Abstract

Although the beam pointing stability of optical parametric oscillators and amplifiers is important for various applications few results on this parameter have been published. Here, we investigate the beam pointing stability of an injection-seeded, nanosecond optical parametric oscillator, compare it to its pump laser, and measure correlations between them. Although correlation between both quantities are found, the beam pointing stability of the OPO is significantly better that the one of its pump. Furthermore, the concept of the Allan variance is applied to analyze the temporal components of the pointing stability.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fix, “Tunable light sources for lidar applications,” in: Atmospheric Physics U. Schumann, ed., Research Topics in Aerospace (Springer, 2012).
  2. M. Schellhorn, M. Eichhorn, C. Kieleck, and A. Hirth, “High repetition rate mid-infrared laser source,” C. R. Phys.8(10), 1151–1161 (2007).
    [CrossRef]
  3. EN ISO 11670:2003, Lasers and Laser-Related Equipment – Test Methods for Laser Beam Parameters – Beam Positional Stability (ISO, 2003).
  4. A. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE54(2), 221–230 (1966).
    [CrossRef]
  5. A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE8182, 818206, 818206-10 (2011).
    [CrossRef]
  6. P. Groß, L. Kleinschmidt, S. Beer, and C. Fallnich, “Beam position stabilization for a confocal multiphoton microscope,” Appl. Opt.50(28), 5361–5368 (2011).
    [CrossRef] [PubMed]
  7. W. J. Riley, Handbook of Frequency Stability Analysis NIST Special Publication 1065, (National Institute of Standards and Technology, Boulder, CO, 2008).
  8. J. Caron, Y. Durand, J.-L. Bézy, and R. Meynart, “Performance modeling for A-SCOPE: a space-borne lidar measuring atmospheric CO2,” Proc. SPIE7479, 74790E, 74790E-15 (2009).
    [CrossRef]
  9. C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech.4(10), 2195–2211 (2011).
    [CrossRef]

2011 (3)

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE8182, 818206, 818206-10 (2011).
[CrossRef]

P. Groß, L. Kleinschmidt, S. Beer, and C. Fallnich, “Beam position stabilization for a confocal multiphoton microscope,” Appl. Opt.50(28), 5361–5368 (2011).
[CrossRef] [PubMed]

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech.4(10), 2195–2211 (2011).
[CrossRef]

2009 (1)

J. Caron, Y. Durand, J.-L. Bézy, and R. Meynart, “Performance modeling for A-SCOPE: a space-borne lidar measuring atmospheric CO2,” Proc. SPIE7479, 74790E, 74790E-15 (2009).
[CrossRef]

2007 (1)

M. Schellhorn, M. Eichhorn, C. Kieleck, and A. Hirth, “High repetition rate mid-infrared laser source,” C. R. Phys.8(10), 1151–1161 (2007).
[CrossRef]

1966 (1)

A. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE54(2), 221–230 (1966).
[CrossRef]

Allan, A. W.

A. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE54(2), 221–230 (1966).
[CrossRef]

Amediek, A.

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE8182, 818206, 818206-10 (2011).
[CrossRef]

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech.4(10), 2195–2211 (2011).
[CrossRef]

Beer, S.

Bézy, J.-L.

J. Caron, Y. Durand, J.-L. Bézy, and R. Meynart, “Performance modeling for A-SCOPE: a space-borne lidar measuring atmospheric CO2,” Proc. SPIE7479, 74790E, 74790E-15 (2009).
[CrossRef]

Büdenbender, C.

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE8182, 818206, 818206-10 (2011).
[CrossRef]

Caron, J.

J. Caron, Y. Durand, J.-L. Bézy, and R. Meynart, “Performance modeling for A-SCOPE: a space-borne lidar measuring atmospheric CO2,” Proc. SPIE7479, 74790E, 74790E-15 (2009).
[CrossRef]

Durand, Y.

J. Caron, Y. Durand, J.-L. Bézy, and R. Meynart, “Performance modeling for A-SCOPE: a space-borne lidar measuring atmospheric CO2,” Proc. SPIE7479, 74790E, 74790E-15 (2009).
[CrossRef]

Ehret, G.

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE8182, 818206, 818206-10 (2011).
[CrossRef]

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech.4(10), 2195–2211 (2011).
[CrossRef]

Eichhorn, M.

M. Schellhorn, M. Eichhorn, C. Kieleck, and A. Hirth, “High repetition rate mid-infrared laser source,” C. R. Phys.8(10), 1151–1161 (2007).
[CrossRef]

Fallnich, C.

Fix, A.

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech.4(10), 2195–2211 (2011).
[CrossRef]

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE8182, 818206, 818206-10 (2011).
[CrossRef]

Groß, P.

Hirth, A.

M. Schellhorn, M. Eichhorn, C. Kieleck, and A. Hirth, “High repetition rate mid-infrared laser source,” C. R. Phys.8(10), 1151–1161 (2007).
[CrossRef]

Kieleck, C.

M. Schellhorn, M. Eichhorn, C. Kieleck, and A. Hirth, “High repetition rate mid-infrared laser source,” C. R. Phys.8(10), 1151–1161 (2007).
[CrossRef]

Kiemle, C.

