Abstract

We investigate nanocavities at the surface of three-dimensional (3D) photonic crystals, where the polarization-independent surface-mode gap can be utilized. We consider the formation of various nanocavities by introducing artificial defects utilizing the 3D structures around the surface and discuss the possibilities for increasing the Q-factors of the surface nanocavities with TE-like polarization based on the advanced designs of donor-type defects. We also introduce the design of acceptor-type defects and show that TM-like nanocavities are obtained. We then fabricate the designed nanocavities and examine their resonant characteristics; we successfully demonstrate TE-like nanocavities with Q-factors of ~40,000, which is four-times higher than previous surface cavities and as high as that of the cavities embedded inside 3D photonic crystals. TM-like nanocavities with Q-factors of ~22,000 are also demonstrated for the first time.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science289(5479), 604–606 (2000).
    [CrossRef] [PubMed]
  2. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science305(5681), 227–229 (2004).
    [CrossRef] [PubMed]
  3. P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
    [CrossRef] [PubMed]
  4. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature429(6991), 538–542 (2004).
    [CrossRef] [PubMed]
  5. M. Imada, L.-H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett.88(17), 171107 (2006).
    [CrossRef]
  6. S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics2(1), 52–56 (2008).
    [CrossRef]
  7. K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature460(7253), 367–370 (2009).
    [CrossRef] [PubMed]
  8. S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater.8(9), 721–725 (2009).
    [CrossRef] [PubMed]
  9. S. Kawashima, K. Ishizaki, and S. Noda, “Light propagation in three-dimensional photonic crystals,” Opt. Express18(1), 386–392 (2010).
    [CrossRef] [PubMed]
  10. A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5(2), 91–94 (2011).
    [CrossRef]
  11. K. Suzuki, K. Ishizaki, Y. Ota, and S. Noda, “Surface modes of three-dimensional photonic crystals constructed using a top-down approach,” Opt. Express19(25), 25651–25656 (2011).
    [CrossRef] [PubMed]
  12. K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics7(2), 133–137 (2013).
    [CrossRef]
  13. T. Yoshie, L. Tang, and S.-Y. Su, “Optical microcavity: Sensing down to single molecules and atoms,” Sensors (Basel)11(12), 1972–1991 (2011).
    [CrossRef] [PubMed]
  14. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett.67(24), 3380–3383 (1991).
    [CrossRef] [PubMed]
  15. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  16. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
    [CrossRef]
  17. Y. Tanaka, T. Asano, and S. Noda, “Design of photonic crystal nanocavity with Q-factor of ~109,” J. Lightwave Technol.26(11), 1532–1539 (2008).
    [CrossRef]
  18. S. Kawashima, M. Imada, K. Ishizaki, and S. Noda, “High-precision alignment and bonding system for the fabrication of 3-D nanostructures,” J. Microelectromech. Syst.16(5), 1140–1144 (2007).
    [CrossRef]
  19. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature407(6804), 608–610 (2000).
    [CrossRef] [PubMed]

2013

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics7(2), 133–137 (2013).
[CrossRef]

2011

T. Yoshie, L. Tang, and S.-Y. Su, “Optical microcavity: Sensing down to single molecules and atoms,” Sensors (Basel)11(12), 1972–1991 (2011).
[CrossRef] [PubMed]

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5(2), 91–94 (2011).
[CrossRef]

K. Suzuki, K. Ishizaki, Y. Ota, and S. Noda, “Surface modes of three-dimensional photonic crystals constructed using a top-down approach,” Opt. Express19(25), 25651–25656 (2011).
[CrossRef] [PubMed]

2010

2009

K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature460(7253), 367–370 (2009).
[CrossRef] [PubMed]

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater.8(9), 721–725 (2009).
[CrossRef] [PubMed]

2008

Y. Tanaka, T. Asano, and S. Noda, “Design of photonic crystal nanocavity with Q-factor of ~109,” J. Lightwave Technol.26(11), 1532–1539 (2008).
[CrossRef]

S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics2(1), 52–56 (2008).
[CrossRef]

