Abstract

We theoretically and experimentally investigate the spectral tunability and purity of photon pairs generated from spontaneous parametric down conversion in periodically poled KTiOPO4 crystal with group-velocity matching condition. The numerical simulation predicts that the spectral purity can be kept higher than 0.81 when the wavelength is tuned from 1460 nm to 1675 nm, which covers the S-, C-, L-, and U-band in telecommunication wavelengths. We also experimentally measured the joint spectral intensity at 1565 nm, 1584 nm and 1565 nm, yielding Schmidt numbers of 1.01, 1.02 and 1.04, respectively. Such a photon source is useful for quantum information and communication systems.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Duarte, ed., Tunable Laser Applications, 2nd ed. (CRC Press, 2008).
    [CrossRef]
  2. R. Paschotta, Encyclopedia of Laser Physics and Technology(Wiley-VCH, 2008).
  3. T. B. Hoang, J. Beetz, M. Lermer, L. Midolo, M. Kamp, S. Höling, and A. Fiore, “Widely tunable, efficient on-chip single photon sources at telecommunication wavelengths,” Opt. Express20, 21758–21765 (2012).
    [CrossRef] [PubMed]
  4. M. Benyoucef, H. S. Lee, J. Gabel, T. W. Kim, H. L. Park, A. Rastelli, and O. G. Schmidt, “Wavelength tunable triggered single-photon source from a single cdte quantum dot on silicon substrate,” Nano Lett.9, 304–307 (2009).
    [CrossRef]
  5. T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A56, 1534–1541 (1997).
    [CrossRef]
  6. W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A56, 1627–1634 (1997).
    [CrossRef]
  7. F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4with zero group-velocity mismatch,” Appl. Phys. Lett.84, 1644–1646 (2004).
    [CrossRef]
  8. P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett.105, 253601 (2010).
    [CrossRef]
  9. A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett.106, 013603 (2011).
    [CrossRef] [PubMed]
  10. M. Yabuno, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Four-photon quantum interferometry at a telecom wavelength,” Phys. Rev. A86, 010302 (2012).
    [CrossRef]
  11. P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys.10, 093011 (2008).
    [CrossRef]
  12. K. Edamatsu, R. Shimizu, W. Ueno, R.-B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform.8, 19–26 (2011).
    [CrossRef]
  13. A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Las. Phys.15, 146–161 (2005).
  14. J. Eberly, “Schmidt analysis of pure-state entanglement,” Laser Phys.16, 921–926 (2006).
    [CrossRef]
  15. R. Shimizu and K. Edamatsu, “High-flux and broadband biphoton sources with controlled frequency entanglement,” Opt. Express17, 16385–16393 (2009).
    [CrossRef] [PubMed]
  16. Z.-Y. J. Ou, Multi-Photon Quantum Interference(Springer, 2007).
  17. A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express19, 55–65 (2011).
    [CrossRef]
  18. R.-B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, and M. Sasaki, “Nonclasscial interference between independent intrinsically pure single photons at telecom wavelength,” arXiv:1303.2778.
  19. P. B. Dixon, J. H. Shapiro, and F. N. C. Wong, “Spectral engineering by gaussian phase-matching for quantum photonics,” Opt. Express21, 5879–5890 (2013).
    [CrossRef] [PubMed]
  20. M. Fiorentino and R. G. Beausoleil, “Compact sources of polarization-entangled photons,” Opt. Express16, 20149–20156 (2008).
    [CrossRef] [PubMed]
  21. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express15, 15377–15386 (2007).
    [CrossRef] [PubMed]
  22. A. Predojević, S. Grabher, and G. Weihs, “Pulsed sagnac source of polarization entangled photon pairs,” Opt. Express20, 25022–25029 (2012).
    [CrossRef]
  23. T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, and V. Zwiller, “Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths,” Opt. Express19, 24434–24447 (2011).
    [CrossRef] [PubMed]
  24. Z.-Y. Zhou, Y.-K. Jiang, D.-S. Ding, B.-S. Shi, and G.-C. Guo, “Ultra-broadband continuously-tunable polarization entangled photon pair source covering the C+L telecom bands based on a single type-II PPKTP crystal,” arXiv:1211.4419.

