Abstract

Bare metal wires have recently been demonstrated as waveguides for transporting terahertz (THz) radiation, where the guiding mode is radially polarized surface Sommerfeld waves. In this study, we demonstrate high-efficiency coupling of a broadband radially polarized THz pulsed beam, which is generated with a polarization-controlled beam by a segmented half-wave-plate mode converter, to bare copper wires. A total coupling efficiency up to 16.8% is observed, and at 0.3 THz, the maximum coupling efficiency is 66.3%. The results of mode-overlap calculation and numerical simulation support the experimental data well.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys.88(7), 4449–4451 (2000).
    [CrossRef]
  2. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett.31(3), 308–310 (2006).
    [CrossRef] [PubMed]
  3. D. Chen and H. Chen, “A novel low-loss Terahertz waveguide: Polymer tube,” Opt. Express18(4), 3762–3767 (2010).
    [CrossRef] [PubMed]
  4. D. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron.6(6), 1122–1135 (2000).
    [CrossRef]
  5. M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett.92(16), 161102 (2008).
    [CrossRef]
  6. S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express18(2), 1289–1295 (2010).
    [CrossRef] [PubMed]
  7. G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys.21(11), 1119–1128 (1950).
    [CrossRef]
  8. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
    [CrossRef] [PubMed]
  9. J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express14(1), 279–290 (2006).
    [CrossRef] [PubMed]
  10. K. Wang and D. M. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B22(9), 2001–2008 (2005).
    [CrossRef]
  11. S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys.14(10), 103049 (2012).
    [CrossRef]
  12. T. Grosjean, F. Baida, R. Adam, J.-P. Guillet, L. Billot, P. Nouvel, J. Torres, A. Penarier, D. Charraut, and L. Chusseau, “Linear to radial polarization conversion in the THz domain using a passive system,” Opt. Express16(23), 18895–18909 (2008).
    [CrossRef] [PubMed]
  13. L. Chusseau and J.-P. Guillet, “Coupling and propagation of Sommerfeld waves at 100 and 300 GHz,” J. Infrared Millim. Terahz Waves.33(2), 174–182 (2012).
    [CrossRef]
  14. H. Cao and A. Nahata, “Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves,” Opt. Express13(18), 7028–7034 (2005).
    [CrossRef] [PubMed]
  15. A. Agrawal and A. Nahata, “Coupling terahertz radiation onto a metal wire using a subwavelength coaxial aperture,” Opt. Express15(14), 9022–9028 (2007).
    [CrossRef] [PubMed]
  16. W. Zhu, A. Agrawal, H. Cao, and A. Nahata, “Generation of broadband radially polarized terahertz radiation directly on a cylindrical metal wire,” Opt. Express16(12), 8433–8439 (2008).
    [CrossRef] [PubMed]
  17. S. Winnerl, B. Zimmermann, F. Peter, H. Schneider, and M. Helm, “Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas,” Opt. Express17(3), 1571–1576 (2009).
    [CrossRef] [PubMed]
  18. T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett.86(16), 161904 (2005).
    [CrossRef]
  19. R. Imai, N. Kanda, T. Higuchi, Z. Zheng, K. Konishi, and M. Kuwata-Gonokami, “Terahertz vector beam generation using segmented nonlinear optical crystals with threefold rotational symmetry,” Opt. Express20(20), 21896–21904 (2012).
    [CrossRef] [PubMed]
  20. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1(1), 1–57 (2009).
    [CrossRef]
  21. T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO,” Phys. Rev. Lett.106(4), 047401 (2011).
    [CrossRef] [PubMed]
  22. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett.32(11), 1468–1470 (2007).
    [CrossRef] [PubMed]
  23. K. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett.96(15), 157401 (2006).
    [CrossRef] [PubMed]
  24. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun.179(1-6), 1–7 (2000).
    [CrossRef]
  25. K. S. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7(2), 77–87 (2000).
    [CrossRef] [PubMed]
  26. Q. Cao and J. Jahns, “Azimuthally polarized surface plasmons as effective terahertz waveguides,” Opt. Express13(2), 511–518 (2005).
    [CrossRef] [PubMed]
  27. M. Fadhali, J. Saktioto, Y. Zainal, J. Munajat, Ali, and R. Abdul Rahman, “Mode matching for efficient laser diode to single mode fiber coupling,” Proc. SPIE6793, 67930G, 67930G-8 (2008).
    [CrossRef]
  28. S. Sarkar, K. Thyagarajan, and A. Kumar, “Gaussian approximation of the fundamental mode in single mode elliptic core fibers,” Opt. Commun.49(3), 178–183 (1984).
    [CrossRef]
  29. D. Crawley, C. Longbottom, V. P. Wallace, B. Cole, D. Arnone, and M. Pepper, “Three-dimensional terahertz pulse imaging of dental tissue,” J. Biomed. Opt.8(2), 303–307 (2003).
    [CrossRef] [PubMed]
  30. R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys.29(2/3), 257–259 (2003).
    [CrossRef] [PubMed]
  31. S. Wang and X.-C. Zhang, “Pulsed terahertz tomography,” J. Phys. D Appl. Phys.37(4), R1–R36 (2004).
    [CrossRef]
  32. A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron.14(6), 1515–1521 (2008).
    [CrossRef]
  33. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006).
    [CrossRef] [PubMed]
  34. A. I. Fernández-Domínguez, C. R. Williams, F. J. García-Vidal, L. Martín-Moreno, S. R. Andrews, and S. A. Maier, “Terahertz surface plasmon polaritons on a helically grooved wire,” Appl. Phys. Lett.93(14), 141109 (2008).
    [CrossRef]

