Abstract

The radiative decay rate of a dipole emitter inside the core of a multi-layered dielectric sphere is theoretically investigated. It is shown that, when the thickness of each layer coincides with a quarter wavelength, the multi-layered sphere has a great potential to work as a three-dimensional photonic crystal with a high quality factor and a small mode volume. From the analysis of the dipole position dependence of a radiative decay rate, we show that a smaller core radius, a quarter wavelength at the smallest, is more suitable for real applications. The investigation on the tolerance for thickness nonuniformity reveals that the thickness variation of 10% is tolerable.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1, 449–458 (2007).
    [CrossRef]
  2. P. Lodahl, A. F. Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430, 654–657 (2004).
    [CrossRef] [PubMed]
  3. A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5, 91–94 (2011).
    [CrossRef]
  4. L. A. Stewart, Y. Zhai, J.M. Dawes, M. J. Steel, J. R. Rabeau, and M. J. Withford, “Single photon Emission from Diamond nanocrystals in an Opal Photonic Crystal,” Opt. Express17, 18044–18053 (2009).
    [CrossRef] [PubMed]
  5. G. Burlak, S. Koshevaya, J. Sanchez-mondragon, and V. Grimalsky, “Electromagnetic eigenoscillations and fields in a dielectric microsphere with multilayer spherical stack,” Opt. Commun.187, 91–105 (2001).
    [CrossRef]
  6. Z. Ren, T. Zhai, Z. Wang, J. Zhou, and D. Liu, “Complete Band Gaps in the Visible Range Achieved by a Low-Refractive-Index Material,” Adv. Mater.20, 2337–2340 (2008).
    [CrossRef]
  7. D. Sharp, A. Turberfield, and R. Denning, “Holographic photonic crystals with diamond symmetry,” Phys. Rev. B68, 205102 (2003).
    [CrossRef]
  8. D. K. Yi, S. S. Lee, G. C. Papaefthymiou, and J. Y. Ying, “Nanoparticle Architectures Templated by SiO2/Fe2O3Nanocomposites,” Chem. Mater.18, 614–619 (2006).
    [CrossRef]
  9. H.-W. Kwon, Y.-M. Lim, S. K. Tripathy, B.-G. Kim, M.-S. Lee, and Y.-T. Yu, “Synthesis of Au/TiO2Core-shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2Shell,” Jpn. J. Appl. Phys.46, 2567–2570 (2007).
    [CrossRef]
  10. G.-C. Chen, C.-Y. Kuo, and S.-Y. Lu, “A General Process for Preparation of Core-Shell Particles of Complete and Smooth Shells,” J. Am. Ceram. Soc.88, 277–283 (2005).
    [CrossRef]
  11. W. Liu, W. Zhong, H. Jiang, N. Tang, X. Wu, and Y. Du, “Highly stable alumina-coated iron nanocomposites synthesized by wet chemistry method,” Surf. and Coat. Tech.200, 5170–5174 (2006).
    [CrossRef]
  12. H. Wang, M. Yu, C. Lin, X. Liu, and J. Lin, “Synthesis and Luminescence Properties of Monodisperse Spherical Y2O3:Eu3+@SiO2Particles with Core-shell Structure,” J. Phys. Chem. C111, 11223–11230 (2007).
    [CrossRef]
  13. M. Lessard-viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET Enhancement in Multilayer Core-Shell Nanoparticles,” Nano Lett.9, 3066–3071 (2009).
    [CrossRef] [PubMed]
  14. D. Brady, G. Papen, and J.E. Sipe, “Spherical distributed dielectric resonators,” J. Opt. Soc. Am. B10, 646–657 (1993).
    [CrossRef]
  15. G. Sullivan and D.G. Hall, Radiation in spherically symmetric structures. II. “Enhancement and inhibition of dipole radiation in a spherical Bragg cavity,” Phys. Rev. A50, 2708 (1994).
    [CrossRef] [PubMed]
  16. A. Moroz, “A recursive transfer-matrix solution for a dipole radiating inside and outside a stratified sphere,” Ann. Phys.315, 352–418 (2005).
    [CrossRef]
  17. A. Moroz, “Spectroscopic properties of a two-level atom interacting with a complex spherical nanoshell,” Chem. Phys.317, 1–15 (2005).
    [CrossRef]
  18. R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3:Eu3+nanoparticles on the surrounding medium,” Phys. Rev. B60, 14012–14015 (1999).
    [CrossRef]
  19. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998).
    [CrossRef]
  20. V. Puri, “Refractive index and adhesion of Al2O3thin films obtained from different processes - a comparative study,” Thin Solid Films288, 120–124 (1996).
    [CrossRef]
  21. D.-J. Won, C.-H. Wang, H.-K. Jang, and D.-J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2films on structural and optical properties,” Appl. Phys. A73, 595–600 (2001).
    [CrossRef]
  22. I. Abram, I. Rovert, and R. Kuszelwicz, “Spontaneous emission control in semiconductor microcavities with metallic or Bragg mirrors,” IEEE J. Quantum Electron.34, 71–76 (1998).
    [CrossRef]
  23. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett.83, 1915–1917 (2003).
    [CrossRef]
  24. J. Li, X. Li, X. Sun, and T. Ishigaki, “Monodispersed Colloidal Spheres for Uniform Y2O3:Eu3+Red-Phosphor Particles and Greatly Enhanced Luminescence by Simultaneous Gd3+Doping,” J. Phys. Chem. C112, 11707–11716 (2008).
    [CrossRef]
  25. B. Aiken, W. P. HSU, and E. Matijevic, “Preparation and Properties of Monodispersed Colloidal Particles of Lanthanide Compounds: III, Yttrium (III) and Mixed Yttrium (III)/Cerium (III) Systems,” J. Am. Ceram. Soc.71, 845–853 (1988).
    [CrossRef]
  26. F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles”, Nat. Mater.10, 968–973 (2011).
    [CrossRef] [PubMed]