2013

2012

2011

T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, and V. Zwiller, “Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths,” Opt. Express19, 24434–24447 (2011).
[CrossRef] [PubMed]

A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express19, 55–65 (2011).
[CrossRef]

K. Edamatsu, R. Shimizu, W. Ueno, R.-B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform.8, 19–26 (2011).
[CrossRef]

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett.106, 013603 (2011).
[CrossRef] [PubMed]

2010

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett.105, 253601 (2010).
[CrossRef]

2009

M. Benyoucef, H. S. Lee, J. Gabel, T. W. Kim, H. L. Park, A. Rastelli, and O. G. Schmidt, “Wavelength tunable triggered single-photon source from a single cdte quantum dot on silicon substrate,” Nano Lett.9, 304–307 (2009).
[CrossRef]

R. Shimizu and K. Edamatsu, “High-flux and broadband biphoton sources with controlled frequency entanglement,” Opt. Express17, 16385–16393 (2009).
[CrossRef] [PubMed]

2008

M. Fiorentino and R. G. Beausoleil, “Compact sources of polarization-entangled photons,” Opt. Express16, 20149–20156 (2008).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys.10, 093011 (2008).
[CrossRef]

2007

2006

J. Eberly, “Schmidt analysis of pure-state entanglement,” Laser Phys.16, 921–926 (2006).
[CrossRef]

2005

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Las. Phys.15, 146–161 (2005).

2004

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4with zero group-velocity mismatch,” Appl. Phys. Lett.84, 1644–1646 (2004).
[CrossRef]

1997

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A56, 1534–1541 (1997).
[CrossRef]

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A56, 1627–1634 (1997).
[CrossRef]

Baek, B.

Banaszek, K.

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Las. Phys.15, 146–161 (2005).

Beausoleil, R. G.

Beetz, J.

Benichi, H.

R.-B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, and M. Sasaki, “Nonclasscial interference between independent intrinsically pure single photons at telecom wavelength,” arXiv:1303.2778.

Bennink, R. S.

Benyoucef, M.

M. Benyoucef, H. S. Lee, J. Gabel, T. W. Kim, H. L. Park, A. Rastelli, and O. G. Schmidt, “Wavelength tunable triggered single-photon source from a single cdte quantum dot on silicon substrate,” Nano Lett.9, 304–307 (2009).
[CrossRef]

Branczyk, A. M.

Calkins, B.

Christ, A.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett.106, 013603 (2011).
[CrossRef] [PubMed]

Ding, D.-S.

Z.-Y. Zhou, Y.-K. Jiang, D.-S. Ding, B.-S. Shi, and G.-C. Guo, “Ultra-broadband continuously-tunable polarization entangled photon pair source covering the C+L telecom bands based on a single type-II PPKTP crystal,” arXiv:1211.4419.

Dixon, P. B.

Dorenbos, S.

Eberly, J.

J. Eberly, “Schmidt analysis of pure-state entanglement,” Laser Phys.16, 921–926 (2006).
[CrossRef]

Eckstein, A.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett.106, 013603 (2011).
[CrossRef] [PubMed]

Edamatsu, K.

M. Yabuno, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Four-photon quantum interferometry at a telecom wavelength,” Phys. Rev. A86, 010302 (2012).
[CrossRef]

K. Edamatsu, R. Shimizu, W. Ueno, R.-B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform.8, 19–26 (2011).
[CrossRef]

R. Shimizu and K. Edamatsu, “High-flux and broadband biphoton sources with controlled frequency entanglement,” Opt. Express17, 16385–16393 (2009).
[CrossRef] [PubMed]

Erdmann, R.

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Las. Phys.15, 146–161 (2005).

Evans, P. G.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett.105, 253601 (2010).
[CrossRef]

Fedrizzi, A.

Fiore, A.

Fiorentino, M.

Fujiwara, M.

R.-B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, and M. Sasaki, “Nonclasscial interference between independent intrinsically pure single photons at telecom wavelength,” arXiv:1303.2778.

Gabel, J.