2012

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys.14(10), 103049 (2012).
[CrossRef]

L. Chusseau and J.-P. Guillet, “Coupling and propagation of Sommerfeld waves at 100 and 300 GHz,” J. Infrared Millim. Terahz Waves.33(2), 174–182 (2012).
[CrossRef]

R. Imai, N. Kanda, T. Higuchi, Z. Zheng, K. Konishi, and M. Kuwata-Gonokami, “Terahertz vector beam generation using segmented nonlinear optical crystals with threefold rotational symmetry,” Opt. Express20(20), 21896–21904 (2012).
[CrossRef] [PubMed]

2011

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO,” Phys. Rev. Lett.106(4), 047401 (2011).
[CrossRef] [PubMed]

2010

2009

2008

W. Zhu, A. Agrawal, H. Cao, and A. Nahata, “Generation of broadband radially polarized terahertz radiation directly on a cylindrical metal wire,” Opt. Express16(12), 8433–8439 (2008).
[CrossRef] [PubMed]

T. Grosjean, F. Baida, R. Adam, J.-P. Guillet, L. Billot, P. Nouvel, J. Torres, A. Penarier, D. Charraut, and L. Chusseau, “Linear to radial polarization conversion in the THz domain using a passive system,” Opt. Express16(23), 18895–18909 (2008).
[CrossRef] [PubMed]

M. Fadhali, J. Saktioto, Y. Zainal, J. Munajat, Ali, and R. Abdul Rahman, “Mode matching for efficient laser diode to single mode fiber coupling,” Proc. SPIE6793, 67930G, 67930G-8 (2008).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett.92(16), 161102 (2008).
[CrossRef]

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron.14(6), 1515–1521 (2008).
[CrossRef]

A. I. Fernández-Domínguez, C. R. Williams, F. J. García-Vidal, L. Martín-Moreno, S. R. Andrews, and S. A. Maier, “Terahertz surface plasmon polaritons on a helically grooved wire,” Appl. Phys. Lett.93(14), 141109 (2008).
[CrossRef]

2007

2006

J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express14(1), 279–290 (2006).
[CrossRef] [PubMed]

L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett.31(3), 308–310 (2006).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett.96(15), 157401 (2006).
[CrossRef] [PubMed]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006).
[CrossRef] [PubMed]

2005

2004

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef] [PubMed]