2011 (2)

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5, 91–94 (2011).
[CrossRef]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles”, Nat. Mater.10, 968–973 (2011).
[CrossRef] [PubMed]

2009 (2)

2008 (2)

Z. Ren, T. Zhai, Z. Wang, J. Zhou, and D. Liu, “Complete Band Gaps in the Visible Range Achieved by a Low-Refractive-Index Material,” Adv. Mater.20, 2337–2340 (2008).
[CrossRef]

J. Li, X. Li, X. Sun, and T. Ishigaki, “Monodispersed Colloidal Spheres for Uniform Y2O3:Eu3+Red-Phosphor Particles and Greatly Enhanced Luminescence by Simultaneous Gd3+Doping,” J. Phys. Chem. C112, 11707–11716 (2008).
[CrossRef]

2007 (3)

H. Wang, M. Yu, C. Lin, X. Liu, and J. Lin, “Synthesis and Luminescence Properties of Monodisperse Spherical Y2O3:Eu3+@SiO2Particles with Core-shell Structure,” J. Phys. Chem. C111, 11223–11230 (2007).
[CrossRef]

H.-W. Kwon, Y.-M. Lim, S. K. Tripathy, B.-G. Kim, M.-S. Lee, and Y.-T. Yu, “Synthesis of Au/TiO2Core-shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2Shell,” Jpn. J. Appl. Phys.46, 2567–2570 (2007).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1, 449–458 (2007).
[CrossRef]

2006 (2)

D. K. Yi, S. S. Lee, G. C. Papaefthymiou, and J. Y. Ying, “Nanoparticle Architectures Templated by SiO2/Fe2O3Nanocomposites,” Chem. Mater.18, 614–619 (2006).
[CrossRef]

W. Liu, W. Zhong, H. Jiang, N. Tang, X. Wu, and Y. Du, “Highly stable alumina-coated iron nanocomposites synthesized by wet chemistry method,” Surf. and Coat. Tech.200, 5170–5174 (2006).
[CrossRef]

2005 (3)

A. Moroz, “A recursive transfer-matrix solution for a dipole radiating inside and outside a stratified sphere,” Ann. Phys.315, 352–418 (2005).
[CrossRef]

A. Moroz, “Spectroscopic properties of a two-level atom interacting with a complex spherical nanoshell,” Chem. Phys.317, 1–15 (2005).
[CrossRef]

G.-C. Chen, C.-Y. Kuo, and S.-Y. Lu, “A General Process for Preparation of Core-Shell Particles of Complete and Smooth Shells,” J. Am. Ceram. Soc.88, 277–283 (2005).
[CrossRef]

2004 (1)

P. Lodahl, A. F. Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430, 654–657 (2004).
[CrossRef] [PubMed]

2003 (2)

D. Sharp, A. Turberfield, and R. Denning, “Holographic photonic crystals with diamond symmetry,” Phys. Rev. B68, 205102 (2003).
[CrossRef]

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett.83, 1915–1917 (2003).
[CrossRef]

2001 (2)

D.-J. Won, C.-H. Wang, H.-K. Jang, and D.-J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2films on structural and optical properties,” Appl. Phys. A73, 595–600 (2001).
[CrossRef]

G. Burlak, S. Koshevaya, J. Sanchez-mondragon, and V. Grimalsky, “Electromagnetic eigenoscillations and fields in a dielectric microsphere with multilayer spherical stack,” Opt. Commun.187, 91–105 (2001).
[CrossRef]

1999 (1)

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3:Eu3+nanoparticles on the surrounding medium,” Phys. Rev. B60, 14012–14015 (1999).
[CrossRef]

