Abstract

We numerically investigate the multi-channel transmission performance of Polarization Switched Quadrature Phase Shift Keying (PS-QPSK) and we compare it to the performance of Polarization-Division-Multiplexed QPSK (PDM-QPSK), using Root Raised Cosine (RRC) spectral shaping, in the context of a flexible channel grid. We point out the impact of the roll-off factor and the potential influence of different dispersion compensation scenarios. Finally, the advantage of PS-QPSK against PDM-QPSK is presented as a function of the system parameters, while we also discuss the benefit of a RRC spectral shaping against a tight filtering at the transmitter side with a 2nd order super-Gaussian-shaped filter.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Karlsson and E. Agrell, “Which is the most power-efficient modulation format in optical links?” Opt. Express17(13), 10814–10819 (2009).
    [CrossRef] [PubMed]
  2. C. Behrens, D. Lavery, D. S. Millar, S. Makovejs, B. C. Thomsen, R. I. Killey, S. J. Savory, and P. Bayvel, “Ultra-long-haul transmission of 7×42.9 Gbit/s PS-QPSK and PDM-BPSK,” Opt. Express19(26), B581–B586 (2011).
    [CrossRef] [PubMed]
  3. P. Serena, A. Vannucci, and A. Bononi, “The performance of polarization switched-QPSK (PS-QPSK) in dispersion managed WDM transmissions,” in Proc. of ECOC p. Th.10.E.2 (2010).
    [CrossRef]
  4. M. Sjödin, B. J. Puttnam, P. Johannisson, S. Shinada, N. Wada, P. A. Andrekson, and M. Karlsson, “Transmission of PM-QPSK and PS-QPSK with different fiber span lengths,” Opt. Express20(7), 7544–7554 (2012).
    [CrossRef] [PubMed]
  5. P. Poggiolini, G. Bosco, A. Carena, V. Curri, and F. Forghieri, “Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for non-linear fiber propagation effects,” Opt. Express18(11), 11360–11371 (2010).
    [CrossRef] [PubMed]
  6. B. Krongold, T. Pfau, N. Kaneda, and S. C. J. Lee, “Comparison between PS-QPSK and PDM-QPSK with equal rate and bandwidth,” IEEE Photon. Technol. Lett.24(3), 203–205 (2012).
    [CrossRef]
  7. G. Bosco, “Spectral shaping in ultra-dense WDM systems: optical vs. electrical approaches,” in Proc. of OFC, OM3H.1 (2012).
    [CrossRef]
  8. P. Ramantanis, A. Seck, J. Vuong, D. Bendimerad, and Y. Frignac, “Spectral shaping tradeoffs in root-raised-cosine PDM-QPSK nonlinear transmission,” in Proc. of ECOC, P04.01 (2012).
    [CrossRef]
  9. J. Fickers, A. Ghazisaeidi, M. Salsi, G. Charlet, F. Horlin, P. Emplit, and S. Bigo, “Design rules for pulse shaping in PDM-QPSK and PDM-16QAM nyquist-WDM coherent optical transmission systems,” in Proc. of ECOC, p. We.1.C.2 (2012).
    [CrossRef]
  10. B. Châtelain, C. Laperle, K. Roberts, M. Chagnon, X. Xu, A. Borowiec, F. Gagnon, and D. V. Plant, “A family of nyquist pulses for coherent optical communications,” Opt. Express20(8), 8397–8416 (2012).
    [CrossRef] [PubMed]
  11. R. I. Killey, H. J. Thiele, V. Mikhailov, and P. Bayvel, “Reduction of intrachannel nonlinear distortion in 40 Gb/s-based WDM transmission over standard fiber,” IEEE Photon. Technol. Lett.12(12), 1624–1626 (2000).
    [CrossRef]
  12. G. P. Agrawal, Lightwave Technology Telecommunication Systems (John Wiley & Sons, Inc, 2005).
  13. P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. A. Andrekson, “Modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express19(8), 7734–7741 (2011).
    [CrossRef] [PubMed]
  14. A. Seck, P. Ramantanis, J. Vuong, D. F. Bendimerad, C. Lepers, and Y. Frignac, “ Novel carrier phase estimation scheme for polarization switched-QPSK-based transmission systems,” in Proc. of OFC, OTu3I. (2013).
  15. P. Serena, M. Salsi, M. Bertolini, A. Vannucci, N. Rossi, and F. Vacondio, Optilux Toolbox, http://optilux.sourceforge.net

