Abstract

We experimentally demonstrate efficient Raman conversion to respective Stokes and anti-Stokes fields in both pulsed and continuous modes with a Rb-87 atomic vapor cell. The conversion efficiency is about 40-50% for the Stokes field and 20-30% for the anti-Stokes field, respectively. This efficient conversion process is realized with coherent feedback of both the Raman pump and the frequency-converted fields (Stokes or anti-Stokes). The experimental setup is simple and can be applied easily to produce light sources with larger frequency shifts using other Raman media with long coherence time. They may have potential applications in nonlinear optics, Raman spectroscopy and precision measurement.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sasic and S. Ekins, Pharmaceutical applications of Raman spectroscopy (John Wiley and Sons, Hoboken, New Jersey, 2008).
  2. K.-C. Chou, “Low-frequency collective motion in biomacromolecules and its biological functions,” Biophys. Chem.30(1), 3–48 (1988).
    [CrossRef] [PubMed]
  3. H. Urabe, Y. Tominaga, and K. Kubota, “Experimental evidence of collective vibrations in DNA double helix Raman spectroscopy,” J. Chem. Phys.78(10), 5937–5939 (1983).
    [CrossRef]
  4. K. C. Chou, “Identification of low-frequency modes in protein molecules,” Biochem. J.215(3), 465–469 (1983).
    [PubMed]
  5. Y. S. Huh, A. J. Chung, and D. Erickson, “Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis,” Microfluid. Nanofluid.6(3), 285–297 (2009).
    [CrossRef]
  6. R. K. Khanna, “Raman-spectroscopy of oligomeric SiO species isolated in solid methane,” J. Chem. Phys.74, 2108 (1981).
    [CrossRef]
  7. R. L. Schwiesow and V. E. Derr, “A Raman scattering method for precise measurement of atmospheric oxygen balance,” J. Geophys. Res.75(9), 1629–1632 (1970).
    [CrossRef]
  8. A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia38(1), 25–61 (2001).
    [CrossRef]
  9. T. Müller, G. Grunefeld, and V. Beushausen, “High-precision measurement of the temperature of methanol and ethanol droplets using spontaneous Raman scattering,” Appl. Phys. B70(1), 155–158 (2000).
    [CrossRef]
  10. A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett.89(6), 067901 (2002).
    [CrossRef] [PubMed]
  11. S. Brattke, B. T. H. Varcoe, and H. Walther, “Generation of photon number states on demand via cavity quantum electrodynamics,” Phys. Rev. Lett.86(16), 3534–3537 (2001).
    [CrossRef] [PubMed]
  12. X. Maître, E. Hagley, G. Nogues, C. Wunderlich, P. Goy, M. Brune, J. M. Raimond, and S. Haroche, “Quantum memory with a single photon in a cavity,” Phys. Rev. Lett.79(4), 769–772 (1997).
    [CrossRef]
  13. M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A32(1), 332–344 (1985).
    [CrossRef] [PubMed]
  14. O. S. Mishina, N. V. Larionov, A. S. Sheremet, I. M. Sokolov, and D. V. Kupriyanov, “Stimulated Raman process in a scattering medium applied to the quantum memory scheme,” Phys. Rev. A78(4), 042313 (2008).
    [CrossRef]
  15. R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti ‐ Stokes Raman spectroscopy,” Appl. Phys. Lett.25(7), 387–390 (1974).
