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11(5), 426–431 (2012).
[CrossRef] [PubMed]

Xu, Q.

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11(5), 426–431 (2012).
[CrossRef] [PubMed]

Yu, N. F.

F. Aieta, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities,” Nano Lett.12(3), 1702–1706 (2012).
[CrossRef] [PubMed]

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012).
[CrossRef]

R. Blanchard, G. Aoust, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B85(15), 155457 (2012).
[CrossRef]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Yu, S. T.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. T. Yu, “Integrated Compact Optical Vortex Beam Emitters,” Science338(6105), 363–366 (2012).
[CrossRef] [PubMed]

Yu, X.

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express19(22), 21425–21431 (2011).
[CrossRef] [PubMed]

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011).
[CrossRef]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Zhang, Z. Q.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion Optics: The Optical Transformation of an Object into Another Object,” Phys. Rev. Lett.102(25), 253902 (2009).
[CrossRef] [PubMed]

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012).
[CrossRef] [PubMed]

Zheludev, N. I.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006).
[CrossRef] [PubMed]

Zhou, J. F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

Zhou, L.

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11(5), 426–431 (2012).
[CrossRef] [PubMed]

Zhu, J. B.

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. T. Yu, “Integrated Compact Optical Vortex Beam Emitters,” Science338(6105), 363–366 (2012).
[CrossRef] [PubMed]

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

J. Opt. A.: Pure Appl. Opt. (1)

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A.: Pure Appl. Opt.2, 48–51 (2000).

Appl. Phys. Lett. (2)

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012).
[CrossRef]

Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011).
[CrossRef]

J. Appl. Phys. (1)

N. Lawrence, J. Trevino, and L. Dal Negro, “Aperiodic arrays of active nanopillars for radiation engineering,” J. Appl. Phys.111(11), 113101 (2012).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

F. Aieta, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities,” Nano Lett.12(3), 1702–1706 (2012).
[CrossRef] [PubMed]

Nat Commun (1)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012).
[CrossRef] [PubMed]

Nat. Mater. (1)

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11(5), 426–431 (2012).
[CrossRef] [PubMed]

Nature (3)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Photon. Nanostructures (1)

Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures8(2), 94–101 (2010).
[CrossRef]

Phys. Rev. B (3)

S. Carretero-Palacios, F. J. Garcia-Vidal, L. Martin-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B85(3), 035417 (2012).
[CrossRef]

R. Blanchard, G. Aoust, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B85(15), 155457 (2012).
[CrossRef]

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B26(6), 2907–2916 (1982).
[CrossRef]

Phys. Rev. Lett. (5)

Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion Optics: The Optical Transformation of an Object into Another Object,” Phys. Rev. Lett.102(25), 253902 (2009).
[CrossRef] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006).
[CrossRef] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Science (7)

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

N. M. Litchinitser, “Applied Physics. Structured Light Meets Structured Matter,” Science337(6098), 1054–1055 (2012).
[CrossRef] [PubMed]

X. J. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science335(6067), 427–427 (2012).
[CrossRef] [PubMed]

X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. T. Yu, “Integrated Compact Optical Vortex Beam Emitters,” Science338(6105), 363–366 (2012).
[CrossRef] [PubMed]

Other (3)

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Pergamon Press, Oxford, Angleterre, 1980).

N. Engheta and R. W. Ziolkowski, Metamaterials: physics and engineering explorations (Wiley-IEEE Press, New York, 2006).

W. Cai and V. Shalaev, Optical metamaterials: fundamentals and applications (Springer, New York, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the metasurface, and the incident and transitted waves. (b) Photograph of a part of the sample.

Fig. 2
Fig. 2

Analytically calculated spectrum of transmission intensity (black square dots) and phase difference (red circular dots) from a tri-layered metasurface perforated with a periodic array of CAAs with p=12mm,R=5.8mm,r n =4.57mm .

Fig. 3
Fig. 3

Analytically calculated transmission amplitude (black square dots) and phase difference (red circular dots) at 10GHz by assuming that inner radius of the periodic CAA arrays has the value of r n (see Table 1).

Fig. 4
Fig. 4

Simulated magnetic field distributions ( H y ) for a Gaussian beam propagated (a) in free space and (b) through the metasurface. Measured magnetic field distributions ( H y ) for a horn antenna (c) without and (d) with the sample.

Fig. 5
Fig. 5

(a) Measured and (b) simulated far-field radiation patterns for a horn antenna with (blue line) and without (red line) the sample.

Tables (1)

Tables Icon

Table 1 Inner radii r n of our designed model

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n t sin θ t n i sin θ i = λ 2π dΦ dx ,
θ t =arcsin( λ 2π dΦ dx )=arcsin( λ 2π 2π L x p ),

Metrics