Abstract

We have designed an ytterbium rod-type fiber laser oscillator with tunable pulse duration. This system that delivers more than 10 W of average power is self mode-locked. It yields femtosecond to picosecond laser pulses at a repetition rate of 74 MHz. The pulse duration is adjusted by changing the spectral width of a band pass filter that is inserted in the laser cavity. Using volume Bragg gratings of 0.9 nm and 0.07 nm spectrum bandwidth, this oscillator delivers nearly Fourier limited 2.8 ps and 18.5 ps pulses, respectively. With a 4 nm interference filter, one obtains picosecond pulses that have been externally dechirped down to 130 fs.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett.28(8), 806–807 (1992).
    [CrossRef]
  2. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, T. Schreiber, A. Liem, E. Röser, H. Zellmer, A. Tünnermann, A. Courjaud, C. Hönninger, and E. Mottay, “High-power picosecond fiber amplifier based on nonlinear spectral compression,” Opt. Lett.30(7), 714–716 (2005).
    [CrossRef] [PubMed]
  3. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett.32(16), 2408–2410 (2007).
    [CrossRef] [PubMed]
  4. C. Lecaplain, M. Baumgartl, T. Schreiber, and A. Hideur, “On the mode-locking mechanism of a dissipative- soliton fiber oscillator,” Opt. Express19(27), 26742–26751 (2011).
    [CrossRef] [PubMed]
  5. W. H. Renninger, A. Chong, and F. W. Wise, “Amplifier similaritons in a dispersion-mapped fiber laser [Invited],” Opt. Express19(23), 22496–22501 (2011).
    [CrossRef] [PubMed]
  6. B. Ortaç, M. Baumgartl, J. Limpert, and A. Tünnermann, “Approaching microjoule-level pulse energy with mode-locked femtosecond fiber lasers,” Opt. Lett.34(10), 1585–1587 (2009).
    [CrossRef] [PubMed]
  7. S. Lefrançois, K. Kieu, Y. Deng, J. D. Kafka, and F. W. Wise, “Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber,” Opt. Lett.35(10), 1569–1571 (2010).
    [CrossRef] [PubMed]
  8. M. Baumgartl, F. Jansen, F. Stutzki, C. Jauregui, B. Ortaç, J. Limpert, and A. Tünnermann, “High average and peak power femtosecond large-pitch photonic-crystal-fiber laser,” Opt. Lett.36(2), 244–246 (2011).
    [CrossRef] [PubMed]
  9. N. B. Chichkov, C. Hapke, K. Hausmann, T. Theeg, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “0.5 µJ pulses from a giant-chirp ytterbium fiber oscillator,” Opt. Express19(4), 3647–3650 (2011).
    [CrossRef] [PubMed]
  10. M. Baumgartl, C. Lecaplain, A. Hideur, J. Limpert, and A. Tünnermann, “66 W average power from a microjoule-class sub-100 fs fiber oscillator,” Opt. Lett.37(10), 1640–1642 (2012).
    [CrossRef] [PubMed]
  11. D. Turchinovich, X. Liu, and J. Laegsgaard, “Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express16(18), 14004–14014 (2008).
    [CrossRef] [PubMed]
  12. M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally-stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B111(1), 39–43 (2013).
    [CrossRef]
  13. J. M. Dziedzic, R. H. Stolen, and A. Ashkin, “Optical Kerr effect in long fibers,” Appl. Opt.20(8), 1403–1406 (1981).
    [CrossRef] [PubMed]
  14. Ph. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012).
    [CrossRef]
  15. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B8(10), 2068–2076 (1991).
    [CrossRef]
  16. G. Martel, C. Chédot, A. Hideur, and Ph. Grelu, “Numerical Maps for Fiber Lasers Mode Locked with Nonlinear Polarization Evolution: Comparison with Semi-Analytical Models,” Fiber Integr. Opt.27(5), 320–340 (2008).
    [CrossRef]
  17. W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A82(2), 021805 (2010).
    [CrossRef] [PubMed]
  18. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001). See Eq. (6).1.15–16).

2013

M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally-stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B111(1), 39–43 (2013).
[CrossRef]

2012

2011

2010

2009

2008

G. Martel, C. Chédot, A. Hideur, and Ph. Grelu, “Numerical Maps for Fiber Lasers Mode Locked with Nonlinear Polarization Evolution: Comparison with Semi-Analytical Models,” Fiber Integr. Opt.27(5), 320–340 (2008).
[CrossRef]

D. Turchinovich, X. Liu, and J. Laegsgaard, “Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express16(18), 14004–14014 (2008).
[CrossRef] [PubMed]

2007

2005

1992

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett.28(8), 806–807 (1992).
[CrossRef]

1991

1981

Abreu-Afonso, J.

M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally-stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B111(1), 39–43 (2013).
[CrossRef]

Akhmediev, N.

Ph. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012).
[CrossRef]

Ashkin, A.

Baumgartl, M.