    [CrossRef]
  16. A. M. Zheltikov, “Coherent anti-Stokes Raman scattering: from proof-of-the-principle experiments to femtosecond CARS and higher order wave-mixing generalizations,” J. Raman Spectros.31(8-9), 653–667 (2000).
    [CrossRef]
  17. E. J. Blackie, E. C. Le Ru, and P. G. Etchegoin, “Single-molecule surface-enhanced raman spectroscopy of nonresonant molecules,” J. Am. Chem. Soc.131(40), 14466–14472 (2009).
    [CrossRef] [PubMed]
  18. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced. Raman scattering,” Science275(5303), 1102–1106 (1997).
    [CrossRef] [PubMed]
  19. E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique,” J. Phys. Chem. B110(4), 1944–1948 (2006).
    [CrossRef] [PubMed]
  20. M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett.77(21), 4326–4329 (1996).
    [CrossRef] [PubMed]
  21. A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient nonlinear frequency conversion in an all-resonant double- lambda system,” Phys. Rev. Lett.84(23), 5308–5311 (2000).
    [CrossRef] [PubMed]
  22. K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66(20), 2593–2596 (1991).
    [CrossRef] [PubMed]
  23. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today50(7), 36–42 (1997).
    [CrossRef]
  24. L. Q. Chen, G. W. Zhang, C. H. Yuan, J. Jing, Z. Y. Ou, and W. P. Zhang, “Enhanced Raman scattering by spatially distributed atomic coherence,” Appl. Phys. Lett.95(4), 041115 (2009).
    [CrossRef]
  25. C. H. Yuan, L. Q. Chen, J. Jing, Z. Y. Ou, and W. P. Zhang, “Coherently enhanced Raman scattering in atomic vapor,” Phys. Rev. A82(1), 013817 (2010).
    [CrossRef]
  26. M. Fleischhauer, M. D. Lukin, A. B. Matsko, and M. O. Scully, “Threshold and linewidth of a mirrorless parametric oscillator,” Phys. Rev. Lett.84(16), 3558–3561 (2000).
    [CrossRef] [PubMed]
  27. A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett.83(20), 4049–4052 (1999).
    [CrossRef]
  28. M. L. Berre, E. Ressayre, and A. Tallet, “Self-oscillations of the mirrorlike sodium vapor driven by counterpropagating light beams,” Phys. Rev. A43, 6345 (1991).
  29. M. L. Berre, E. Ressayre, and A. Tallet, “Physics in counterpropagating light-beam devices: Phase-conjugation and gain concepts in multiwave mixing,” Phys. Rev. A44, 5958 (1991).
  30. M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A24(4), 1980–1993 (1981).
    [CrossRef]
  31. C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science301(5630), 196–200 (2003).
    [CrossRef] [PubMed]
  32. C. L. Bian, L. Q. Chen, G. W. Zhang, Z. Y. Ou, and W. P. Zhang, “Retrieval of phase memory in two independent atomic ensembles by Raman process,” Europhys. Lett.97(3), 34005 (2012).
    [CrossRef]
  33. C.-H. Yuan, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Entanglement enhanced phase sensitive Raman scattering in atomic vapors”, arXiv:1211.6540.
  34. I. Novikova, Y. Xiao, D. F. Phillips, and R. L. Walsworth, “EIT and diffusion of atomic coherence,” J. Mod. Opt.52(16), 2381–2390 (2005).
    [CrossRef]
  35. M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett.67(2), 181–184 (1991).
    [CrossRef] [PubMed]