2007

S. Kawashima, M. Imada, K. Ishizaki, and S. Noda, “High-precision alignment and bonding system for the fabrication of 3-D nanostructures,” J. Microelectromech. Syst.16(5), 1140–1144 (2007).
[CrossRef]

2006

M. Imada, L.-H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett.88(17), 171107 (2006).
[CrossRef]

2005

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
[CrossRef]

2004

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science305(5681), 227–229 (2004).
[CrossRef] [PubMed]

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature429(6991), 538–542 (2004).
[CrossRef] [PubMed]

2003

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

2000

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature407(6804), 608–610 (2000).
[CrossRef] [PubMed]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science289(5479), 604–606 (2000).
[CrossRef] [PubMed]

1991

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett.67(24), 3380–3383 (1991).
[CrossRef] [PubMed]

Akahane, Y.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Arakawa, Y.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5(2), 91–94 (2011).
[CrossRef]

Asano, T.

Y. Tanaka, T. Asano, and S. Noda, “Design of photonic crystal nanocavity with Q-factor of ~109,” J. Lightwave Technol.26(11), 1532–1539 (2008).
[CrossRef]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Braun, P. V.

S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics2(1), 52–56 (2008).
[CrossRef]

Brommer, K. D.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett.67(24), 3380–3383 (1991).
[CrossRef] [PubMed]

Chutinan, A.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science289(5479), 604–606 (2000).
[CrossRef] [PubMed]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Floris Van Driel, A.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

García-Santamaría, F.

S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics2(1), 52–56 (2008).
[CrossRef]

Gmitter, T. J.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett.67(24), 3380–3383 (1991).
[CrossRef] [PubMed]

Gondaira, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics7(2), 133–137 (2013).
[CrossRef]

Guimard, D.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5(2), 91–94 (2011).
[CrossRef]

Imada, M.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater.8(9), 721–725 (2009).
[CrossRef] [PubMed]

S. Kawashima, M. Imada, K. Ishizaki, and S. Noda, “High-precision alignment and bonding system for the fabrication of 3-D nanostructures,” J. Microelectromech. Syst.16(5), 1140–1144 (2007).
[CrossRef]

M. Imada, L.-H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett.88(17), 171107 (2006).
[CrossRef]

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science305(5681), 227–229 (2004).
[CrossRef] [PubMed]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Ippen, E. P.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature429(6991), 538–542 (2004).
[CrossRef] [PubMed]

Irman, A.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Ishida, S.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5(2), 91–94 (2011).
[CrossRef]

Ishizaki, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics7(2), 133–137 (2013).
[CrossRef]

K. Suzuki, K. Ishizaki, Y. Ota, and S. Noda, “Surface modes of three-dimensional photonic crystals constructed using a top-down approach,” Opt. Express19(25), 25651–25656 (2011).
[CrossRef] [PubMed]

S. Kawashima, K. Ishizaki, and S. Noda, “Light propagation in three-dimensional photonic crystals,” Opt. Express18(1), 386–392 (2010).
[CrossRef] [PubMed]

K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature460(7253), 367–370 (2009).
[CrossRef] [PubMed]

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater.8(9), 721–725 (2009).
[CrossRef] [PubMed]

S. Kawashima, M. Imada, K. Ishizaki, and S. Noda, “High-precision alignment and bonding system for the fabrication of 3-D nanostructures,” J. Microelectromech. Syst.16(5), 1140–1144 (2007).
[CrossRef]

Iwamoto, S.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5(2), 91–94 (2011).
[CrossRef]

Joannopoulos, J. D.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature429(6991), 538–542 (2004).
[CrossRef] [PubMed]

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett.67(24), 3380–3383 (1991).
[CrossRef] [PubMed]

Johnson, S. G.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature429(6991), 538–542 (2004).
[CrossRef] [PubMed]

Kawashima, S.

S. Kawashima, K. Ishizaki, and S. Noda, “Light propagation in three-dimensional photonic crystals,” Opt. Express18(1), 386–392 (2010).
[CrossRef] [PubMed]

S. Kawashima, M. Imada, K. Ishizaki, and S. Noda, “High-precision alignment and bonding system for the fabrication of 3-D nanostructures,” J. Microelectromech. Syst.16(5), 1140–1144 (2007).
[CrossRef]

M. Imada, L.-H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett.88(17), 171107 (2006).
[CrossRef]

Koumura, M.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics7(2), 133–137 (2013).
[CrossRef]

Lee, L.-H.