M. Benyoucef, H. S. Lee, J. Gabel, T. W. Kim, H. L. Park, A. Rastelli, and O. G. Schmidt, “Wavelength tunable triggered single-photon source from a single cdte quantum dot on silicon substrate,” Nano Lett.9, 304–307 (2009).
[CrossRef]

Gerrits, T.

Glancy, S.

Grabher, S.

Grice, W. P.

T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, and V. Zwiller, “Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths,” Opt. Express19, 24434–24447 (2011).
[CrossRef] [PubMed]

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett.105, 253601 (2010).
[CrossRef]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Las. Phys.15, 146–161 (2005).

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A56, 1627–1634 (1997).
[CrossRef]

Guo, G.-C.

Z.-Y. Zhou, Y.-K. Jiang, D.-S. Ding, B.-S. Shi, and G.-C. Guo, “Ultra-broadband continuously-tunable polarization entangled photon pair source covering the C+L telecom bands based on a single type-II PPKTP crystal,” arXiv:1211.4419.

Hadfield, R. H.

Herbst, T.

Hoang, T. B.

Höling, S.

Humble, T. S.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett.105, 253601 (2010).
[CrossRef]

Jennewein, T.

Jiang, Y.-K.

Z.-Y. Zhou, Y.-K. Jiang, D.-S. Ding, B.-S. Shi, and G.-C. Guo, “Ultra-broadband continuously-tunable polarization entangled photon pair source covering the C+L telecom bands based on a single type-II PPKTP crystal,” arXiv:1211.4419.

Jin, R.-B.

K. Edamatsu, R. Shimizu, W. Ueno, R.-B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform.8, 19–26 (2011).
[CrossRef]

R.-B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, and M. Sasaki, “Nonclasscial interference between independent intrinsically pure single photons at telecom wavelength,” arXiv:1303.2778.

Kamp, M.

Kaneda, F.

K. Edamatsu, R. Shimizu, W. Ueno, R.-B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform.8, 19–26 (2011).
[CrossRef]

Keller, T. E.

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A56, 1534–1541 (1997).
[CrossRef]

Kim, T. W.

M. Benyoucef, H. S. Lee, J. Gabel, T. W. Kim, H. L. Park, A. Rastelli, and O. G. Schmidt, “Wavelength tunable triggered single-photon source from a single cdte quantum dot on silicon substrate,” Nano Lett.9, 304–307 (2009).
[CrossRef]

Klapwijk, T.

Knill, E.

König, F.

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4with zero group-velocity mismatch,” Appl. Phys. Lett.84, 1644–1646 (2004).
[CrossRef]

Kosaka, H.

M. Yabuno, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Four-photon quantum interferometry at a telecom wavelength,” Phys. Rev. A86, 010302 (2012).
[CrossRef]

Lee, H. S.

M. Benyoucef, H. S. Lee, J. Gabel, T. W. Kim, H. L. Park, A. Rastelli, and O. G. Schmidt, “Wavelength tunable triggered single-photon source from a single cdte quantum dot on silicon substrate,” Nano Lett.9, 304–307 (2009).
[CrossRef]

Lermer, M.

Lita, A.

Lundeen, J. S.

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys.10, 093011 (2008).
[CrossRef]

Midolo, L.

Miki, S.

R.-B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, and M. Sasaki, “Nonclasscial interference between independent intrinsically pure single photons at telecom wavelength,” arXiv:1303.2778.

Mirin, R. P.

Mitsumori, Y.

M. Yabuno, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Four-photon quantum interferometry at a telecom wavelength,” Phys. Rev. A86, 010302 (2012).
[CrossRef]

Mosley, P. J.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett.106, 013603 (2011).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys.10, 093011 (2008).
[CrossRef]

Nagano, S.

K. Edamatsu, R. Shimizu, W. Ueno, R.-B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform.8, 19–26 (2011).
[CrossRef]

Nam, S. W.

Ou, Z.-Y. J.

Z.-Y. J. Ou, Multi-Photon Quantum Interference(Springer, 2007).

Park, H. L.