2012 (1)

C. L. Bian, L. Q. Chen, G. W. Zhang, Z. Y. Ou, and W. P. Zhang, “Retrieval of phase memory in two independent atomic ensembles by Raman process,” Europhys. Lett.97(3), 34005 (2012).
[CrossRef]

2010 (1)

C. H. Yuan, L. Q. Chen, J. Jing, Z. Y. Ou, and W. P. Zhang, “Coherently enhanced Raman scattering in atomic vapor,” Phys. Rev. A82(1), 013817 (2010).
[CrossRef]

2009 (3)

L. Q. Chen, G. W. Zhang, C. H. Yuan, J. Jing, Z. Y. Ou, and W. P. Zhang, “Enhanced Raman scattering by spatially distributed atomic coherence,” Appl. Phys. Lett.95(4), 041115 (2009).
[CrossRef]

Y. S. Huh, A. J. Chung, and D. Erickson, “Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis,” Microfluid. Nanofluid.6(3), 285–297 (2009).
[CrossRef]

E. J. Blackie, E. C. Le Ru, and P. G. Etchegoin, “Single-molecule surface-enhanced raman spectroscopy of nonresonant molecules,” J. Am. Chem. Soc.131(40), 14466–14472 (2009).
[CrossRef] [PubMed]

2008 (1)

O. S. Mishina, N. V. Larionov, A. S. Sheremet, I. M. Sokolov, and D. V. Kupriyanov, “Stimulated Raman process in a scattering medium applied to the quantum memory scheme,” Phys. Rev. A78(4), 042313 (2008).
[CrossRef]

2006 (1)

E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique,” J. Phys. Chem. B110(4), 1944–1948 (2006).
[CrossRef] [PubMed]

2005 (1)

I. Novikova, Y. Xiao, D. F. Phillips, and R. L. Walsworth, “EIT and diffusion of atomic coherence,” J. Mod. Opt.52(16), 2381–2390 (2005).
[CrossRef]

2003 (1)

C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science301(5630), 196–200 (2003).
[CrossRef] [PubMed]

2002 (1)

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett.89(6), 067901 (2002).
[CrossRef] [PubMed]

2001 (2)

S. Brattke, B. T. H. Varcoe, and H. Walther, “Generation of photon number states on demand via cavity quantum electrodynamics,” Phys. Rev. Lett.86(16), 3534–3537 (2001).
[CrossRef] [PubMed]

A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia38(1), 25–61 (2001).
[CrossRef]

2000 (4)

T. Müller, G. Grunefeld, and V. Beushausen, “High-precision measurement of the temperature of methanol and ethanol droplets using spontaneous Raman scattering,” Appl. Phys. B70(1), 155–158 (2000).
[CrossRef]

M. Fleischhauer, M. D. Lukin, A. B. Matsko, and M. O. Scully, “Threshold and linewidth of a mirrorless parametric oscillator,” Phys. Rev. Lett.84(16), 3558–3561 (2000).
[CrossRef] [PubMed]

A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient nonlinear frequency conversion in an all-resonant double- lambda system,” Phys. Rev. Lett.84(23), 5308–5311 (2000).
[CrossRef] [PubMed]

A. M. Zheltikov, “Coherent anti-Stokes Raman scattering: from proof-of-the-principle experiments to femtosecond CARS and higher order wave-mixing generalizations,” J. Raman Spectros.31(8-9), 653–667 (2000).
[CrossRef]

1999 (1)

A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett.83(20), 4049–4052 (1999).
[CrossRef]

1997 (3)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today50(7), 36–42 (1997).
[CrossRef]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced. Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

X. Maître, E. Hagley, G. Nogues, C. Wunderlich, P. Goy, M. Brune, J. M. Raimond, and S. Haroche, “Quantum memory with a single photon in a cavity,” Phys. Rev. Lett.79(4), 769–772 (1997).
[CrossRef]

1996 (1)

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett.77(21), 4326–4329 (1996).
[CrossRef] [PubMed]

1991 (4)

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66(20), 2593–2596 (1991).
[CrossRef] [PubMed]

M. L. Berre, E. Ressayre, and A. Tallet, “Self-oscillations of the mirrorlike sodium vapor driven by counterpropagating light beams,” Phys. Rev. A43, 6345 (1991).

M. L. Berre, E. Ressayre, and A. Tallet, “Physics in counterpropagating light-beam devices: Phase-conjugation and gain concepts in multiwave mixing,” Phys. Rev. A44, 5958 (1991).