M. Imada, L.-H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett.88(17), 171107 (2006).
[CrossRef]

Lidorikis, E.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature429(6991), 538–542 (2004).
[CrossRef] [PubMed]

Lodahl, P.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Meade, R. D.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett.67(24), 3380–3383 (1991).
[CrossRef] [PubMed]

Nakamori, T.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater.8(9), 721–725 (2009).
[CrossRef] [PubMed]

Nikolaev, I. S.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Noda, S.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics7(2), 133–137 (2013).
[CrossRef]

K. Suzuki, K. Ishizaki, Y. Ota, and S. Noda, “Surface modes of three-dimensional photonic crystals constructed using a top-down approach,” Opt. Express19(25), 25651–25656 (2011).
[CrossRef] [PubMed]

S. Kawashima, K. Ishizaki, and S. Noda, “Light propagation in three-dimensional photonic crystals,” Opt. Express18(1), 386–392 (2010).
[CrossRef] [PubMed]

K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature460(7253), 367–370 (2009).
[CrossRef] [PubMed]

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater.8(9), 721–725 (2009).
[CrossRef] [PubMed]

Y. Tanaka, T. Asano, and S. Noda, “Design of photonic crystal nanocavity with Q-factor of ~109,” J. Lightwave Technol.26(11), 1532–1539 (2008).
[CrossRef]

S. Kawashima, M. Imada, K. Ishizaki, and S. Noda, “High-precision alignment and bonding system for the fabrication of 3-D nanostructures,” J. Microelectromech. Syst.16(5), 1140–1144 (2007).
[CrossRef]

M. Imada, L.-H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett.88(17), 171107 (2006).
[CrossRef]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
[CrossRef]

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science305(5681), 227–229 (2004).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science289(5479), 604–606 (2000).
[CrossRef] [PubMed]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Nomura, M.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5(2), 91–94 (2011).
[CrossRef]

Ogawa, S.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science305(5681), 227–229 (2004).
[CrossRef] [PubMed]

Okano, M.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater.8(9), 721–725 (2009).
[CrossRef] [PubMed]

M. Imada, L.-H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett.88(17), 171107 (2006).
[CrossRef]

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science305(5681), 227–229 (2004).
[CrossRef] [PubMed]

Ota, Y.

K. Suzuki, K. Ishizaki, Y. Ota, and S. Noda, “Surface modes of three-dimensional photonic crystals constructed using a top-down approach,” Opt. Express19(25), 25651–25656 (2011).
[CrossRef] [PubMed]

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater.8(9), 721–725 (2009).
[CrossRef] [PubMed]

Overgaag, K.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Qi, M.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature429(6991), 538–542 (2004).
[CrossRef] [PubMed]

Rakich, P. T.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature429(6991), 538–542 (2004).
[CrossRef] [PubMed]

Rappe, A. M.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett.67(24), 3380–3383 (1991).
[CrossRef] [PubMed]

Rinne, S. A.

S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics2(1), 52–56 (2008).
[CrossRef]

Smith, H. I.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature429(6991), 538–542 (2004).
[CrossRef] [PubMed]

Song, B.-S.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Su, S.-Y.

T. Yoshie, L. Tang, and S.-Y. Su, “Optical microcavity: Sensing down to single molecules and atoms,” Sensors (Basel)11(12), 1972–1991 (2011).
[CrossRef] [PubMed]

Suzuki, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics7(2), 133–137 (2013).
[CrossRef]

K. Suzuki, K. Ishizaki, Y. Ota, and S. Noda, “Surface modes of three-dimensional photonic crystals constructed using a top-down approach,” Opt. Express19(25), 25651–25656 (2011).
[CrossRef] [PubMed]

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater.8(9), 721–725 (2009).
[CrossRef] [PubMed]

Takahashi, S.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater.8(9), 721–725 (2009).
[CrossRef] [PubMed]

Tanaka, Y.

Tandaechanurat, A.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5(2), 91–94 (2011).
[CrossRef]

Tang, L.