1998 (2)

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998).
[CrossRef]

I. Abram, I. Rovert, and R. Kuszelwicz, “Spontaneous emission control in semiconductor microcavities with metallic or Bragg mirrors,” IEEE J. Quantum Electron.34, 71–76 (1998).
[CrossRef]

1996 (1)

V. Puri, “Refractive index and adhesion of Al2O3thin films obtained from different processes - a comparative study,” Thin Solid Films288, 120–124 (1996).
[CrossRef]

1994 (1)

G. Sullivan and D.G. Hall, Radiation in spherically symmetric structures. II. “Enhancement and inhibition of dipole radiation in a spherical Bragg cavity,” Phys. Rev. A50, 2708 (1994).
[CrossRef] [PubMed]

1993 (1)

D. Brady, G. Papen, and J.E. Sipe, “Spherical distributed dielectric resonators,” J. Opt. Soc. Am. B10, 646–657 (1993).
[CrossRef]

1988 (1)

B. Aiken, W. P. HSU, and E. Matijevic, “Preparation and Properties of Monodispersed Colloidal Particles of Lanthanide Compounds: III, Yttrium (III) and Mixed Yttrium (III)/Cerium (III) Systems,” J. Am. Ceram. Soc.71, 845–853 (1988).
[CrossRef]

Abram, I.

I. Abram, I. Rovert, and R. Kuszelwicz, “Spontaneous emission control in semiconductor microcavities with metallic or Bragg mirrors,” IEEE J. Quantum Electron.34, 71–76 (1998).
[CrossRef]

Aiken, B.

B. Aiken, W. P. HSU, and E. Matijevic, “Preparation and Properties of Monodispersed Colloidal Particles of Lanthanide Compounds: III, Yttrium (III) and Mixed Yttrium (III)/Cerium (III) Systems,” J. Am. Ceram. Soc.71, 845–853 (1988).
[CrossRef]

Arakawa, Y.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5, 91–94 (2011).
[CrossRef]

Asano, T.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1, 449–458 (2007).
[CrossRef]

Barclay, P. E.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett.83, 1915–1917 (2003).
[CrossRef]

Boudreau, D.

M. Lessard-viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET Enhancement in Multilayer Core-Shell Nanoparticles,” Nano Lett.9, 3066–3071 (2009).
[CrossRef] [PubMed]

Brady, D.

D. Brady, G. Papen, and J.E. Sipe, “Spherical distributed dielectric resonators,” J. Opt. Soc. Am. B10, 646–657 (1993).
[CrossRef]

Burlak, G.

G. Burlak, S. Koshevaya, J. Sanchez-mondragon, and V. Grimalsky, “Electromagnetic eigenoscillations and fields in a dielectric microsphere with multilayer spherical stack,” Opt. Commun.187, 91–105 (2001).
[CrossRef]

Chen, G.-C.

G.-C. Chen, C.-Y. Kuo, and S.-Y. Lu, “A General Process for Preparation of Core-Shell Particles of Complete and Smooth Shells,” J. Am. Ceram. Soc.88, 277–283 (2005).
[CrossRef]

Chen, J.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett.83, 1915–1917 (2003).
[CrossRef]

Chen, X.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles”, Nat. Mater.10, 968–973 (2011).
[CrossRef] [PubMed]

Cho, A. Y.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett.83, 1915–1917 (2003).
[CrossRef]

Choi, D.-J.

D.-J. Won, C.-H. Wang, H.-K. Jang, and D.-J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2films on structural and optical properties,” Appl. Phys. A73, 595–600 (2001).
[CrossRef]

Dawes, J.M.

Deng, R.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles”, Nat. Mater.10, 968–973 (2011).
[CrossRef] [PubMed]

Denning, R.

D. Sharp, A. Turberfield, and R. Denning, “Holographic photonic crystals with diamond symmetry,” Phys. Rev. B68, 205102 (2003).
[CrossRef]

Du, Y.

W. Liu, W. Zhong, H. Jiang, N. Tang, X. Wu, and Y. Du, “Highly stable alumina-coated iron nanocomposites synthesized by wet chemistry method,” Surf. and Coat. Tech.200, 5170–5174 (2006).
[CrossRef]

Feofilov, S. P.

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3:Eu3+nanoparticles on the surrounding medium,” Phys. Rev. B60, 14012–14015 (1999).
[CrossRef]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1, 449–458 (2007).
[CrossRef]

Gmachl, C.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett.83, 1915–1917 (2003).
[CrossRef]

Grimalsky, V.