M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett.67(2), 181–184 (1991).
[CrossRef] [PubMed]

1988 (1)

K.-C. Chou, “Low-frequency collective motion in biomacromolecules and its biological functions,” Biophys. Chem.30(1), 3–48 (1988).
[CrossRef] [PubMed]

1985 (1)

M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A32(1), 332–344 (1985).
[CrossRef] [PubMed]

1983 (2)

H. Urabe, Y. Tominaga, and K. Kubota, “Experimental evidence of collective vibrations in DNA double helix Raman spectroscopy,” J. Chem. Phys.78(10), 5937–5939 (1983).
[CrossRef]

K. C. Chou, “Identification of low-frequency modes in protein molecules,” Biochem. J.215(3), 465–469 (1983).
[PubMed]

1981 (2)

R. K. Khanna, “Raman-spectroscopy of oligomeric SiO species isolated in solid methane,” J. Chem. Phys.74, 2108 (1981).
[CrossRef]

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A24(4), 1980–1993 (1981).
[CrossRef]

1974 (1)

R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti ‐ Stokes Raman spectroscopy,” Appl. Phys. Lett.25(7), 387–390 (1974).
[CrossRef]

1970 (1)

R. L. Schwiesow and V. E. Derr, “A Raman scattering method for precise measurement of atmospheric oxygen balance,” J. Geophys. Res.75(9), 1629–1632 (1970).
[CrossRef]

André, A.

C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science301(5630), 196–200 (2003).
[CrossRef] [PubMed]

Begley, R. F.

R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti ‐ Stokes Raman spectroscopy,” Appl. Phys. Lett.25(7), 387–390 (1974).
[CrossRef]

Berre, M. L.

M. L. Berre, E. Ressayre, and A. Tallet, “Physics in counterpropagating light-beam devices: Phase-conjugation and gain concepts in multiwave mixing,” Phys. Rev. A44, 5958 (1991).

M. L. Berre, E. Ressayre, and A. Tallet, “Self-oscillations of the mirrorlike sodium vapor driven by counterpropagating light beams,” Phys. Rev. A43, 6345 (1991).

Beushausen, V.

T. Müller, G. Grunefeld, and V. Beushausen, “High-precision measurement of the temperature of methanol and ethanol droplets using spontaneous Raman scattering,” Appl. Phys. B70(1), 155–158 (2000).
[CrossRef]

Bian, C. L.

C. L. Bian, L. Q. Chen, G. W. Zhang, Z. Y. Ou, and W. P. Zhang, “Retrieval of phase memory in two independent atomic ensembles by Raman process,” Europhys. Lett.97(3), 34005 (2012).
[CrossRef]

Blackie, E. J.

E. J. Blackie, E. C. Le Ru, and P. G. Etchegoin, “Single-molecule surface-enhanced raman spectroscopy of nonresonant molecules,” J. Am. Chem. Soc.131(40), 14466–14472 (2009).
[CrossRef] [PubMed]

Boller, K.

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66(20), 2593–2596 (1991).
[CrossRef] [PubMed]

Brattke, S.

S. Brattke, B. T. H. Varcoe, and H. Walther, “Generation of photon number states on demand via cavity quantum electrodynamics,” Phys. Rev. Lett.86(16), 3534–3537 (2001).
[CrossRef] [PubMed]

Brune, M.

X. Maître, E. Hagley, G. Nogues, C. Wunderlich, P. Goy, M. Brune, J. M. Raimond, and S. Haroche, “Quantum memory with a single photon in a cavity,” Phys. Rev. Lett.79(4), 769–772 (1997).
[CrossRef]

Byer, R. L.

R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti ‐ Stokes Raman spectroscopy,” Appl. Phys. Lett.25(7), 387–390 (1974).
[CrossRef]

Chen, L. Q.