Chédot, C.

G. Martel, C. Chédot, A. Hideur, and Ph. Grelu, “Numerical Maps for Fiber Lasers Mode Locked with Nonlinear Polarization Evolution: Comparison with Semi-Analytical Models,” Fiber Integr. Opt.27(5), 320–340 (2008).
[CrossRef]

Chichkov, N. B.

Chong, A.

Courjaud, A.

Deguil-Robin, N.

Deng, Y.

Díez, A.

M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally-stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B111(1), 39–43 (2013).
[CrossRef]

Dziedzic, J. M.

Fujimoto, J. G.

Grelu, Ph.

Ph. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012).
[CrossRef]

G. Martel, C. Chédot, A. Hideur, and Ph. Grelu, “Numerical Maps for Fiber Lasers Mode Locked with Nonlinear Polarization Evolution: Comparison with Semi-Analytical Models,” Fiber Integr. Opt.27(5), 320–340 (2008).
[CrossRef]

Hapke, C.

Haus, H. A.

Hausmann, K.

Hideur, A.

Hönninger, C.

Ippen, E. P.

Jansen, F.

Jauregui, C.

Kafka, J. D.

Kelly, S. M. J.

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett.28(8), 806–807 (1992).
[CrossRef]

Kieu, K.

Kracht, D.

Laegsgaard, J.

Lecaplain, C.

Lefrançois, S.

Liem, A.

Limpert, J.

Liu, X.

Manek-Hönninger, I.

Martel, G.

G. Martel, C. Chédot, A. Hideur, and Ph. Grelu, “Numerical Maps for Fiber Lasers Mode Locked with Nonlinear Polarization Evolution: Comparison with Semi-Analytical Models,” Fiber Integr. Opt.27(5), 320–340 (2008).
[CrossRef]

Morgner, U.

Mottay, E.

Neumann, J.

Ortaç, B.

Renninger, W. H.

Röser, E.

Rothhardt, M.

M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally-stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B111(1), 39–43 (2013).
[CrossRef]

Salin, F.

Schreiber, T.

Stolen, R. H.

Stutzki, F.

Theeg, T.

Tünnermann, A.

Turchinovich, D.

Wandt, D.

Wise, F. W.

Zellmer, H.

Appl. Opt.

Appl. Phys. B

M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally-stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B111(1), 39–43 (2013).
[CrossRef]

Electron. Lett.

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett.28(8), 806–807 (1992).
[CrossRef]

Fiber Integr. Opt.

G. Martel, C. Chédot, A. Hideur, and Ph. Grelu, “Numerical Maps for Fiber Lasers Mode Locked with Nonlinear Polarization Evolution: Comparison with Semi-Analytical Models,” Fiber Integr. Opt.27(5), 320–340 (2008).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Photonics

Ph. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A82(2), 021805 (2010).
[CrossRef] [PubMed]

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001). See Eq. (6).1.15–16).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic representation of the experimental cavity set-up. DM, dichroïc mirror; HR high reflection mirror; OI optical isolator; QWP (HWP) quarter wave plate (Half wave plate). q1,q2 and a are the angleq of the wave plates. Inset microscope image of the structure of LMA fiber made by NKT photonics.

Fig. 2
Fig. 2

Pulse train recorded on 20 GHz sampling oscilloscope (resolution 1 ns). Inset RF spectrum on a span of 250 kHz, resolution bandwidth (RBW) 100 Hz and laser beam profile (M2~1.1).

Fig. 3
Fig. 3

Intensity autocorrelation traces of the chirped output pulse (a) and externally dechirped pulse (b) generated using a 4 nm spectral filter. (c): corresponding optical spectrum. Symbols show experimental data, solid lines show numerical results computed using the following parameters α = 220°, θ1 = 191° θ2 = 174°, go = 8.5 m−1, PSat = 1.1 W. The dechirped numerical autocorrelation trace (b) has been computed assuming all the spectral components of the numerical spectrum (c) are in phase.

Fig. 4
Fig. 4

Symbols: Experimental optical spectrum recorded at different points within the laser cavity using the 4 nm FWHM spectral filter, centered at 1040 nm. Solid lines: spectrum computed using the parameters of Fig. 3.

Fig. 5
Fig. 5

Symbols:Experimental optical spectrum (a,c) and intensity autocorrelation traces (b,d) recorded using the 0.07 nm (a,b) and 0.9 nm (c,d) VBG mirrors. Solid lines: computed results. For Fig (a, b) we used the following parameters: α = 120°, θ1 = 105° θ2 = 30°, go = 9 m−1, PSAT = 2.3 W. For Fig (c,d): α = 216°, θ1 = 191° θ2 = 171°, go = 8.5 m−1, PSAT = 1.1 W

Tables (1)

Tables Icon

Table 1 recapitulative table that gathers the main experimental and simulation results. exp.: experimental, num.: numeric, unchirped: obtain after external dechirping.

Metrics