M. Benyoucef, H. S. Lee, J. Gabel, T. W. Kim, H. L. Park, A. Rastelli, and O. G. Schmidt, “Wavelength tunable triggered single-photon source from a single cdte quantum dot on silicon substrate,” Nano Lett.9, 304–307 (2009).
[CrossRef]

Paschotta, R.

R. Paschotta, Encyclopedia of Laser Physics and Technology(Wiley-VCH, 2008).

Poppe, A.

Predojevic, A.

Ralph, T. C.

Rastelli, A.

M. Benyoucef, H. S. Lee, J. Gabel, T. W. Kim, H. L. Park, A. Rastelli, and O. G. Schmidt, “Wavelength tunable triggered single-photon source from a single cdte quantum dot on silicon substrate,” Nano Lett.9, 304–307 (2009).
[CrossRef]

Raymer, M. G.

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Las. Phys.15, 146–161 (2005).

Rubin, M. H.

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A56, 1534–1541 (1997).
[CrossRef]

Sasaki, M.

R.-B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, and M. Sasaki, “Nonclasscial interference between independent intrinsically pure single photons at telecom wavelength,” arXiv:1303.2778.

Schaake, J.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett.105, 253601 (2010).
[CrossRef]

Schmidt, O. G.

M. Benyoucef, H. S. Lee, J. Gabel, T. W. Kim, H. L. Park, A. Rastelli, and O. G. Schmidt, “Wavelength tunable triggered single-photon source from a single cdte quantum dot on silicon substrate,” Nano Lett.9, 304–307 (2009).
[CrossRef]

Shapiro, J. H.

Shi, B.-S.

Z.-Y. Zhou, Y.-K. Jiang, D.-S. Ding, B.-S. Shi, and G.-C. Guo, “Ultra-broadband continuously-tunable polarization entangled photon pair source covering the C+L telecom bands based on a single type-II PPKTP crystal,” arXiv:1211.4419.

Shimizu, R.

M. Yabuno, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Four-photon quantum interferometry at a telecom wavelength,” Phys. Rev. A86, 010302 (2012).
[CrossRef]

K. Edamatsu, R. Shimizu, W. Ueno, R.-B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform.8, 19–26 (2011).
[CrossRef]

R. Shimizu and K. Edamatsu, “High-flux and broadband biphoton sources with controlled frequency entanglement,” Opt. Express17, 16385–16393 (2009).
[CrossRef] [PubMed]

R.-B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, and M. Sasaki, “Nonclasscial interference between independent intrinsically pure single photons at telecom wavelength,” arXiv:1303.2778.

Silberhorn, C.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett.106, 013603 (2011).
[CrossRef] [PubMed]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Las. Phys.15, 146–161 (2005).

Smith, B. J.

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys.10, 093011 (2008).
[CrossRef]

Stace, T. M.

Stevens, M. J.

Suizu, K.

K. Edamatsu, R. Shimizu, W. Ueno, R.-B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform.8, 19–26 (2011).
[CrossRef]

Suzuki, H.

K. Edamatsu, R. Shimizu, W. Ueno, R.-B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform.8, 19–26 (2011).
[CrossRef]

Syouji, A.

K. Edamatsu, R. Shimizu, W. Ueno, R.-B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform.8, 19–26 (2011).
[CrossRef]

Terai, H.

R.-B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, and M. Sasaki, “Nonclasscial interference between independent intrinsically pure single photons at telecom wavelength,” arXiv:1303.2778.

U’Ren, A. B.

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Las. Phys.15, 146–161 (2005).

Ueno, W.

K. Edamatsu, R. Shimizu, W. Ueno, R.-B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform.8, 19–26 (2011).
[CrossRef]

Wakui, K.

R.-B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, and M. Sasaki, “Nonclasscial interference between independent intrinsically pure single photons at telecom wavelength,” arXiv:1303.2778.

Walmsley, I. A.

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys.10, 093011 (2008).
[CrossRef]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Las. Phys.15, 146–161 (2005).

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A56, 1627–1634 (1997).
[CrossRef]

Wang, Z.

R.-B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, and M. Sasaki, “Nonclasscial interference between independent intrinsically pure single photons at telecom wavelength,” arXiv:1303.2778.

Weihs, G.