G. Burlak, S. Koshevaya, J. Sanchez-mondragon, and V. Grimalsky, “Electromagnetic eigenoscillations and fields in a dielectric microsphere with multilayer spherical stack,” Opt. Commun.187, 91–105 (2001).
[CrossRef]

Guimard, D.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5, 91–94 (2011).
[CrossRef]

Hall, D.G.

G. Sullivan and D.G. Hall, Radiation in spherically symmetric structures. II. “Enhancement and inhibition of dipole radiation in a spherical Bragg cavity,” Phys. Rev. A50, 2708 (1994).
[CrossRef] [PubMed]

Han, Y.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles”, Nat. Mater.10, 968–973 (2011).
[CrossRef] [PubMed]

Herzinger, C. M.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998).
[CrossRef]

HSU, W. P.

B. Aiken, W. P. HSU, and E. Matijevic, “Preparation and Properties of Monodispersed Colloidal Particles of Lanthanide Compounds: III, Yttrium (III) and Mixed Yttrium (III)/Cerium (III) Systems,” J. Am. Ceram. Soc.71, 845–853 (1988).
[CrossRef]

Irman, A.

P. Lodahl, A. F. Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430, 654–657 (2004).
[CrossRef] [PubMed]

Ishida, S.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5, 91–94 (2011).
[CrossRef]

Ishigaki, T.

J. Li, X. Li, X. Sun, and T. Ishigaki, “Monodispersed Colloidal Spheres for Uniform Y2O3:Eu3+Red-Phosphor Particles and Greatly Enhanced Luminescence by Simultaneous Gd3+Doping,” J. Phys. Chem. C112, 11707–11716 (2008).
[CrossRef]

Iwamoto, S.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5, 91–94 (2011).
[CrossRef]

Jang, H.-K.

D.-J. Won, C.-H. Wang, H.-K. Jang, and D.-J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2films on structural and optical properties,” Appl. Phys. A73, 595–600 (2001).
[CrossRef]

Jiang, H.

W. Liu, W. Zhong, H. Jiang, N. Tang, X. Wu, and Y. Du, “Highly stable alumina-coated iron nanocomposites synthesized by wet chemistry method,” Surf. and Coat. Tech.200, 5170–5174 (2006).
[CrossRef]

Johs, B.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998).
[CrossRef]

Kim, B.-G.

H.-W. Kwon, Y.-M. Lim, S. K. Tripathy, B.-G. Kim, M.-S. Lee, and Y.-T. Yu, “Synthesis of Au/TiO2Core-shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2Shell,” Jpn. J. Appl. Phys.46, 2567–2570 (2007).
[CrossRef]

Koshevaya, S.

G. Burlak, S. Koshevaya, J. Sanchez-mondragon, and V. Grimalsky, “Electromagnetic eigenoscillations and fields in a dielectric microsphere with multilayer spherical stack,” Opt. Commun.187, 91–105 (2001).
[CrossRef]

Kuo, C.-Y.

G.-C. Chen, C.-Y. Kuo, and S.-Y. Lu, “A General Process for Preparation of Core-Shell Particles of Complete and Smooth Shells,” J. Am. Ceram. Soc.88, 277–283 (2005).
[CrossRef]

Kuszelwicz, R.

I. Abram, I. Rovert, and R. Kuszelwicz, “Spontaneous emission control in semiconductor microcavities with metallic or Bragg mirrors,” IEEE J. Quantum Electron.34, 71–76 (1998).
[CrossRef]

Kwon, H.-W.

H.-W. Kwon, Y.-M. Lim, S. K. Tripathy, B.-G. Kim, M.-S. Lee, and Y.-T. Yu, “Synthesis of Au/TiO2Core-shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2Shell,” Jpn. J. Appl. Phys.46, 2567–2570 (2007).
[CrossRef]

Lee, M.-S.

H.-W. Kwon, Y.-M. Lim, S. K. Tripathy, B.-G. Kim, M.-S. Lee, and Y.-T. Yu, “Synthesis of Au/TiO2Core-shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2Shell,” Jpn. J. Appl. Phys.46, 2567–2570 (2007).
[CrossRef]

Lee, S. S.

D. K. Yi, S. S. Lee, G. C. Papaefthymiou, and J. Y. Ying, “Nanoparticle Architectures Templated by SiO2/Fe2O3Nanocomposites,” Chem. Mater.18, 614–619 (2006).
[CrossRef]

Lessard-viger, M.

M. Lessard-viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET Enhancement in Multilayer Core-Shell Nanoparticles,” Nano Lett.9, 3066–3071 (2009).
[CrossRef] [PubMed]

Li, J.

J. Li, X. Li, X. Sun, and T. Ishigaki, “Monodispersed Colloidal Spheres for Uniform Y2O3:Eu3+Red-Phosphor Particles and Greatly Enhanced Luminescence by Simultaneous Gd3+Doping,” J. Phys. Chem. C112, 11707–11716 (2008).
[CrossRef]

Li, X.

