Abstract

An intensity enhancement of the green upconversion emission from a codoped Er3+ -Yb3+ fluoroindate glass has been obtained by coating the glass surface with silica microspheres (3.8 µm diameter). The microspheres focus an incoming beam (λ ≈950 nm) on the surface of the fluoroindate glass. The green emission (λ ≈545 nm) of the Er3+ ions located in the microsphere focus was measured with a microscope in reflection mode, being the peak intensity 4.5 times the emission of the bare substrate. The transversal FWHM of the upconversion spot was experimentally determined by deconvolution with the experimental Point Spread Function of the system, obtaining a value of 309 nm. This value is in good agreement with Finite-Difference Time-Domain simulations taking into account the magnification of the image due to the microsphere.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Matsko, Practical Applications of Microresonators in Optics and Photonics, (CRC Press, Pasadena, Calif., 2009).
  2. G. Adamovsky and M. V. Otügen, “Morphology-dependent resonances and their applications to sensing in aerospace environments,” J. Aerosp. Comp. Inf. Commun.5(10), 409–424 (2008).
    [CrossRef]
  3. L. L. Martín, C. Pérez-Rodríguez, P. Haro-González, and I. R. Martín, “Whispering gallery modes in a glass microsphere as a function of temperature,” Opt. Express19(25), 25792–25798 (2011).
    [CrossRef] [PubMed]
  4. M. Mohageg, A. B. Matsko, and L. Maleki, “Lasing and up conversion from a nominally pure whispering gallery mode resonator,” Opt. Express20(15), 16704–16714 (2012).
    [CrossRef]
  5. A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J Comput Theor Nanosci6(9), 1979–1992 (2009).
    [CrossRef] [PubMed]
  6. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express16(10), 6930–6940 (2008).
    [CrossRef] [PubMed]
  7. K. W. Allen, A. Darafsheh, and V. N. Astratov, “Photonic nanojet-induced modes: from physics to applications,” 2011 13th International Conference on Transparent Optical Networks 1–4 (2011).
  8. Y. P. Rakovich, M. Gerlach, J. F. Donegan, K. I. Rusakov, and A. A. Gladyshchuk, “Mode manipulation in system of coupled microcavities with whispering gallery modes,” Opt. Spectrosc.108(3), 385–390 (2010).
    [CrossRef]
  9. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun2, 218 (2011).
    [CrossRef] [PubMed]
  10. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
    [CrossRef] [PubMed]
  11. Y. Zhang, R. Zhang, Q. Wang, Z. Zhang, H. Zhu, J. Liu, F. Song, S. Lin, and E. Y. B. Pun, “Fluorescence enhancement of quantum emitters with different energy systems near a single spherical metal nanoparticle,” Opt. Express18(5), 4316–4328 (2010).
    [CrossRef] [PubMed]
  12. S. Lecler, S. Haacke, N. Lecong, O. Crégut, J.-L. Rehspringer, and C. Hirlimann, “Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres,” Opt. Express15(8), 4935–4942 (2007).
    [CrossRef] [PubMed]
  13. D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express16(19), 15297–15303 (2008).
    [CrossRef] [PubMed]
  14. D. Gérard, A. Devilez, H. Aouani, B. Stout, N. Bonod, J. Wenger, E. Popov, and H. Rigneault, “Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere,” J. Opt. Soc. Am. B26(7), 1473–1478 (2009).
    [CrossRef]
  15. I. R. Martín, P. Vélez, V. D. Rodríguez, U. R. Rodríguez-Mendoza, and V. Lavín, “Upconversion dynamics in Er 3 + -doped fluoroindate glasses,” Spectrochim. Acta [A]55(5), 935–940 (1999).
    [CrossRef]
  16. R. W. Cole, T. Jinadasa, and C. M. Brown, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc.6(12), 1929–1941 (2011).
    [CrossRef] [PubMed]
  17. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000).
    [CrossRef]
  18. S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express19(8), 7084–7093 (2011).
    [CrossRef] [PubMed]
  19. S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express16(18), 13713–13719 (2008).
    [CrossRef] [PubMed]

2012

2011

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express19(8), 7084–7093 (2011).
[CrossRef] [PubMed]