C. L. Bian, L. Q. Chen, G. W. Zhang, Z. Y. Ou, and W. P. Zhang, “Retrieval of phase memory in two independent atomic ensembles by Raman process,” Europhys. Lett.97(3), 34005 (2012).
[CrossRef]

C. H. Yuan, L. Q. Chen, J. Jing, Z. Y. Ou, and W. P. Zhang, “Coherently enhanced Raman scattering in atomic vapor,” Phys. Rev. A82(1), 013817 (2010).
[CrossRef]

L. Q. Chen, G. W. Zhang, C. H. Yuan, J. Jing, Z. Y. Ou, and W. P. Zhang, “Enhanced Raman scattering by spatially distributed atomic coherence,” Appl. Phys. Lett.95(4), 041115 (2009).
[CrossRef]

Chou, K. C.

K. C. Chou, “Identification of low-frequency modes in protein molecules,” Biochem. J.215(3), 465–469 (1983).
[PubMed]

Chou, K.-C.

K.-C. Chou, “Low-frequency collective motion in biomacromolecules and its biological functions,” Biophys. Chem.30(1), 3–48 (1988).
[CrossRef] [PubMed]

Chu, S.

A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia38(1), 25–61 (2001).
[CrossRef]

M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett.67(2), 181–184 (1991).
[CrossRef] [PubMed]

Chung, A. J.

Y. S. Huh, A. J. Chung, and D. Erickson, “Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis,” Microfluid. Nanofluid.6(3), 285–297 (2009).
[CrossRef]

Chung, K. Y.

A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia38(1), 25–61 (2001).
[CrossRef]

Derr, V. E.

R. L. Schwiesow and V. E. Derr, “A Raman scattering method for precise measurement of atmospheric oxygen balance,” J. Geophys. Res.75(9), 1629–1632 (1970).
[CrossRef]

Eisaman, M. D.

C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science301(5630), 196–200 (2003).
[CrossRef] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced. Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Erickson, D.

Y. S. Huh, A. J. Chung, and D. Erickson, “Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis,” Microfluid. Nanofluid.6(3), 285–297 (2009).
[CrossRef]

Etchegoin, P. G.

E. J. Blackie, E. C. Le Ru, and P. G. Etchegoin, “Single-molecule surface-enhanced raman spectroscopy of nonresonant molecules,” J. Am. Chem. Soc.131(40), 14466–14472 (2009).
[CrossRef] [PubMed]

E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique,” J. Phys. Chem. B110(4), 1944–1948 (2006).
[CrossRef] [PubMed]

Fleischhauer, M.

M. Fleischhauer, M. D. Lukin, A. B. Matsko, and M. O. Scully, “Threshold and linewidth of a mirrorless parametric oscillator,” Phys. Rev. Lett.84(16), 3558–3561 (2000).
[CrossRef] [PubMed]

Goy, P.

X. Maître, E. Hagley, G. Nogues, C. Wunderlich, P. Goy, M. Brune, J. M. Raimond, and S. Haroche, “Quantum memory with a single photon in a cavity,” Phys. Rev. Lett.79(4), 769–772 (1997).
[CrossRef]

Grunefeld, G.

T. Müller, G. Grunefeld, and V. Beushausen, “High-precision measurement of the temperature of methanol and ethanol droplets using spontaneous Raman scattering,” Appl. Phys. B70(1), 155–158 (2000).
[CrossRef]

Hagley, E.

X. Maître, E. Hagley, G. Nogues, C. Wunderlich, P. Goy, M. Brune, J. M. Raimond, and S. Haroche, “Quantum memory with a single photon in a cavity,” Phys. Rev. Lett.79(4), 769–772 (1997).
[CrossRef]

Haroche, S.

X. Maître, E. Hagley, G. Nogues, C. Wunderlich, P. Goy, M. Brune, J. M. Raimond, and S. Haroche, “Quantum memory with a single photon in a cavity,” Phys. Rev. Lett.79(4), 769–772 (1997).
[CrossRef]

Harris, S. E.