J. Li, X. Li, X. Sun, and T. Ishigaki, “Monodispersed Colloidal Spheres for Uniform Y2O3:Eu3+Red-Phosphor Particles and Greatly Enhanced Luminescence by Simultaneous Gd3+Doping,” J. Phys. Chem. C112, 11707–11716 (2008).
[CrossRef]

Lim, Y.-M.

H.-W. Kwon, Y.-M. Lim, S. K. Tripathy, B.-G. Kim, M.-S. Lee, and Y.-T. Yu, “Synthesis of Au/TiO2Core-shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2Shell,” Jpn. J. Appl. Phys.46, 2567–2570 (2007).
[CrossRef]

Lin, C.

H. Wang, M. Yu, C. Lin, X. Liu, and J. Lin, “Synthesis and Luminescence Properties of Monodisperse Spherical Y2O3:Eu3+@SiO2Particles with Core-shell Structure,” J. Phys. Chem. C111, 11223–11230 (2007).
[CrossRef]

Lin, J.

H. Wang, M. Yu, C. Lin, X. Liu, and J. Lin, “Synthesis and Luminescence Properties of Monodisperse Spherical Y2O3:Eu3+@SiO2Particles with Core-shell Structure,” J. Phys. Chem. C111, 11223–11230 (2007).
[CrossRef]

Liu, D.

Z. Ren, T. Zhai, Z. Wang, J. Zhou, and D. Liu, “Complete Band Gaps in the Visible Range Achieved by a Low-Refractive-Index Material,” Adv. Mater.20, 2337–2340 (2008).
[CrossRef]

Liu, W.

W. Liu, W. Zhong, H. Jiang, N. Tang, X. Wu, and Y. Du, “Highly stable alumina-coated iron nanocomposites synthesized by wet chemistry method,” Surf. and Coat. Tech.200, 5170–5174 (2006).
[CrossRef]

Liu, X.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles”, Nat. Mater.10, 968–973 (2011).
[CrossRef] [PubMed]

H. Wang, M. Yu, C. Lin, X. Liu, and J. Lin, “Synthesis and Luminescence Properties of Monodisperse Spherical Y2O3:Eu3+@SiO2Particles with Core-shell Structure,” J. Phys. Chem. C111, 11223–11230 (2007).
[CrossRef]

Lodahl, P.

P. Lodahl, A. F. Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430, 654–657 (2004).
[CrossRef] [PubMed]

Lu, S.-Y.

G.-C. Chen, C.-Y. Kuo, and S.-Y. Lu, “A General Process for Preparation of Core-Shell Particles of Complete and Smooth Shells,” J. Am. Ceram. Soc.88, 277–283 (2005).
[CrossRef]

Matijevic, E.

B. Aiken, W. P. HSU, and E. Matijevic, “Preparation and Properties of Monodispersed Colloidal Particles of Lanthanide Compounds: III, Yttrium (III) and Mixed Yttrium (III)/Cerium (III) Systems,” J. Am. Ceram. Soc.71, 845–853 (1988).
[CrossRef]

McGahan, W. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998).
[CrossRef]

Meltzer, R. S.

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3:Eu3+nanoparticles on the surrounding medium,” Phys. Rev. B60, 14012–14015 (1999).
[CrossRef]

Moroz, A.

A. Moroz, “A recursive transfer-matrix solution for a dipole radiating inside and outside a stratified sphere,” Ann. Phys.315, 352–418 (2005).
[CrossRef]

A. Moroz, “Spectroscopic properties of a two-level atom interacting with a complex spherical nanoshell,” Chem. Phys.317, 1–15 (2005).
[CrossRef]

Nikolaev, I. S.

P. Lodahl, A. F. Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430, 654–657 (2004).
[CrossRef] [PubMed]

Noda, S.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1, 449–458 (2007).
[CrossRef]

Nomura, M.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5, 91–94 (2011).
[CrossRef]

Overgaag, K.

P. Lodahl, A. F. Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430, 654–657 (2004).
[CrossRef] [PubMed]

Painter, O.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett.83, 1915–1917 (2003).
[CrossRef]

Papaefthymiou, G. C.

D. K. Yi, S. S. Lee, G. C. Papaefthymiou, and J. Y. Ying, “Nanoparticle Architectures Templated by SiO2/Fe2O3Nanocomposites,” Chem. Mater.18, 614–619 (2006).
[CrossRef]

Papen, G.

D. Brady, G. Papen, and J.E. Sipe, “Spherical distributed dielectric resonators,” J. Opt. Soc. Am. B10, 646–657 (1993).
[CrossRef]

Paulson, W.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998).
[CrossRef]

Puri, V.