L. L. Martín, C. Pérez-Rodríguez, P. Haro-González, and I. R. Martín, “Whispering gallery modes in a glass microsphere as a function of temperature,” Opt. Express19(25), 25792–25798 (2011).
[CrossRef] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun2, 218 (2011).
[CrossRef] [PubMed]

R. W. Cole, T. Jinadasa, and C. M. Brown, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc.6(12), 1929–1941 (2011).
[CrossRef] [PubMed]

2010

Y. P. Rakovich, M. Gerlach, J. F. Donegan, K. I. Rusakov, and A. A. Gladyshchuk, “Mode manipulation in system of coupled microcavities with whispering gallery modes,” Opt. Spectrosc.108(3), 385–390 (2010).
[CrossRef]

Y. Zhang, R. Zhang, Q. Wang, Z. Zhang, H. Zhu, J. Liu, F. Song, S. Lin, and E. Y. B. Pun, “Fluorescence enhancement of quantum emitters with different energy systems near a single spherical metal nanoparticle,” Opt. Express18(5), 4316–4328 (2010).
[CrossRef] [PubMed]

2009

2008

2007

2006

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
[CrossRef] [PubMed]

2000

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000).
[CrossRef]

1999

I. R. Martín, P. Vélez, V. D. Rodríguez, U. R. Rodríguez-Mendoza, and V. Lavín, “Upconversion dynamics in Er 3 + -doped fluoroindate glasses,” Spectrochim. Acta [A]55(5), 935–940 (1999).
[CrossRef]

Adamovsky, G.

G. Adamovsky and M. V. Otügen, “Morphology-dependent resonances and their applications to sensing in aerospace environments,” J. Aerosp. Comp. Inf. Commun.5(10), 409–424 (2008).
[CrossRef]

Aouani, H.

Backman, V.

Bonod, N.

Brown, C. M.

R. W. Cole, T. Jinadasa, and C. M. Brown, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc.6(12), 1929–1941 (2011).
[CrossRef] [PubMed]

Chen, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun2, 218 (2011).
[CrossRef] [PubMed]

Cole, R. W.

R. W. Cole, T. Jinadasa, and C. M. Brown, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc.6(12), 1929–1941 (2011).
[CrossRef] [PubMed]

Crégut, O.

Devilez, A.

Donegan, J. F.

Y. P. Rakovich, M. Gerlach, J. F. Donegan, K. I. Rusakov, and A. A. Gladyshchuk, “Mode manipulation in system of coupled microcavities with whispering gallery modes,” Opt. Spectrosc.108(3), 385–390 (2010).
[CrossRef]

Ferrand, P.

Gachet, D.

Gamelin, D. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000).
[CrossRef]

Gérard, D.

Gerlach, M.

Y. P. Rakovich, M. Gerlach, J. F. Donegan, K. I. Rusakov, and A. A. Gladyshchuk, “Mode manipulation in system of coupled microcavities with whispering gallery modes,” Opt. Spectrosc.108(3), 385–390 (2010).
[CrossRef]

Gladyshchuk, A. A.

Y. P. Rakovich, M. Gerlach, J. F. Donegan, K. I. Rusakov, and A. A. Gladyshchuk, “Mode manipulation in system of coupled microcavities with whispering gallery modes,” Opt. Spectrosc.108(3), 385–390 (2010).
[CrossRef]

Güdel, H. U.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000).
[CrossRef]

Guo, W.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun2, 218 (2011).
[CrossRef] [PubMed]

Haacke, S.

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
[CrossRef] [PubMed]

Haro-González, P.

Hehlen, M.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000).
[CrossRef]

Heifetz, A.

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J Comput Theor Nanosci6(9), 1979–1992 (2009).
[CrossRef] [PubMed]

Hirlimann, C.

Hong, M.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun2, 218 (2011).
[CrossRef] [PubMed]

Jinadasa, T.

R. W. Cole, T. Jinadasa, and C. M. Brown, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc.6(12), 1929–1941 (2011).
[CrossRef] [PubMed]

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun2, 218 (2011).
[CrossRef] [PubMed]

Kong, S.-C.

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J Comput Theor Nanosci6(9), 1979–1992 (2009).
[CrossRef] [PubMed]

S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express16(18), 13713–13719 (2008).
[CrossRef] [PubMed]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
[CrossRef] [PubMed]

Lavín, V.