S. Wang and X.-C. Zhang, “Pulsed terahertz tomography,” J. Phys. D Appl. Phys.37(4), R1–R36 (2004).
[CrossRef]

2003

D. Crawley, C. Longbottom, V. P. Wallace, B. Cole, D. Arnone, and M. Pepper, “Three-dimensional terahertz pulse imaging of dental tissue,” J. Biomed. Opt.8(2), 303–307 (2003).
[CrossRef] [PubMed]

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys.29(2/3), 257–259 (2003).
[CrossRef] [PubMed]

2000

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun.179(1-6), 1–7 (2000).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys.88(7), 4449–4451 (2000).
[CrossRef]

D. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron.6(6), 1122–1135 (2000).
[CrossRef]

K. S. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7(2), 77–87 (2000).
[CrossRef] [PubMed]

1984

S. Sarkar, K. Thyagarajan, and A. Kumar, “Gaussian approximation of the fundamental mode in single mode elliptic core fibers,” Opt. Commun.49(3), 178–183 (1984).
[CrossRef]

1950

G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys.21(11), 1119–1128 (1950).
[CrossRef]

Abdul Rahman, R.

M. Fadhali, J. Saktioto, Y. Zainal, J. Munajat, Ali, and R. Abdul Rahman, “Mode matching for efficient laser diode to single mode fiber coupling,” Proc. SPIE6793, 67930G, 67930G-8 (2008).
[CrossRef]

Adam, R.

Agrawal, A.

Ali,

M. Fadhali, J. Saktioto, Y. Zainal, J. Munajat, Ali, and R. Abdul Rahman, “Mode matching for efficient laser diode to single mode fiber coupling,” Proc. SPIE6793, 67930G, 67930G-8 (2008).
[CrossRef]

Andrews, S. R.

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron.14(6), 1515–1521 (2008).
[CrossRef]

A. I. Fernández-Domínguez, C. R. Williams, F. J. García-Vidal, L. Martín-Moreno, S. R. Andrews, and S. A. Maier, “Terahertz surface plasmon polaritons on a helically grooved wire,” Appl. Phys. Lett.93(14), 141109 (2008).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006).
[CrossRef] [PubMed]

Arnone, D.

D. Crawley, C. Longbottom, V. P. Wallace, B. Cole, D. Arnone, and M. Pepper, “Three-dimensional terahertz pulse imaging of dental tissue,” J. Biomed. Opt.8(2), 303–307 (2003).
[CrossRef] [PubMed]

Arnone, D. D.

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys.29(2/3), 257–259 (2003).
[CrossRef] [PubMed]

Baida, F.

Billot, L.

Brown, T.

Cao, H.

Cao, Q.

Charraut, D.

Chen, D.

Chen, H.

Chen, H.-W.

Chen, L.-J.

Chusseau, L.

Cole, B.

D. Crawley, C. Longbottom, V. P. Wallace, B. Cole, D. Arnone, and M. Pepper, “Three-dimensional terahertz pulse imaging of dental tissue,” J. Biomed. Opt.8(2), 303–307 (2003).
[CrossRef] [PubMed]

Crawley, D.

D. Crawley, C. Longbottom, V. P. Wallace, B. Cole, D. Arnone, and M. Pepper, “Three-dimensional terahertz pulse imaging of dental tissue,” J. Biomed. Opt.8(2), 303–307 (2003).
[CrossRef] [PubMed]

Deibel, J. A.

Dorn, R.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun.179(1-6), 1–7 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun.179(1-6), 1–7 (2000).
[CrossRef]

Escarra, M. D.

Fadhali, M.

M. Fadhali, J. Saktioto, Y. Zainal, J. Munajat, Ali, and R. Abdul Rahman, “Mode matching for efficient laser diode to single mode fiber coupling,” Proc. SPIE6793, 67930G, 67930G-8 (2008).
[CrossRef]

Fernández-Domínguez, A. I.

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron.14(6), 1515–1521 (2008).
[CrossRef]

A. I. Fernández-Domínguez, C. R. Williams, F. J. García-Vidal, L. Martín-Moreno, S. R. Andrews, and S. A. Maier, “Terahertz surface plasmon polaritons on a helically grooved wire,” Appl. Phys. Lett.93(14), 141109 (2008).
[CrossRef]

García-Vidal, F. J.