V. Puri, “Refractive index and adhesion of Al2O3thin films obtained from different processes - a comparative study,” Thin Solid Films288, 120–124 (1996).
[CrossRef]

Rabeau, J. R.

Rainville, L.

M. Lessard-viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET Enhancement in Multilayer Core-Shell Nanoparticles,” Nano Lett.9, 3066–3071 (2009).
[CrossRef] [PubMed]

Ren, Z.

Z. Ren, T. Zhai, Z. Wang, J. Zhou, and D. Liu, “Complete Band Gaps in the Visible Range Achieved by a Low-Refractive-Index Material,” Adv. Mater.20, 2337–2340 (2008).
[CrossRef]

Rioux, M.

M. Lessard-viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET Enhancement in Multilayer Core-Shell Nanoparticles,” Nano Lett.9, 3066–3071 (2009).
[CrossRef] [PubMed]

Rovert, I.

I. Abram, I. Rovert, and R. Kuszelwicz, “Spontaneous emission control in semiconductor microcavities with metallic or Bragg mirrors,” IEEE J. Quantum Electron.34, 71–76 (1998).
[CrossRef]

Sanchez-mondragon, J.

G. Burlak, S. Koshevaya, J. Sanchez-mondragon, and V. Grimalsky, “Electromagnetic eigenoscillations and fields in a dielectric microsphere with multilayer spherical stack,” Opt. Commun.187, 91–105 (2001).
[CrossRef]

Sharp, D.

D. Sharp, A. Turberfield, and R. Denning, “Holographic photonic crystals with diamond symmetry,” Phys. Rev. B68, 205102 (2003).
[CrossRef]

Sipe, J.E.

D. Brady, G. Papen, and J.E. Sipe, “Spherical distributed dielectric resonators,” J. Opt. Soc. Am. B10, 646–657 (1993).
[CrossRef]

Srinivasan, K.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett.83, 1915–1917 (2003).
[CrossRef]

Steel, M. J.

Stewart, L. A.

Sullivan, G.

G. Sullivan and D.G. Hall, Radiation in spherically symmetric structures. II. “Enhancement and inhibition of dipole radiation in a spherical Bragg cavity,” Phys. Rev. A50, 2708 (1994).
[CrossRef] [PubMed]

Sun, X.

J. Li, X. Li, X. Sun, and T. Ishigaki, “Monodispersed Colloidal Spheres for Uniform Y2O3:Eu3+Red-Phosphor Particles and Greatly Enhanced Luminescence by Simultaneous Gd3+Doping,” J. Phys. Chem. C112, 11707–11716 (2008).
[CrossRef]

Tandaechanurat, A.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5, 91–94 (2011).
[CrossRef]

Tang, N.

W. Liu, W. Zhong, H. Jiang, N. Tang, X. Wu, and Y. Du, “Highly stable alumina-coated iron nanocomposites synthesized by wet chemistry method,” Surf. and Coat. Tech.200, 5170–5174 (2006).
[CrossRef]

Tissue, B.

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3:Eu3+nanoparticles on the surrounding medium,” Phys. Rev. B60, 14012–14015 (1999).
[CrossRef]

Tripathy, S. K.

H.-W. Kwon, Y.-M. Lim, S. K. Tripathy, B.-G. Kim, M.-S. Lee, and Y.-T. Yu, “Synthesis of Au/TiO2Core-shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2Shell,” Jpn. J. Appl. Phys.46, 2567–2570 (2007).
[CrossRef]

Turberfield, A.

D. Sharp, A. Turberfield, and R. Denning, “Holographic photonic crystals with diamond symmetry,” Phys. Rev. B68, 205102 (2003).
[CrossRef]

Van Driel, A. F.

P. Lodahl, A. F. Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430, 654–657 (2004).
[CrossRef] [PubMed]

Vanmaekelbergh, D.

P. Lodahl, A. F. Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430, 654–657 (2004).
[CrossRef] [PubMed]

Vos, W. L.

P. Lodahl, A. F. Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430, 654–657 (2004).
[CrossRef] [PubMed]

Wang, C.-H.

D.-J. Won, C.-H. Wang, H.-K. Jang, and D.-J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2films on structural and optical properties,” Appl. Phys. A73, 595–600 (2001).
[CrossRef]

Wang, F.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles”, Nat. Mater.10, 968–973 (2011).
[CrossRef] [PubMed]

Wang, H.

H. Wang, M. Yu, C. Lin, X. Liu, and J. Lin, “Synthesis and Luminescence Properties of Monodisperse Spherical Y2O3:Eu3+@SiO2Particles with Core-shell Structure,” J. Phys. Chem. C111, 11223–11230 (2007).
[CrossRef]

Wang, J.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles”, Nat. Mater.10, 968–973 (2011).
[CrossRef] [PubMed]

Wang, Q.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles”, Nat. Mater.10, 968–973 (2011).
[CrossRef] [PubMed]

Wang, Z.