I. R. Martín, P. Vélez, V. D. Rodríguez, U. R. Rodríguez-Mendoza, and V. Lavín, “Upconversion dynamics in Er 3 + -doped fluoroindate glasses,” Spectrochim. Acta [A]55(5), 935–940 (1999).
[CrossRef]

Lecler, S.

Lecong, N.

Li, L.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun2, 218 (2011).
[CrossRef] [PubMed]

Lin, S.

Liu, J.

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun2, 218 (2011).
[CrossRef] [PubMed]

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun2, 218 (2011).
[CrossRef] [PubMed]

Lüthi, S. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000).
[CrossRef]

Maleki, L.

Martín, I. R.

L. L. Martín, C. Pérez-Rodríguez, P. Haro-González, and I. R. Martín, “Whispering gallery modes in a glass microsphere as a function of temperature,” Opt. Express19(25), 25792–25798 (2011).
[CrossRef] [PubMed]

I. R. Martín, P. Vélez, V. D. Rodríguez, U. R. Rodríguez-Mendoza, and V. Lavín, “Upconversion dynamics in Er 3 + -doped fluoroindate glasses,” Spectrochim. Acta [A]55(5), 935–940 (1999).
[CrossRef]

Martín, L. L.

Matsko, A. B.

Mohageg, M.

Otügen, M. V.

G. Adamovsky and M. V. Otügen, “Morphology-dependent resonances and their applications to sensing in aerospace environments,” J. Aerosp. Comp. Inf. Commun.5(10), 409–424 (2008).
[CrossRef]

Pérez-Rodríguez, C.

Pianta, M.

Pollnau, M.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000).
[CrossRef]

Popov, E.

Pun, E. Y. B.

Rakovich, Y. P.

Y. P. Rakovich, M. Gerlach, J. F. Donegan, K. I. Rusakov, and A. A. Gladyshchuk, “Mode manipulation in system of coupled microcavities with whispering gallery modes,” Opt. Spectrosc.108(3), 385–390 (2010).
[CrossRef]

Rehspringer, J.-L.

Rigneault, H.

Rodríguez, V. D.

I. R. Martín, P. Vélez, V. D. Rodríguez, U. R. Rodríguez-Mendoza, and V. Lavín, “Upconversion dynamics in Er 3 + -doped fluoroindate glasses,” Spectrochim. Acta [A]55(5), 935–940 (1999).
[CrossRef]

Rodríguez-Mendoza, U. R.

I. R. Martín, P. Vélez, V. D. Rodríguez, U. R. Rodríguez-Mendoza, and V. Lavín, “Upconversion dynamics in Er 3 + -doped fluoroindate glasses,” Spectrochim. Acta [A]55(5), 935–940 (1999).
[CrossRef]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
[CrossRef] [PubMed]

Rusakov, K. I.

Y. P. Rakovich, M. Gerlach, J. F. Donegan, K. I. Rusakov, and A. A. Gladyshchuk, “Mode manipulation in system of coupled microcavities with whispering gallery modes,” Opt. Spectrosc.108(3), 385–390 (2010).
[CrossRef]

Sahakian, A.

Sahakian, A. V.

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J Comput Theor Nanosci6(9), 1979–1992 (2009).
[CrossRef] [PubMed]

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
[CrossRef] [PubMed]

Song, F.

Stout, B.

Taflove, A.

Vélez, P.

I. R. Martín, P. Vélez, V. D. Rodríguez, U. R. Rodríguez-Mendoza, and V. Lavín, “Upconversion dynamics in Er 3 + -doped fluoroindate glasses,” Spectrochim. Acta [A]55(5), 935–940 (1999).
[CrossRef]

Wang, Q.

Wang, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun2, 218 (2011).
[CrossRef] [PubMed]

Wenger, J.

Yang, S.

Zhang, R.

Zhang, Y.

Zhang, Z.

Zhu, H.

J Comput Theor Nanosci

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J Comput Theor Nanosci6(9), 1979–1992 (2009).
[CrossRef] [PubMed]

J. Aerosp. Comp. Inf. Commun.

G. Adamovsky and M. V. Otügen, “Morphology-dependent resonances and their applications to sensing in aerospace environments,” J. Aerosp. Comp. Inf. Commun.5(10), 409–424 (2008).
[CrossRef]

J. Opt. Soc. Am. B

Nat Commun

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun2, 218 (2011).
[CrossRef] [PubMed]

Nat. Protoc.

