Abstract

More and more lighting applications require the design of dedicated optics to achieve a given radiant intensity or irradiance distribution. Freeform optics has the advantage of providing such a functionality with a compact design. It was previously demonstrated in [Bäuerle et al., Opt. Exp. 20, 14477–14485 (2012)] that the up-front computation of the light path through the optical system (ray mapping) provides a satisfactory approximation to the problem, and allows the design of multiple freeform surfaces in transmission or in reflection. This article presents one natural extension of this work by introducing an efficient optimization procedure based on the physics of the system. The procedure allows the design of multiple freeform surfaces and can render high resolution irradiance patterns, as demonstrated by several examples, in particular by a lens made of two freeform surfaces projecting a high resolution logo (530 × 160 pixels).

© 2013 OSA

Full Article  |  PDF Article
Related Articles
Tailored freeform optical surfaces

Harald Ries and Julius Muschaweck
J. Opt. Soc. Am. A 19(3) 590-595 (2002)

Free-form microlens for illumination applications

Liwei Sun, Shangzhong Jin, and Songyuan Cen
Appl. Opt. 48(29) 5520-5527 (2009)

Automated optimization of an aspheric light-emitting diode lens for uniform illumination

Xiaoxia Luo, Hua Liu, Zhenwu Lu, and Yao Wang
Appl. Opt. 50(20) 3412-3418 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. Bäuerle, A. Bruneton, R. Wester, J. Stollenwerk, and P. Loosen, “Algorithm for irradiance tailoring using multiple freeform optical surfaces,” Opt. Express 20, 14477–14485 (2012).
    [Crossref] [PubMed]
  2. W. A. Parkyn, “Design of illumination lenses via extrinsic differential geometry,” Proc. SPIE 3428, 154–162 (1998).
    [Crossref]
  3. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation using source-target maps,” Opt. Express 18, 5295–5304 (2010).
    [Crossref] [PubMed]
  4. H. Ries and J. Muschaweck, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A 19, 590–595 (2002).
    [Crossref]
  5. S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent, “Optimal mass transport for registration and warping,” Int. J. of Comput. Vision 60, 225–240 (2004).
    [Crossref]
  6. A. Bruneton, A. Bäuerle, M. Traub, R. Wester, and P. Loosen, “Irradiance tailoring with two-sided, fresnel-type freeform optics,” Proc. SPIE 8485, 84850H (2012).
    [Crossref]
  7. A. Bäuerle, R. Wester, C. Schnitzler, and P. Loosen, “Design of efficient freeform lenses for mass-market illumination applications using hybrid algorithms,” Proc. SPIE 7788, 778807 (2010).
    [Crossref]
  8. D. Bindel and J. Goodman, “Principles of scientific error computing,” tech. rep., New York University - Computer Science (2009).
  9. J. Bortz and N. Shatz, “Iterative generalized functional method of nonimaging optical design,” Proc. SPIE 6670, 66700A (2007).
    [Crossref]

2012 (2)

A. Bruneton, A. Bäuerle, M. Traub, R. Wester, and P. Loosen, “Irradiance tailoring with two-sided, fresnel-type freeform optics,” Proc. SPIE 8485, 84850H (2012).
[Crossref]

A. Bäuerle, A. Bruneton, R. Wester, J. Stollenwerk, and P. Loosen, “Algorithm for irradiance tailoring using multiple freeform optical surfaces,” Opt. Express 20, 14477–14485 (2012).
[Crossref] [PubMed]

2010 (2)

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation using source-target maps,” Opt. Express 18, 5295–5304 (2010).
[Crossref] [PubMed]

A. Bäuerle, R. Wester, C. Schnitzler, and P. Loosen, “Design of efficient freeform lenses for mass-market illumination applications using hybrid algorithms,” Proc. SPIE 7788, 778807 (2010).
[Crossref]

2007 (1)

J. Bortz and N. Shatz, “Iterative generalized functional method of nonimaging optical design,” Proc. SPIE 6670, 66700A (2007).
[Crossref]

2004 (1)

S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent, “Optimal mass transport for registration and warping,” Int. J. of Comput. Vision 60, 225–240 (2004).
[Crossref]

2002 (1)

1998 (1)

W. A. Parkyn, “Design of illumination lenses via extrinsic differential geometry,” Proc. SPIE 3428, 154–162 (1998).
[Crossref]

Angenent, S.