Z. Ren, T. Zhai, Z. Wang, J. Zhou, and D. Liu, “Complete Band Gaps in the Visible Range Achieved by a Low-Refractive-Index Material,” Adv. Mater.20, 2337–2340 (2008).
[CrossRef]

Withford, M. J.

Won, D.-J.

D.-J. Won, C.-H. Wang, H.-K. Jang, and D.-J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2films on structural and optical properties,” Appl. Phys. A73, 595–600 (2001).
[CrossRef]

Woollam, J. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998).
[CrossRef]

Wu, X.

W. Liu, W. Zhong, H. Jiang, N. Tang, X. Wu, and Y. Du, “Highly stable alumina-coated iron nanocomposites synthesized by wet chemistry method,” Surf. and Coat. Tech.200, 5170–5174 (2006).
[CrossRef]

Yi, D. K.

D. K. Yi, S. S. Lee, G. C. Papaefthymiou, and J. Y. Ying, “Nanoparticle Architectures Templated by SiO2/Fe2O3Nanocomposites,” Chem. Mater.18, 614–619 (2006).
[CrossRef]

Ying, J. Y.

D. K. Yi, S. S. Lee, G. C. Papaefthymiou, and J. Y. Ying, “Nanoparticle Architectures Templated by SiO2/Fe2O3Nanocomposites,” Chem. Mater.18, 614–619 (2006).
[CrossRef]

Yu, M.

H. Wang, M. Yu, C. Lin, X. Liu, and J. Lin, “Synthesis and Luminescence Properties of Monodisperse Spherical Y2O3:Eu3+@SiO2Particles with Core-shell Structure,” J. Phys. Chem. C111, 11223–11230 (2007).
[CrossRef]

Yu, Y.-T.

H.-W. Kwon, Y.-M. Lim, S. K. Tripathy, B.-G. Kim, M.-S. Lee, and Y.-T. Yu, “Synthesis of Au/TiO2Core-shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2Shell,” Jpn. J. Appl. Phys.46, 2567–2570 (2007).
[CrossRef]

Yuan, H. B.

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3:Eu3+nanoparticles on the surrounding medium,” Phys. Rev. B60, 14012–14015 (1999).
[CrossRef]

Zhai, T.

Z. Ren, T. Zhai, Z. Wang, J. Zhou, and D. Liu, “Complete Band Gaps in the Visible Range Achieved by a Low-Refractive-Index Material,” Adv. Mater.20, 2337–2340 (2008).
[CrossRef]

Zhai, Y.

Zhong, W.

W. Liu, W. Zhong, H. Jiang, N. Tang, X. Wu, and Y. Du, “Highly stable alumina-coated iron nanocomposites synthesized by wet chemistry method,” Surf. and Coat. Tech.200, 5170–5174 (2006).
[CrossRef]

Zhou, J.

Z. Ren, T. Zhai, Z. Wang, J. Zhou, and D. Liu, “Complete Band Gaps in the Visible Range Achieved by a Low-Refractive-Index Material,” Adv. Mater.20, 2337–2340 (2008).
[CrossRef]

Zhu, H.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles”, Nat. Mater.10, 968–973 (2011).
[CrossRef] [PubMed]

Adv. Mater. (1)

Z. Ren, T. Zhai, Z. Wang, J. Zhou, and D. Liu, “Complete Band Gaps in the Visible Range Achieved by a Low-Refractive-Index Material,” Adv. Mater.20, 2337–2340 (2008).
[CrossRef]

Ann. Phys. (1)

A. Moroz, “A recursive transfer-matrix solution for a dipole radiating inside and outside a stratified sphere,” Ann. Phys.315, 352–418 (2005).
[CrossRef]

Appl. Phys. A (1)

D.-J. Won, C.-H. Wang, H.-K. Jang, and D.-J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2films on structural and optical properties,” Appl. Phys. A73, 595–600 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett.83, 1915–1917 (2003).
[CrossRef]

Chem. Mater. (1)

D. K. Yi, S. S. Lee, G. C. Papaefthymiou, and J. Y. Ying, “Nanoparticle Architectures Templated by SiO2/Fe2O3Nanocomposites,” Chem. Mater.18, 614–619 (2006).
[CrossRef]

Chem. Phys. (1)

A. Moroz, “Spectroscopic properties of a two-level atom interacting with a complex spherical nanoshell,” Chem. Phys.317, 1–15 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

I. Abram, I. Rovert, and R. Kuszelwicz, “Spontaneous emission control in semiconductor microcavities with metallic or Bragg mirrors,” IEEE J. Quantum Electron.34, 71–76 (1998).
[CrossRef]