2012 (3)

2011 (2)

2010 (1)

2009 (1)

2000 (1)

R. I. Killey, H. J. Thiele, V. Mikhailov, and P. Bayvel, “Reduction of intrachannel nonlinear distortion in 40 Gb/s-based WDM transmission over standard fiber,” IEEE Photon. Technol. Lett.12(12), 1624–1626 (2000).
[CrossRef]

Agrell, E.

Andrekson, P. A.

Bayvel, P.

C. Behrens, D. Lavery, D. S. Millar, S. Makovejs, B. C. Thomsen, R. I. Killey, S. J. Savory, and P. Bayvel, “Ultra-long-haul transmission of 7×42.9 Gbit/s PS-QPSK and PDM-BPSK,” Opt. Express19(26), B581–B586 (2011).
[CrossRef] [PubMed]

R. I. Killey, H. J. Thiele, V. Mikhailov, and P. Bayvel, “Reduction of intrachannel nonlinear distortion in 40 Gb/s-based WDM transmission over standard fiber,” IEEE Photon. Technol. Lett.12(12), 1624–1626 (2000).
[CrossRef]

Behrens, C.

Borowiec, A.

Bosco, G.

Carena, A.

Chagnon, M.

Châtelain, B.

Curri, V.

Forghieri, F.

Gagnon, F.

Johannisson, P.

Kaneda, N.

B. Krongold, T. Pfau, N. Kaneda, and S. C. J. Lee, “Comparison between PS-QPSK and PDM-QPSK with equal rate and bandwidth,” IEEE Photon. Technol. Lett.24(3), 203–205 (2012).
[CrossRef]

Karlsson, M.

Killey, R. I.

C. Behrens, D. Lavery, D. S. Millar, S. Makovejs, B. C. Thomsen, R. I. Killey, S. J. Savory, and P. Bayvel, “Ultra-long-haul transmission of 7×42.9 Gbit/s PS-QPSK and PDM-BPSK,” Opt. Express19(26), B581–B586 (2011).
[CrossRef] [PubMed]

R. I. Killey, H. J. Thiele, V. Mikhailov, and P. Bayvel, “Reduction of intrachannel nonlinear distortion in 40 Gb/s-based WDM transmission over standard fiber,” IEEE Photon. Technol. Lett.12(12), 1624–1626 (2000).
[CrossRef]

Krongold, B.

B. Krongold, T. Pfau, N. Kaneda, and S. C. J. Lee, “Comparison between PS-QPSK and PDM-QPSK with equal rate and bandwidth,” IEEE Photon. Technol. Lett.24(3), 203–205 (2012).
[CrossRef]

Laperle, C.

Lavery, D.

Lee, S. C. J.

B. Krongold, T. Pfau, N. Kaneda, and S. C. J. Lee, “Comparison between PS-QPSK and PDM-QPSK with equal rate and bandwidth,” IEEE Photon. Technol. Lett.24(3), 203–205 (2012).
[CrossRef]

Makovejs, S.

Mikhailov, V.

R. I. Killey, H. J. Thiele, V. Mikhailov, and P. Bayvel, “Reduction of intrachannel nonlinear distortion in 40 Gb/s-based WDM transmission over standard fiber,” IEEE Photon. Technol. Lett.12(12), 1624–1626 (2000).
[CrossRef]

Millar, D. S.

Pfau, T.