A. I. Fernández-Domínguez, C. R. Williams, F. J. García-Vidal, L. Martín-Moreno, S. R. Andrews, and S. A. Maier, “Terahertz surface plasmon polaritons on a helically grooved wire,” Appl. Phys. Lett.93(14), 141109 (2008).
[CrossRef]

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron.14(6), 1515–1521 (2008).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006).
[CrossRef] [PubMed]

Glockl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun.179(1-6), 1–7 (2000).
[CrossRef]

Goubau, G.

G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys.21(11), 1119–1128 (1950).
[CrossRef]

Grischkowsky, D.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett.86(16), 161904 (2005).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys.88(7), 4449–4451 (2000).
[CrossRef]

D. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron.6(6), 1122–1135 (2000).
[CrossRef]

Grosjean, T.

Guillet, J.-P.

Helm, M.

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys.14(10), 103049 (2012).
[CrossRef]

S. Winnerl, B. Zimmermann, F. Peter, H. Schneider, and M. Helm, “Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas,” Opt. Express17(3), 1571–1576 (2009).
[CrossRef] [PubMed]

Higuchi, T.

R. Imai, N. Kanda, T. Higuchi, Z. Zheng, K. Konishi, and M. Kuwata-Gonokami, “Terahertz vector beam generation using segmented nonlinear optical crystals with threefold rotational symmetry,” Opt. Express20(20), 21896–21904 (2012).
[CrossRef] [PubMed]

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO,” Phys. Rev. Lett.106(4), 047401 (2011).
[CrossRef] [PubMed]

Hubrich, R.

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys.14(10), 103049 (2012).
[CrossRef]

Imai, R.

Jackel, S.

Jahns, J.

Jeon, T.-I.

S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express18(2), 1289–1295 (2010).
[CrossRef] [PubMed]

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett.86(16), 161904 (2005).
[CrossRef]

Ji, Y. B.

Kanda, N.

R. Imai, N. Kanda, T. Higuchi, Z. Zheng, K. Konishi, and M. Kuwata-Gonokami, “Terahertz vector beam generation using segmented nonlinear optical crystals with threefold rotational symmetry,” Opt. Express20(20), 21896–21904 (2012).
[CrossRef] [PubMed]

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO,” Phys. Rev. Lett.106(4), 047401 (2011).
[CrossRef] [PubMed]

Kao, T.-F.

Kim, S.-H.

Konishi, K.

Kumar, A.

S. Sarkar, K. Thyagarajan, and A. Kumar, “Gaussian approximation of the fundamental mode in single mode elliptic core fibers,” Opt. Commun.49(3), 178–183 (1984).
[CrossRef]

Kurz, H.

M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett.92(16), 161102 (2008).
[CrossRef]

Kuwata-Gonokami, M.

R. Imai, N. Kanda, T. Higuchi, Z. Zheng, K. Konishi, and M. Kuwata-Gonokami, “Terahertz vector beam generation using segmented nonlinear optical crystals with threefold rotational symmetry,” Opt. Express20(20), 21896–21904 (2012).
[CrossRef] [PubMed]

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO,” Phys. Rev. Lett.106(4), 047401 (2011).
[CrossRef] [PubMed]

Lee, E. S.

Leuchs, G.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun.179(1-6), 1–7 (2000).
[CrossRef]

Linfield, E. H.

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys.29(2/3), 257–259 (2003).
[CrossRef] [PubMed]

Longbottom, C.

D. Crawley, C. Longbottom, V. P. Wallace, B. Cole, D. Arnone, and M. Pepper, “Three-dimensional terahertz pulse imaging of dental tissue,” J. Biomed. Opt.8(2), 303–307 (2003).
[CrossRef] [PubMed]

Lu, J.-Y.

Lumer, Y.

Machavariani, G.

Maier, S. A.