S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent, “Optimal mass transport for registration and warping,” Int. J. of Comput. Vision 60, 225–240 (2004).
[Crossref]

Bäuerle, A.

A. Bruneton, A. Bäuerle, M. Traub, R. Wester, and P. Loosen, “Irradiance tailoring with two-sided, fresnel-type freeform optics,” Proc. SPIE 8485, 84850H (2012).
[Crossref]

A. Bäuerle, A. Bruneton, R. Wester, J. Stollenwerk, and P. Loosen, “Algorithm for irradiance tailoring using multiple freeform optical surfaces,” Opt. Express 20, 14477–14485 (2012).
[Crossref] [PubMed]

A. Bäuerle, R. Wester, C. Schnitzler, and P. Loosen, “Design of efficient freeform lenses for mass-market illumination applications using hybrid algorithms,” Proc. SPIE 7788, 778807 (2010).
[Crossref]

Bindel, D.

D. Bindel and J. Goodman, “Principles of scientific error computing,” tech. rep., New York University - Computer Science (2009).

Bortz, J.

J. Bortz and N. Shatz, “Iterative generalized functional method of nonimaging optical design,” Proc. SPIE 6670, 66700A (2007).
[Crossref]

Bruneton, A.

A. Bruneton, A. Bäuerle, M. Traub, R. Wester, and P. Loosen, “Irradiance tailoring with two-sided, fresnel-type freeform optics,” Proc. SPIE 8485, 84850H (2012).
[Crossref]

A. Bäuerle, A. Bruneton, R. Wester, J. Stollenwerk, and P. Loosen, “Algorithm for irradiance tailoring using multiple freeform optical surfaces,” Opt. Express 20, 14477–14485 (2012).
[Crossref] [PubMed]

Cassarly, W. J.

Fournier, F. R.

Goodman, J.

D. Bindel and J. Goodman, “Principles of scientific error computing,” tech. rep., New York University - Computer Science (2009).

Haker, S.

S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent, “Optimal mass transport for registration and warping,” Int. J. of Comput. Vision 60, 225–240 (2004).
[Crossref]

Loosen, P.

A. Bruneton, A. Bäuerle, M. Traub, R. Wester, and P. Loosen, “Irradiance tailoring with two-sided, fresnel-type freeform optics,” Proc. SPIE 8485, 84850H (2012).
[Crossref]

A. Bäuerle, A. Bruneton, R. Wester, J. Stollenwerk, and P. Loosen, “Algorithm for irradiance tailoring using multiple freeform optical surfaces,” Opt. Express 20, 14477–14485 (2012).
[Crossref] [PubMed]

A. Bäuerle, R. Wester, C. Schnitzler, and P. Loosen, “Design of efficient freeform lenses for mass-market illumination applications using hybrid algorithms,” Proc. SPIE 7788, 778807 (2010).
[Crossref]

Muschaweck, J.

Parkyn, W. A.

W. A. Parkyn, “Design of illumination lenses via extrinsic differential geometry,” Proc. SPIE 3428, 154–162 (1998).
[Crossref]

Ries, H.

Rolland, J. P.

Schnitzler, C.

A. Bäuerle, R. Wester, C. Schnitzler, and P. Loosen, “Design of efficient freeform lenses for mass-market illumination applications using hybrid algorithms,” Proc. SPIE 7788, 778807 (2010).
[Crossref]

Shatz, N.

J. Bortz and N. Shatz, “Iterative generalized functional method of nonimaging optical design,” Proc. SPIE 6670, 66700A (2007).
[Crossref]

Stollenwerk, J.

Tannenbaum, A.

S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent, “Optimal mass transport for registration and warping,” Int. J. of Comput. Vision 60, 225–240 (2004).
[Crossref]

Traub, M.

A. Bruneton, A. Bäuerle, M. Traub, R. Wester, and P. Loosen, “Irradiance tailoring with two-sided, fresnel-type freeform optics,” Proc. SPIE 8485, 84850H (2012).
[Crossref]

Wester, R.