J. Am. Ceram. Soc. (2)

B. Aiken, W. P. HSU, and E. Matijevic, “Preparation and Properties of Monodispersed Colloidal Particles of Lanthanide Compounds: III, Yttrium (III) and Mixed Yttrium (III)/Cerium (III) Systems,” J. Am. Ceram. Soc.71, 845–853 (1988).
[CrossRef]

G.-C. Chen, C.-Y. Kuo, and S.-Y. Lu, “A General Process for Preparation of Core-Shell Particles of Complete and Smooth Shells,” J. Am. Ceram. Soc.88, 277–283 (2005).
[CrossRef]

J. Appl. Phys. (1)

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

D. Brady, G. Papen, and J.E. Sipe, “Spherical distributed dielectric resonators,” J. Opt. Soc. Am. B10, 646–657 (1993).
[CrossRef]

J. Phys. Chem. C (2)

H. Wang, M. Yu, C. Lin, X. Liu, and J. Lin, “Synthesis and Luminescence Properties of Monodisperse Spherical Y2O3:Eu3+@SiO2Particles with Core-shell Structure,” J. Phys. Chem. C111, 11223–11230 (2007).
[CrossRef]

J. Li, X. Li, X. Sun, and T. Ishigaki, “Monodispersed Colloidal Spheres for Uniform Y2O3:Eu3+Red-Phosphor Particles and Greatly Enhanced Luminescence by Simultaneous Gd3+Doping,” J. Phys. Chem. C112, 11707–11716 (2008).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H.-W. Kwon, Y.-M. Lim, S. K. Tripathy, B.-G. Kim, M.-S. Lee, and Y.-T. Yu, “Synthesis of Au/TiO2Core-shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2Shell,” Jpn. J. Appl. Phys.46, 2567–2570 (2007).
[CrossRef]

Nano Lett. (1)

M. Lessard-viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET Enhancement in Multilayer Core-Shell Nanoparticles,” Nano Lett.9, 3066–3071 (2009).
[CrossRef] [PubMed]

Nat. Mater. (1)

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles”, Nat. Mater.10, 968–973 (2011).
[CrossRef] [PubMed]

Nat. Photonics (2)

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1, 449–458 (2007).
[CrossRef]

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5, 91–94 (2011).
[CrossRef]

Nature (1)

P. Lodahl, A. F. Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430, 654–657 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

G. Burlak, S. Koshevaya, J. Sanchez-mondragon, and V. Grimalsky, “Electromagnetic eigenoscillations and fields in a dielectric microsphere with multilayer spherical stack,” Opt. Commun.187, 91–105 (2001).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (1)

G. Sullivan and D.G. Hall, Radiation in spherically symmetric structures. II. “Enhancement and inhibition of dipole radiation in a spherical Bragg cavity,” Phys. Rev. A50, 2708 (1994).
[CrossRef] [PubMed]

Phys. Rev. B (2)

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3:Eu3+nanoparticles on the surrounding medium,” Phys. Rev. B60, 14012–14015 (1999).
[CrossRef]

D. Sharp, A. Turberfield, and R. Denning, “Holographic photonic crystals with diamond symmetry,” Phys. Rev. B68, 205102 (2003).
[CrossRef]

Surf. and Coat. Tech. (1)

W. Liu, W. Zhong, H. Jiang, N. Tang, X. Wu, and Y. Du, “Highly stable alumina-coated iron nanocomposites synthesized by wet chemistry method,” Surf. and Coat. Tech.200, 5170–5174 (2006).
[CrossRef]

Thin Solid Films (1)

V. Puri, “Refractive index and adhesion of Al2O3thin films obtained from different processes - a comparative study,” Thin Solid Films288, 120–124 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A schematic of a multi-layered sphere.

Fig. 2
Fig. 2

Core radius dependence of Γ/Γ0 spectra of a dipole inside the core of (a) a bare sphere and (b) a 4-layered sphere.

Fig. 3
Fig. 3

(a–c) Dependence of Γ/Γ0 spectra on the number of layers. nH are chosen to be (a)1.61, (b)1.91, and (c)2.50, respectively. (d) Peak value of Γ/Γ0, (e)Q, and (f)V, as a function of the number of layers.

Fig. 4
Fig. 4

Normalized radiative decay rate spectra as a function of the position of the dipole (r). Rc is (a,b)5λ/4nc and (c,d)λ0/4nc, respectively.

Fig. 5
Fig. 5

Γ/Γ0 spectra as a function of σ of layer thickness distributions. σ is (a)5%, (b)10%, and (c)20%, with respect to a quarter optical wavelength. (d)Peak value of Γ/Γ0, (e)Q, and (f)V as a function of σ.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γ Γ 0 = 3 Q ( λ n c ) 3 4 π 2 V

Metrics