White, A. G.

Wong, F. N. C.

P. B. Dixon, J. H. Shapiro, and F. N. C. Wong, “Spectral engineering by gaussian phase-matching for quantum photonics,” Opt. Express21, 5879–5890 (2013).
[CrossRef] [PubMed]

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4with zero group-velocity mismatch,” Appl. Phys. Lett.84, 1644–1646 (2004).
[CrossRef]

Yabuno, M.

M. Yabuno, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Four-photon quantum interferometry at a telecom wavelength,” Phys. Rev. A86, 010302 (2012).
[CrossRef]

K. Edamatsu, R. Shimizu, W. Ueno, R.-B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform.8, 19–26 (2011).
[CrossRef]

Yamashita, T.

R.-B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, and M. Sasaki, “Nonclasscial interference between independent intrinsically pure single photons at telecom wavelength,” arXiv:1303.2778.

Zeilinger, A.

Zhou, Z.-Y.

Z.-Y. Zhou, Y.-K. Jiang, D.-S. Ding, B.-S. Shi, and G.-C. Guo, “Ultra-broadband continuously-tunable polarization entangled photon pair source covering the C+L telecom bands based on a single type-II PPKTP crystal,” arXiv:1211.4419.

Zijlstra, T.

Zwiller, V.

Appl. Phys. Lett.

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4with zero group-velocity mismatch,” Appl. Phys. Lett.84, 1644–1646 (2004).
[CrossRef]

Las. Phys.

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Las. Phys.15, 146–161 (2005).

Laser Phys.

J. Eberly, “Schmidt analysis of pure-state entanglement,” Laser Phys.16, 921–926 (2006).
[CrossRef]

Nano Lett.

M. Benyoucef, H. S. Lee, J. Gabel, T. W. Kim, H. L. Park, A. Rastelli, and O. G. Schmidt, “Wavelength tunable triggered single-photon source from a single cdte quantum dot on silicon substrate,” Nano Lett.9, 304–307 (2009).
[CrossRef]

New J. Phys.

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys.10, 093011 (2008).
[CrossRef]

Opt. Express

A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express19, 55–65 (2011).
[CrossRef]

R. Shimizu and K. Edamatsu, “High-flux and broadband biphoton sources with controlled frequency entanglement,” Opt. Express17, 16385–16393 (2009).
[CrossRef] [PubMed]

T. B. Hoang, J. Beetz, M. Lermer, L. Midolo, M. Kamp, S. Höling, and A. Fiore, “Widely tunable, efficient on-chip single photon sources at telecommunication wavelengths,” Opt. Express20, 21758–21765 (2012).
[CrossRef] [PubMed]

P. B. Dixon, J. H. Shapiro, and F. N. C. Wong, “Spectral engineering by gaussian phase-matching for quantum photonics,” Opt. Express21, 5879–5890 (2013).
[CrossRef] [PubMed]

M. Fiorentino and R. G. Beausoleil, “Compact sources of polarization-entangled photons,” Opt. Express16, 20149–20156 (2008).
[CrossRef] [PubMed]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express15, 15377–15386 (2007).
[CrossRef] [PubMed]

A. Predojević, S. Grabher, and G. Weihs, “Pulsed sagnac source of polarization entangled photon pairs,” Opt. Express20, 25022–25029 (2012).
[CrossRef]

T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, and V. Zwiller, “Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths,” Opt. Express19, 24434–24447 (2011).
[CrossRef] [PubMed]

Phys. Rev. A

M. Yabuno, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Four-photon quantum interferometry at a telecom wavelength,” Phys. Rev. A86, 010302 (2012).
[CrossRef]

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A56, 1534–1541 (1997).
[CrossRef]

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A56, 1627–1634 (1997).
[CrossRef]

Phys. Rev. Lett.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett.105, 253601 (2010).
[CrossRef]

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett.106, 013603 (2011).
[CrossRef] [PubMed]

Prog. Inform.