T. Yoshie, L. Tang, and S.-Y. Su, “Optical microcavity: Sensing down to single molecules and atoms,” Sensors (Basel)11(12), 1972–1991 (2011).
[CrossRef] [PubMed]

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science289(5479), 604–606 (2000).
[CrossRef] [PubMed]

Vanmaekelbergh, D.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Vos, W. L.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Yablonovitch, E.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett.67(24), 3380–3383 (1991).
[CrossRef] [PubMed]

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science289(5479), 604–606 (2000).
[CrossRef] [PubMed]

Yoshie, T.

T. Yoshie, L. Tang, and S.-Y. Su, “Optical microcavity: Sensing down to single molecules and atoms,” Sensors (Basel)11(12), 1972–1991 (2011).
[CrossRef] [PubMed]

Yoshimoto, S.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science305(5681), 227–229 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett.

M. Imada, L.-H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett.88(17), 171107 (2006).
[CrossRef]

J. Lightwave Technol.

J. Microelectromech. Syst.

S. Kawashima, M. Imada, K. Ishizaki, and S. Noda, “High-precision alignment and bonding system for the fabrication of 3-D nanostructures,” J. Microelectromech. Syst.16(5), 1140–1144 (2007).
[CrossRef]

Nat. Mater.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
[CrossRef]

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater.8(9), 721–725 (2009).
[CrossRef] [PubMed]

Nat. Photonics

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics7(2), 133–137 (2013).
[CrossRef]

S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics2(1), 52–56 (2008).
[CrossRef]

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5(2), 91–94 (2011).
[CrossRef]

Nature

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature407(6804), 608–610 (2000).
[CrossRef] [PubMed]

K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature460(7253), 367–370 (2009).
[CrossRef] [PubMed]

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature429(6991), 538–542 (2004).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. Lett.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett.67(24), 3380–3383 (1991).
[CrossRef] [PubMed]

Science

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science289(5479), 604–606 (2000).
[CrossRef] [PubMed]

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science305(5681), 227–229 (2004).
[CrossRef] [PubMed]

Sensors (Basel)

T. Yoshie, L. Tang, and S.-Y. Su, “Optical microcavity: Sensing down to single molecules and atoms,” Sensors (Basel)11(12), 1972–1991 (2011).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustration of a nanocavity at the surface of 3D photonic crystal with stacked-stripe structures, whose surface possess the cross-geometric pattern.

Fig. 2
Fig. 2

Characteristics of surface-mode gap. (a) Calculated band diagram. The insets show the representative directions in real and reciprocal spaces. (b), (c) Calculated electric-field distributions of higher- and lower-edge modes of surface-mode gap, respectively.

Fig. 3
Fig. 3

Design of TE-like nanocavities composed of the rods with modulated widths in the surface layer. (a) Schematic images of the structure (upper panel) and the band diagram (lower panel). (b) Designed rod widths at each position. (c) Calculated electric field distribution (Ey component), showing the formation of a cavity mode with Gaussian-function envelope.

Fig. 4
Fig. 4

Design of TE-like nanocavities composed of the defects formed in the second layer. (a) Schematic images of the structure. (b) Calculated electric-field distribution (Ey component). (c) Calculated Q-factors for the cases with the defects in the second layer and the surface layer.

Fig. 5
Fig. 5

Design of TM-like nanocavities. (a) Schematic images of the structure. (b) Calculated electric field distribution (Ez component). (c) Calculated Q-factors.

Fig. 6
Fig. 6

Experimental demonstrations of TE-like nanocavities. (a), (b) Top-view SEM image of a cavity constructed by gradually modifying the rod widths and its resonant spectrum, respectively. The constituent material of the photonic crystal was Si. (c), (d) Top-view SEM image of a cavity constructed by introducing defect in the second layer and its resonant spectrum, respectively. The constituent material of the photonic crystal was GaAs.

Fig. 7
Fig. 7

Experimental demonstration of TM-like nanocavities. (a), (b) Top-view SEM image of a cavity constructed by decreasing the rod width in the second layer and its resonant spectrum, respectively. The constituent material of the photonic crystal was GaAs.

Metrics