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron.14(6), 1515–1521 (2008).
[CrossRef]

A. I. Fernández-Domínguez, C. R. Williams, F. J. García-Vidal, L. Martín-Moreno, S. R. Andrews, and S. A. Maier, “Terahertz surface plasmon polaritons on a helically grooved wire,” Appl. Phys. Lett.93(14), 141109 (2008).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006).
[CrossRef] [PubMed]

Martín-Moreno, L.

A. I. Fernández-Domínguez, C. R. Williams, F. J. García-Vidal, L. Martín-Moreno, S. R. Andrews, and S. A. Maier, “Terahertz surface plasmon polaritons on a helically grooved wire,” Appl. Phys. Lett.93(14), 141109 (2008).
[CrossRef]

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron.14(6), 1515–1521 (2008).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006).
[CrossRef] [PubMed]

Meir, A.

Mendis, R.

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys.88(7), 4449–4451 (2000).
[CrossRef]

Mittendorff, M.

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys.14(10), 103049 (2012).
[CrossRef]

Mittleman, D. M.

J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express14(1), 279–290 (2006).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett.96(15), 157401 (2006).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B22(9), 2001–2008 (2005).
[CrossRef]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Moshe, I.

Munajat, J.

M. Fadhali, J. Saktioto, Y. Zainal, J. Munajat, Ali, and R. Abdul Rahman, “Mode matching for efficient laser diode to single mode fiber coupling,” Proc. SPIE6793, 67930G, 67930G-8 (2008).
[CrossRef]

Nagel, M.

M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett.92(16), 161102 (2008).
[CrossRef]

Nahata, A.

Nouvel, P.

Penarier, A.

Pepper, M.

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys.29(2/3), 257–259 (2003).
[CrossRef] [PubMed]

D. Crawley, C. Longbottom, V. P. Wallace, B. Cole, D. Arnone, and M. Pepper, “Three-dimensional terahertz pulse imaging of dental tissue,” J. Biomed. Opt.8(2), 303–307 (2003).
[CrossRef] [PubMed]

Peter, F.

Quabis, S.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun.179(1-6), 1–7 (2000).
[CrossRef]

Saktioto, J.

M. Fadhali, J. Saktioto, Y. Zainal, J. Munajat, Ali, and R. Abdul Rahman, “Mode matching for efficient laser diode to single mode fiber coupling,” Proc. SPIE6793, 67930G, 67930G-8 (2008).
[CrossRef]

Sarkar, S.

S. Sarkar, K. Thyagarajan, and A. Kumar, “Gaussian approximation of the fundamental mode in single mode elliptic core fibers,” Opt. Commun.49(3), 178–183 (1984).
[CrossRef]

Schneider, H.

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys.14(10), 103049 (2012).
[CrossRef]

S. Winnerl, B. Zimmermann, F. Peter, H. Schneider, and M. Helm, “Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas,” Opt. Express17(3), 1571–1576 (2009).
[CrossRef] [PubMed]

Sun, C.-K.

Tamaru, H.

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO,” Phys. Rev. Lett.106(4), 047401 (2011).
[CrossRef] [PubMed]

Thyagarajan, K.

S. Sarkar, K. Thyagarajan, and A. Kumar, “Gaussian approximation of the fundamental mode in single mode elliptic core fibers,” Opt. Commun.49(3), 178–183 (1984).
[CrossRef]

Torres, J.

Wächter, M.

M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett.92(16), 161102 (2008).
[CrossRef]

Wallace, V. P.

D. Crawley, C. Longbottom, V. P. Wallace, B. Cole, D. Arnone, and M. Pepper, “Three-dimensional terahertz pulse imaging of dental tissue,” J. Biomed. Opt.8(2), 303–307 (2003).
[CrossRef] [PubMed]

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys.29(2/3), 257–259 (2003).
[CrossRef] [PubMed]

Wang, K.

J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express14(1), 279–290 (2006).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett.96(15), 157401 (2006).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B22(9), 2001–2008 (2005).
[CrossRef]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Wang, S.

S. Wang and X.-C. Zhang, “Pulsed terahertz tomography,” J. Phys. D Appl. Phys.37(4), R1–R36 (2004).
[CrossRef]

Williams, C. R.