K. Edamatsu, R. Shimizu, W. Ueno, R.-B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform.8, 19–26 (2011).
[CrossRef]

Other

R.-B. Jin, K. Wakui, R. Shimizu, H. Benichi, S. Miki, T. Yamashita, H. Terai, Z. Wang, M. Fujiwara, and M. Sasaki, “Nonclasscial interference between independent intrinsically pure single photons at telecom wavelength,” arXiv:1303.2778.

Z.-Y. J. Ou, Multi-Photon Quantum Interference(Springer, 2007).

F. J. Duarte, ed., Tunable Laser Applications, 2nd ed. (CRC Press, 2008).
[CrossRef]

R. Paschotta, Encyclopedia of Laser Physics and Technology(Wiley-VCH, 2008).

Z.-Y. Zhou, Y.-K. Jiang, D.-S. Ding, B.-S. Shi, and G.-C. Guo, “Ultra-broadband continuously-tunable polarization entangled photon pair source covering the C+L telecom bands based on a single type-II PPKTP crystal,” arXiv:1211.4419.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Examples of (a) pump envelope intensity (PEI), (b) phase matching intensity (PMI) and (c) joint spectral intensity (JSI). (c) is the product of (a) and (b). The width of PEI is proportional to the bandwidth of the pump, while the tilting angle of PEI is fixed, 45 degree to the minus direction of the horizontal axis. The width of PMI is proportional to the inverse of the crystal length. The direction of PMI is not fixed, but determined by the group velocities of the signal, the idler and the pump. When the width of PEI and PMI are equal and the PMI is at 45 degree to the positive direction of the horizontal axis, JSI can achieve a subcircular shape and maximum purity.

Fig. 2
Fig. 2

(a): Numerical simulation of the spectral purity p as a function of the wavelength. (b): Numerical simulation of the Schmidt numbers K and KJSI as functions of the wavelength.

Fig. 3
Fig. 3

Numerical simulation of the joint spectral amplitude (JSA) (a–d) and joint spectral intensity (JSI) (e–h) at 1500 nm, 1550 nm, 1600 nm and 1650 nm.

Fig. 4
Fig. 4

The experimental setup. LPF (long-wave pass filter), PBS (polarizing beam splitter), SMF (single mode fiber), BPF (bandpass filter), APD (avalanche photodiodes).

Fig. 5
Fig. 5

Experimentally measured joint spectral intensity (JSI) at 1565 nm, 1584 nm and 1615 nm.

Tables (2)

Tables Icon

Table 1 Comparison of the spectral purity p, Schmidt Number K, theoretical, convolved and experimental KJSI.

Tables Icon

Table 2 Comparison of the theoretically calculated bandwidth of the original JSI FWHMthe, the convolved bandwidth FWHMcon and the experimentally measured bandwidth FWHMexp.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

| ψ s i = 0 0 d ω s d ω i f ( ω s , ω i ) a ^ s ( ω s ) a ^ i ( ω i ) | 0 ,
Δ k ( 0 ) = k p ( 2 ω 0 ) k s ( ω 0 ) k i ( ω 0 ) 2 π Λ = 0 .
Δ k ( 1 ) = k p ( 2 ω 0 ) ( ω p 2 ω 0 ) k s ( ω 0 ) ( ω s ω 0 ) k i ( ω 0 ) ( ω i ω 0 ) = [ k p ( 2 ω 0 ) k s ( ω 0 ) ] ( ω s ω 0 ) + [ k p ( 2 ω 0 ) k i ( ω 0 ) ] ( ω i ω 0 ) ,
grad Δ k = ( Δ k ω s , Δ k ω i ) = ( V g , p 1 ( ω p ) V g , s 1 ( ω s ) , V g , p 1 ( ω p ) V g , i 1 ( ω i ) ) ,
tan θ = V g , p 1 ( ω p ) V g , s 1 ( ω s ) V g , p 1 ( ω p ) V g , i 1 ( ω i ) ,
f ( ω 1 , ω 2 ) = Σ j c j ϕ j ( ω 1 ) φ j ( ω 2 ) ,
K = 1 j c j 4 .
p = 1 K = j c j 4 .
| f ( ω 1 , ω 2 ) | 2 = j c j ϕ j ( ω 1 ) φ j ( ω 2 ) .
K JSI = 1 j c j 4 .

Metrics