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE8182, 818206, 818206-10 (2011).
[CrossRef]

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech.4(10), 2195–2211 (2011).
[CrossRef]

Kleinschmidt, L.

Meynart, R.

J. Caron, Y. Durand, J.-L. Bézy, and R. Meynart, “Performance modeling for A-SCOPE: a space-borne lidar measuring atmospheric CO2,” Proc. SPIE7479, 74790E, 74790E-15 (2009).
[CrossRef]

Quatrevalet, M.

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE8182, 818206, 818206-10 (2011).
[CrossRef]

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech.4(10), 2195–2211 (2011).
[CrossRef]

Schellhorn, M.

M. Schellhorn, M. Eichhorn, C. Kieleck, and A. Hirth, “High repetition rate mid-infrared laser source,” C. R. Phys.8(10), 1151–1161 (2007).
[CrossRef]

Wirth, M.

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE8182, 818206, 818206-10 (2011).
[CrossRef]

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech.4(10), 2195–2211 (2011).
[CrossRef]

Appl. Opt. (1)

Atmos. Meas. Tech. (1)

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech.4(10), 2195–2211 (2011).
[CrossRef]

C. R. Phys. (1)

M. Schellhorn, M. Eichhorn, C. Kieleck, and A. Hirth, “High repetition rate mid-infrared laser source,” C. R. Phys.8(10), 1151–1161 (2007).
[CrossRef]

Proc. IEEE (1)

A. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE54(2), 221–230 (1966).
[CrossRef]

Proc. SPIE (2)

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE8182, 818206, 818206-10 (2011).
[CrossRef]

J. Caron, Y. Durand, J.-L. Bézy, and R. Meynart, “Performance modeling for A-SCOPE: a space-borne lidar measuring atmospheric CO2,” Proc. SPIE7479, 74790E, 74790E-15 (2009).
[CrossRef]

Other (3)

A. Fix, “Tunable light sources for lidar applications,” in: Atmospheric Physics U. Schumann, ed., Research Topics in Aerospace (Springer, 2012).

W. J. Riley, Handbook of Frequency Stability Analysis NIST Special Publication 1065, (National Institute of Standards and Technology, Boulder, CO, 2008).

EN ISO 11670:2003, Lasers and Laser-Related Equipment – Test Methods for Laser Beam Parameters – Beam Positional Stability (ISO, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic set-up of the OPO and the beam diagnostics.

Fig. 2
Fig. 2

Record of the beam centroid position for the pump (left panel), OPO (center panel) and OPO seed (right panel) over a time series of one hour (half an hour for the OPO seed). The time (in seconds) is color coded. Nd:YAG pump laser and OPO have been simultaneously recorded, while the pointing of the OPO seed is from a different measurement. All scatter plots are shown in the same scale in units of microradians. The corresponding pixel sizes due to the different cameras are given in the insert scale.

Fig. 3
Fig. 3

Sigma-tau plot of the beam angular movement of the pump (blue), OPO (red), and OPO seed (grey) from the measurement of Fig. 2. The squares and circles depict the movement in the x and y-axes, respectively.

Fig. 4
Fig. 4

Time series over 15 minutes of the vertical centroid movement of Nd:YAG laser and OPO, respectively. The data have been de-trended and the thick lines represent a 100-pulse floating average.

Fig. 5
Fig. 5

Time series over 400 pulses of the vertical centroid movement of Nd:YAG laser and OPO, respectively. During this measurement the Nd:YAG laser beam was manually moved in the vertical plane. Note that the right scale is zoomed by a factor of 25.

Fig. 6
Fig. 6

Dependence of the OPOs beam centroid movement as function of the Nd:YAG laser beam variation. Left panel: The Nd:YAG laser beam is actuated in the horizontal plane. Right panel: The Nd:YAG laser beam is actuated in the vertical plane. Note the different scales for Nd:YAG and OPO angular position.

Fig. 7
Fig. 7

Centroid distribution for the measurement (10min) of the OPO’s pointing stability. The OPO was alternately seeded at two different wavelengths which are color-coded in red and blue.

Fig. 8
Fig. 8

Centroid distribution for the measurement (10min) of the OPO’s pointing stability. Odd and even pulses are color-coded in red and blue. Left panel: The seed is injected into the same longitudinal mode of the OPO resonator. Right panel: the cavity lengths for the “blue” and “red” pulses are two longitudinal mode distances apart.

Fig. 9
Fig. 9

Centroid distribution for the measurement (10min) of the OPO’s pointing stability. The OPO was alternately seeded at two different wavelengths which are color-coded in red and blue. The OPO was actively matched to the first seed wavelength while the second seed wavelength was tuned to match the OPO cavity.

Tables (2)

Tables Icon

Table 1 Comparison of the camera systems

Tables Icon

Table 2 Absolute and relative beam angular stability of Nd:YAG pump laser and OPO on a 1-min time scale.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ y 2 ( m τ 0 )= 1 2 m 2 ( M2m+1 ) j=1 M2m+1 { i=j j+m1 [ y i+m y i ] } 2

Metrics