A. I. Fernández-Domínguez, C. R. Williams, F. J. García-Vidal, L. Martín-Moreno, S. R. Andrews, and S. A. Maier, “Terahertz surface plasmon polaritons on a helically grooved wire,” Appl. Phys. Lett.93(14), 141109 (2008).
[CrossRef]

Winnerl, S.

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys.14(10), 103049 (2012).
[CrossRef]

S. Winnerl, B. Zimmermann, F. Peter, H. Schneider, and M. Helm, “Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas,” Opt. Express17(3), 1571–1576 (2009).
[CrossRef] [PubMed]

Woodward, R. M.

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys.29(2/3), 257–259 (2003).
[CrossRef] [PubMed]

Youngworth, K. S.

Zainal, Y.

M. Fadhali, J. Saktioto, Y. Zainal, J. Munajat, Ali, and R. Abdul Rahman, “Mode matching for efficient laser diode to single mode fiber coupling,” Proc. SPIE6793, 67930G, 67930G-8 (2008).
[CrossRef]

Zhan, Q.

Zhang, J.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett.86(16), 161904 (2005).
[CrossRef]

Zhang, X.-C.

S. Wang and X.-C. Zhang, “Pulsed terahertz tomography,” J. Phys. D Appl. Phys.37(4), R1–R36 (2004).
[CrossRef]

Zheng, Z.

Zhu, W.

Zimmermann, B.

Adv. Opt. Photon.

Appl. Phys. Lett.

A. I. Fernández-Domínguez, C. R. Williams, F. J. García-Vidal, L. Martín-Moreno, S. R. Andrews, and S. A. Maier, “Terahertz surface plasmon polaritons on a helically grooved wire,” Appl. Phys. Lett.93(14), 141109 (2008).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett.92(16), 161102 (2008).
[CrossRef]

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett.86(16), 161904 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

D. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron.6(6), 1122–1135 (2000).
[CrossRef]

A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron.14(6), 1515–1521 (2008).
[CrossRef]

J. Appl. Phys.

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys.88(7), 4449–4451 (2000).
[CrossRef]

G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys.21(11), 1119–1128 (1950).
[CrossRef]

J. Biol. Phys.

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys.29(2/3), 257–259 (2003).
[CrossRef] [PubMed]

J. Biomed. Opt.

D. Crawley, C. Longbottom, V. P. Wallace, B. Cole, D. Arnone, and M. Pepper, “Three-dimensional terahertz pulse imaging of dental tissue,” J. Biomed. Opt.8(2), 303–307 (2003).
[CrossRef] [PubMed]

J. Infrared Millim. Terahz Waves.

L. Chusseau and J.-P. Guillet, “Coupling and propagation of Sommerfeld waves at 100 and 300 GHz,” J. Infrared Millim. Terahz Waves.33(2), 174–182 (2012).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D Appl. Phys.

S. Wang and X.-C. Zhang, “Pulsed terahertz tomography,” J. Phys. D Appl. Phys.37(4), R1–R36 (2004).
[CrossRef]

Nature

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef] [PubMed]

New J. Phys.

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys.14(10), 103049 (2012).
[CrossRef]

Opt. Commun.

S. Sarkar, K. Thyagarajan, and A. Kumar, “Gaussian approximation of the fundamental mode in single mode elliptic core fibers,” Opt. Commun.49(3), 178–183 (1984).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun.179(1-6), 1–7 (2000).
[CrossRef]

Opt. Express

K. S. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7(2), 77–87 (2000).
[CrossRef] [PubMed]

Q. Cao and J. Jahns, “Azimuthally polarized surface plasmons as effective terahertz waveguides,” Opt. Express13(2), 511–518 (2005).
[CrossRef] [PubMed]

T. Grosjean, F. Baida, R. Adam, J.-P. Guillet, L. Billot, P. Nouvel, J. Torres, A. Penarier, D. Charraut, and L. Chusseau, “Linear to radial polarization conversion in the THz domain using a passive system,” Opt. Express16(23), 18895–18909 (2008).
[CrossRef] [PubMed]