A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient nonlinear frequency conversion in an all-resonant double- lambda system,” Phys. Rev. Lett.84(23), 5308–5311 (2000).
[CrossRef] [PubMed]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today50(7), 36–42 (1997).
[CrossRef]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett.77(21), 4326–4329 (1996).
[CrossRef] [PubMed]

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66(20), 2593–2596 (1991).
[CrossRef] [PubMed]

Harvey, A. B.

R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti ‐ Stokes Raman spectroscopy,” Appl. Phys. Lett.25(7), 387–390 (1974).
[CrossRef]

Hennrich, M.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett.89(6), 067901 (2002).
[CrossRef] [PubMed]

Huh, Y. S.

Y. S. Huh, A. J. Chung, and D. Erickson, “Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis,” Microfluid. Nanofluid.6(3), 285–297 (2009).
[CrossRef]

Imamolu, A.

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66(20), 2593–2596 (1991).
[CrossRef] [PubMed]

Jain, M.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett.77(21), 4326–4329 (1996).
[CrossRef] [PubMed]

Jing, J.

C. H. Yuan, L. Q. Chen, J. Jing, Z. Y. Ou, and W. P. Zhang, “Coherently enhanced Raman scattering in atomic vapor,” Phys. Rev. A82(1), 013817 (2010).
[CrossRef]

L. Q. Chen, G. W. Zhang, C. H. Yuan, J. Jing, Z. Y. Ou, and W. P. Zhang, “Enhanced Raman scattering by spatially distributed atomic coherence,” Appl. Phys. Lett.95(4), 041115 (2009).
[CrossRef]

Kasevich, M.

M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett.67(2), 181–184 (1991).
[CrossRef] [PubMed]

Khanna, R. K.

R. K. Khanna, “Raman-spectroscopy of oligomeric SiO species isolated in solid methane,” J. Chem. Phys.74, 2108 (1981).
[CrossRef]

Kubota, K.

H. Urabe, Y. Tominaga, and K. Kubota, “Experimental evidence of collective vibrations in DNA double helix Raman spectroscopy,” J. Chem. Phys.78(10), 5937–5939 (1983).
[CrossRef]

Kuhn, A.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett.89(6), 067901 (2002).
[CrossRef] [PubMed]

Kupriyanov, D. V.

O. S. Mishina, N. V. Larionov, A. S. Sheremet, I. M. Sokolov, and D. V. Kupriyanov, “Stimulated Raman process in a scattering medium applied to the quantum memory scheme,” Phys. Rev. A78(4), 042313 (2008).
[CrossRef]

Larionov, N. V.

O. S. Mishina, N. V. Larionov, A. S. Sheremet, I. M. Sokolov, and D. V. Kupriyanov, “Stimulated Raman process in a scattering medium applied to the quantum memory scheme,” Phys. Rev. A78(4), 042313 (2008).
[CrossRef]

Le Ru, E. C.

E. J. Blackie, E. C. Le Ru, and P. G. Etchegoin, “Single-molecule surface-enhanced raman spectroscopy of nonresonant molecules,” J. Am. Chem. Soc.131(40), 14466–14472 (2009).
[CrossRef] [PubMed]

E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique,” J. Phys. Chem. B110(4), 1944–1948 (2006).
[CrossRef] [PubMed]

Lukin, M. D.

C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science301(5630), 196–200 (2003).
[CrossRef] [PubMed]

M. Fleischhauer, M. D. Lukin, A. B. Matsko, and M. O. Scully, “Threshold and linewidth of a mirrorless parametric oscillator,” Phys. Rev. Lett.84(16), 3558–3561 (2000).
[CrossRef] [PubMed]

A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett.83(20), 4049–4052 (1999).
[CrossRef]

Maître, X.

X. Maître, E. Hagley, G. Nogues, C. Wunderlich, P. Goy, M. Brune, J. M. Raimond, and S. Haroche, “Quantum memory with a single photon in a cavity,” Phys. Rev. Lett.79(4), 769–772 (1997).
[CrossRef]

Manuszak, D.