A. Bruneton, A. Bäuerle, M. Traub, R. Wester, and P. Loosen, “Irradiance tailoring with two-sided, fresnel-type freeform optics,” Proc. SPIE 8485, 84850H (2012).
[Crossref]

A. Bäuerle, A. Bruneton, R. Wester, J. Stollenwerk, and P. Loosen, “Algorithm for irradiance tailoring using multiple freeform optical surfaces,” Opt. Express 20, 14477–14485 (2012).
[Crossref] [PubMed]

A. Bäuerle, R. Wester, C. Schnitzler, and P. Loosen, “Design of efficient freeform lenses for mass-market illumination applications using hybrid algorithms,” Proc. SPIE 7788, 778807 (2010).
[Crossref]

Zhu, L.

S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent, “Optimal mass transport for registration and warping,” Int. J. of Comput. Vision 60, 225–240 (2004).
[Crossref]

Int. J. of Comput. Vision (1)

S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent, “Optimal mass transport for registration and warping,” Int. J. of Comput. Vision 60, 225–240 (2004).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Express (2)

Proc. SPIE (4)

W. A. Parkyn, “Design of illumination lenses via extrinsic differential geometry,” Proc. SPIE 3428, 154–162 (1998).
[Crossref]

A. Bruneton, A. Bäuerle, M. Traub, R. Wester, and P. Loosen, “Irradiance tailoring with two-sided, fresnel-type freeform optics,” Proc. SPIE 8485, 84850H (2012).
[Crossref]

A. Bäuerle, R. Wester, C. Schnitzler, and P. Loosen, “Design of efficient freeform lenses for mass-market illumination applications using hybrid algorithms,” Proc. SPIE 7788, 778807 (2010).
[Crossref]

J. Bortz and N. Shatz, “Iterative generalized functional method of nonimaging optical design,” Proc. SPIE 6670, 66700A (2007).
[Crossref]

Other (1)

D. Bindel and J. Goodman, “Principles of scientific error computing,” tech. rep., New York University - Computer Science (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Point source case: the mapping u is computed between the projected source plane Ω0 and the target plane Ω1. The freeform surfaces are positioned between Ω0 and Ω1. They implement the mapping u which associates each point (x, y) ∈ Ω0 to its counterpart (tx, ty) ∈ Ω1. Here, two examples of such an association are represented by arrows.

Fig. 2
Fig. 2

Elementary light flux tube (prism-shaped) delimited by the rays passing through the vertices of a triangular surface element (blue). The vertex rays are represented in dark, the face ray in green. If the vertex ray directions (e.g. the red vector s) drawn from the source are held constant, the light flux within the triangular tube also remains constant.

Fig. 3
Fig. 3

Double sided freeform lens projecting the letter “B” (lengths in mm, irradiance in a.u.); (a) with mapping optimization only; (b) with mapping and flux optimization; (c) illustration of the geometry.

Fig. 4
Fig. 4

Ray-tracing of high-resolution logo generated with 16 million rays (lengths in mm, irradiance in a.u.); (a) prescribed irradiance distribution (passed to the algorithm in black and white); (b) one freeform surface with mapping optimization only; (c) one freeform surface with mapping and flux optimization; (d) two freeform surfaces with mapping and flux optimization.

Fig. 5
Fig. 5

Zoom on the lower right part of the logo for RMS analysis. Ray-tracing with 2 million rays on a grid of 66×39 points (lengths in mm, irradiance in a.u.). (a) one freeform surface with mapping optimization only; (b) one freeform surface with mapping and flux optimization; (c) two freeform surfaces with mapping and flux optimization.

Tables (1)

Tables Icon

Table 1 Fractional RMS for a sub-area of the logo projection. RMSavg (resp. RMSmax) denotes the RMS computed with Iref being the average irradiance (resp. with Iref being the peak irradiance)

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

u : Ω 0 Ω 1 , ( x , y ) ( t x , t y )
N ( × N ) = 0
u t = 1 μ 0 D u ( Δ 1 div u ) with u | t = 0 = u ˜
Φ S = d 2 Φ S = I ( θ , ϕ ) d 2 Ω
Φ S = d 2 Φ S = B S ( x , y ) d x d y
Φ T ( j ) = A j B T ( x , y ) d x d y
Φ T ( j ) = B T ( x j , y j ) A j
f ˜ ( x ) = f ( x ) ( 1 + ε m 2 f ( x ) h f ( x ) + f ( x ) 2 f ( x ) h )
n = ( u v + m ) / 2
R M S = ( I c I p I ref ) 2

Metrics