B. Krongold, T. Pfau, N. Kaneda, and S. C. J. Lee, “Comparison between PS-QPSK and PDM-QPSK with equal rate and bandwidth,” IEEE Photon. Technol. Lett.24(3), 203–205 (2012).
[CrossRef]

Plant, D. V.

Poggiolini, P.

Puttnam, B. J.

Roberts, K.

Savory, S. J.

Shinada, S.

Sjödin, M.

Thiele, H. J.

R. I. Killey, H. J. Thiele, V. Mikhailov, and P. Bayvel, “Reduction of intrachannel nonlinear distortion in 40 Gb/s-based WDM transmission over standard fiber,” IEEE Photon. Technol. Lett.12(12), 1624–1626 (2000).
[CrossRef]

Thomsen, B. C.

Wada, N.

Wymeersch, H.

Xu, X.

IEEE Photon. Technol. Lett. (2)

B. Krongold, T. Pfau, N. Kaneda, and S. C. J. Lee, “Comparison between PS-QPSK and PDM-QPSK with equal rate and bandwidth,” IEEE Photon. Technol. Lett.24(3), 203–205 (2012).
[CrossRef]

R. I. Killey, H. J. Thiele, V. Mikhailov, and P. Bayvel, “Reduction of intrachannel nonlinear distortion in 40 Gb/s-based WDM transmission over standard fiber,” IEEE Photon. Technol. Lett.12(12), 1624–1626 (2000).
[CrossRef]

Opt. Express (6)

Other (7)

P. Serena, A. Vannucci, and A. Bononi, “The performance of polarization switched-QPSK (PS-QPSK) in dispersion managed WDM transmissions,” in Proc. of ECOC p. Th.10.E.2 (2010).
[CrossRef]

G. Bosco, “Spectral shaping in ultra-dense WDM systems: optical vs. electrical approaches,” in Proc. of OFC, OM3H.1 (2012).
[CrossRef]

P. Ramantanis, A. Seck, J. Vuong, D. Bendimerad, and Y. Frignac, “Spectral shaping tradeoffs in root-raised-cosine PDM-QPSK nonlinear transmission,” in Proc. of ECOC, P04.01 (2012).
[CrossRef]

J. Fickers, A. Ghazisaeidi, M. Salsi, G. Charlet, F. Horlin, P. Emplit, and S. Bigo, “Design rules for pulse shaping in PDM-QPSK and PDM-16QAM nyquist-WDM coherent optical transmission systems,” in Proc. of ECOC, p. We.1.C.2 (2012).
[CrossRef]

A. Seck, P. Ramantanis, J. Vuong, D. F. Bendimerad, C. Lepers, and Y. Frignac, “ Novel carrier phase estimation scheme for polarization switched-QPSK-based transmission systems,” in Proc. of OFC, OTu3I. (2013).

P. Serena, M. Salsi, M. Bertolini, A. Vannucci, N. Rossi, and F. Vacondio, Optilux Toolbox, http://optilux.sourceforge.net

G. P. Agrawal, Lightwave Technology Telecommunication Systems (John Wiley & Sons, Inc, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simulation setup for our transmission system including RRC spectral shaping description. p(t) is the fundamental pulse in the case of RRC spectral shaping.

Fig. 2
Fig. 2

Q2 versus Pin,avg for “RRC_PS” with different roll-off factors for either 1 or 9 channels (Δν = 50GHz) in the scenarios “wDCF” (a) and “w/oDCF” (b). Illustration of adjacent, spectrally-shaped RRC pulses, in the context of polarization switching (c). Q2max as a function of ρ (d) for 1 (solid line) or 9 channels (dashed line) in the case “w/oDCF”.

Fig. 3
Fig. 3

Q2max as a function of the channel spacing Δν in the “w/oDCF” case for all the considered modulation format solutions.

Fig. 4
Fig. 4

“Coding gain” (a) and “RRC spectral shaping gain” (b) as a function of the channel spacing Δν in the “w/oDCF” (solid lines) and in the “wDCF” DC scheme (dashed lines).

Metrics