R. W. Cole, T. Jinadasa, and C. M. Brown, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc.6(12), 1929–1941 (2011).
[CrossRef] [PubMed]

Opt. Express

Y. Zhang, R. Zhang, Q. Wang, Z. Zhang, H. Zhu, J. Liu, F. Song, S. Lin, and E. Y. B. Pun, “Fluorescence enhancement of quantum emitters with different energy systems near a single spherical metal nanoparticle,” Opt. Express18(5), 4316–4328 (2010).
[CrossRef] [PubMed]

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express19(8), 7084–7093 (2011).
[CrossRef] [PubMed]

L. L. Martín, C. Pérez-Rodríguez, P. Haro-González, and I. R. Martín, “Whispering gallery modes in a glass microsphere as a function of temperature,” Opt. Express19(25), 25792–25798 (2011).
[CrossRef] [PubMed]

M. Mohageg, A. B. Matsko, and L. Maleki, “Lasing and up conversion from a nominally pure whispering gallery mode resonator,” Opt. Express20(15), 16704–16714 (2012).
[CrossRef]

S. Lecler, S. Haacke, N. Lecong, O. Crégut, J.-L. Rehspringer, and C. Hirlimann, “Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres,” Opt. Express15(8), 4935–4942 (2007).
[CrossRef] [PubMed]

P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express16(10), 6930–6940 (2008).
[CrossRef] [PubMed]

S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express16(18), 13713–13719 (2008).
[CrossRef] [PubMed]

D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express16(19), 15297–15303 (2008).
[CrossRef] [PubMed]

Opt. Spectrosc.

Y. P. Rakovich, M. Gerlach, J. F. Donegan, K. I. Rusakov, and A. A. Gladyshchuk, “Mode manipulation in system of coupled microcavities with whispering gallery modes,” Opt. Spectrosc.108(3), 385–390 (2010).
[CrossRef]

Phys. Rev. B

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000).
[CrossRef]

Phys. Rev. Lett.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
[CrossRef] [PubMed]

Spectrochim. Acta [A]

I. R. Martín, P. Vélez, V. D. Rodríguez, U. R. Rodríguez-Mendoza, and V. Lavín, “Upconversion dynamics in Er 3 + -doped fluoroindate glasses,” Spectrochim. Acta [A]55(5), 935–940 (1999).
[CrossRef]

Other

A. B. Matsko, Practical Applications of Microresonators in Optics and Photonics, (CRC Press, Pasadena, Calif., 2009).

K. W. Allen, A. Darafsheh, and V. N. Astratov, “Photonic nanojet-induced modes: from physics to applications,” 2011 13th International Conference on Transparent Optical Networks 1–4 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Top view of the experimental setup. DL. Diode Laser, M. Mirror, XYZ. Three axis translation stage, BS. Beamsplitter, L. Lens, F. Filter and CCD. CCD detector. In the inset shows the front view of the ensemble designated by the arrow. S. sample and MO. Microscope objective.

Fig. 2
Fig. 2

(a) Left: Green upconversion emission of five microspheres located above an Er3+-Yb3+ codoped fluoroindate glass. (b) Right: 3D graph of the spatial intensity distribution of the green upconversion intensity corresponding to the left image.

Fig. 3
Fig. 3

Upconversion emission spectrum of a Er3+-Yb3+ codoped fluoroindate glass sample under excitation at 950 nm. Inset: Diagram energy levels of Er3+ and Yb3+ ions detailing ESA and ET upconversion process.

Fig. 4
Fig. 4

Emission intensity as a function of the incident pump power for the 545 nm band collected from the glass flat sample (circles) and through the sphere (squares).

Fig. 5
Fig. 5

Intensity profile (dots) in a line that cross the center of a microsphere and Gaussian fitting (continuous line).

Fig. 6
Fig. 6

(a) Intensity distribution computed by FDTD under plane wave illumination (950 nm). (b) Transversal intensity profile at best focus (red line) and upconversion intensity (green line).

Metrics