R. Imai, N. Kanda, T. Higuchi, Z. Zheng, K. Konishi, and M. Kuwata-Gonokami, “Terahertz vector beam generation using segmented nonlinear optical crystals with threefold rotational symmetry,” Opt. Express20(20), 21896–21904 (2012).
[CrossRef] [PubMed]

H. Cao and A. Nahata, “Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves,” Opt. Express13(18), 7028–7034 (2005).
[CrossRef] [PubMed]

A. Agrawal and A. Nahata, “Coupling terahertz radiation onto a metal wire using a subwavelength coaxial aperture,” Opt. Express15(14), 9022–9028 (2007).
[CrossRef] [PubMed]

W. Zhu, A. Agrawal, H. Cao, and A. Nahata, “Generation of broadband radially polarized terahertz radiation directly on a cylindrical metal wire,” Opt. Express16(12), 8433–8439 (2008).
[CrossRef] [PubMed]

S. Winnerl, B. Zimmermann, F. Peter, H. Schneider, and M. Helm, “Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas,” Opt. Express17(3), 1571–1576 (2009).
[CrossRef] [PubMed]

J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express14(1), 279–290 (2006).
[CrossRef] [PubMed]

S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express18(2), 1289–1295 (2010).
[CrossRef] [PubMed]

D. Chen and H. Chen, “A novel low-loss Terahertz waveguide: Polymer tube,” Opt. Express18(4), 3762–3767 (2010).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

K. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett.96(15), 157401 (2006).
[CrossRef] [PubMed]

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO,” Phys. Rev. Lett.106(4), 047401 (2011).
[CrossRef] [PubMed]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006).
[CrossRef] [PubMed]

Proc. SPIE

M. Fadhali, J. Saktioto, Y. Zainal, J. Munajat, Ali, and R. Abdul Rahman, “Mode matching for efficient laser diode to single mode fiber coupling,” Proc. SPIE6793, 67930G, 67930G-8 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic of the function of the segmented HWP mode converter. The red arrow indicates the polarization direction of the incident beam. The blue arrows show the fast axis orientation for each piece of the wave-plate. The green arrows indicate the polarization direction inside the polarization-spatial-variant mode. (b) A photograph of segmented HWP mode converter. (c) Intensity distribution images for the THz radial beams. The arrows indicate the polarization directions. The leftmost image was obtained without WGP.

Fig. 2
Fig. 2

Experimental setup of the metal wire waveguiding.

Fig. 3
Fig. 3

(a) Intensity distribution at the output plane. (b) Waveforms at y offset positions of + 1.2 mm and −1.2 mm from the center (marked as stars in Fig. 3(a)).

Fig. 4
Fig. 4

Normalized waveforms (a) and spectra(b) (Upper (black): In-couple plane; Lower (red): Output plane).

Fig. 5
Fig. 5

Phase velocity (Vp) and group velocity (Vg) of the guiding wave as functions of frequency.

Fig. 6
Fig. 6

Black lines: waveforms of a guided THz electric field at the output plane. Red lines: (a) waveform measured with the copper wire removed from the setup, (b) waveform with the azimuthally polarized mode in-coupled.

Fig. 7
Fig. 7

Frequency dependence of the coupling efficiencies obtained by experiment, mode-overlap calculation and numerical simulation

Fig. 8
Fig. 8

Frequency dependence of mode-overlap calculation, (a) wire radius R = 0.5 mm, NA = 0.2, 0.1, and 0.05; (b) NA = 0.1, wire radius R = 0.5 mm, 0.2 mm, 0.05 mm, 0.03 mm, and 0.01 mm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E r (ω,ρ) 0 θ max cos 1/2 θ sin(2θ) E 0 (θ) J 1 ( k 0 ρsinθ)dθ,
E Sommerfeld (ρ){ H 1 (1) (γρ) ( ρ>R ) 0 ( ρR ) .
η(ω)= | E r (ω) E Sommerfeld * ρdρ | 2 | E r (ω) | 2 ρdρ | E Sommerfeld | 2 ρdρ ,

Metrics