A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient nonlinear frequency conversion in an all-resonant double- lambda system,” Phys. Rev. Lett.84(23), 5308–5311 (2000).
[CrossRef] [PubMed]

Matsko, A. B.

M. Fleischhauer, M. D. Lukin, A. B. Matsko, and M. O. Scully, “Threshold and linewidth of a mirrorless parametric oscillator,” Phys. Rev. Lett.84(16), 3558–3561 (2000).
[CrossRef] [PubMed]

Merriam, A. J.

A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient nonlinear frequency conversion in an all-resonant double- lambda system,” Phys. Rev. Lett.84(23), 5308–5311 (2000).
[CrossRef] [PubMed]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett.77(21), 4326–4329 (1996).
[CrossRef] [PubMed]

Meyer, M.

E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique,” J. Phys. Chem. B110(4), 1944–1948 (2006).
[CrossRef] [PubMed]

Mishina, O. S.

O. S. Mishina, N. V. Larionov, A. S. Sheremet, I. M. Sokolov, and D. V. Kupriyanov, “Stimulated Raman process in a scattering medium applied to the quantum memory scheme,” Phys. Rev. A78(4), 042313 (2008).
[CrossRef]

Mostowski, J.

M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A32(1), 332–344 (1985).
[CrossRef] [PubMed]

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A24(4), 1980–1993 (1981).
[CrossRef]

Müller, T.

T. Müller, G. Grunefeld, and V. Beushausen, “High-precision measurement of the temperature of methanol and ethanol droplets using spontaneous Raman scattering,” Appl. Phys. B70(1), 155–158 (2000).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced. Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Nogues, G.

X. Maître, E. Hagley, G. Nogues, C. Wunderlich, P. Goy, M. Brune, J. M. Raimond, and S. Haroche, “Quantum memory with a single photon in a cavity,” Phys. Rev. Lett.79(4), 769–772 (1997).
[CrossRef]

Novikova, I.

I. Novikova, Y. Xiao, D. F. Phillips, and R. L. Walsworth, “EIT and diffusion of atomic coherence,” J. Mod. Opt.52(16), 2381–2390 (2005).
[CrossRef]

Ou, Z. Y.

C. L. Bian, L. Q. Chen, G. W. Zhang, Z. Y. Ou, and W. P. Zhang, “Retrieval of phase memory in two independent atomic ensembles by Raman process,” Europhys. Lett.97(3), 34005 (2012).
[CrossRef]

C. H. Yuan, L. Q. Chen, J. Jing, Z. Y. Ou, and W. P. Zhang, “Coherently enhanced Raman scattering in atomic vapor,” Phys. Rev. A82(1), 013817 (2010).
[CrossRef]

L. Q. Chen, G. W. Zhang, C. H. Yuan, J. Jing, Z. Y. Ou, and W. P. Zhang, “Enhanced Raman scattering by spatially distributed atomic coherence,” Appl. Phys. Lett.95(4), 041115 (2009).
[CrossRef]

Peters, A.

A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia38(1), 25–61 (2001).
[CrossRef]

Phillips, D. F.

I. Novikova, Y. Xiao, D. F. Phillips, and R. L. Walsworth, “EIT and diffusion of atomic coherence,” J. Mod. Opt.52(16), 2381–2390 (2005).
[CrossRef]

C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science301(5630), 196–200 (2003).
[CrossRef] [PubMed]

Raimond, J. M.

X. Maître, E. Hagley, G. Nogues, C. Wunderlich, P. Goy, M. Brune, J. M. Raimond, and S. Haroche, “Quantum memory with a single photon in a cavity,” Phys. Rev. Lett.79(4), 769–772 (1997).
[CrossRef]

Raymer, M. G.

M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A32(1), 332–344 (1985).
[CrossRef] [PubMed]

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A24(4), 1980–1993 (1981).
[CrossRef]

Rempe, G.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett.89(6), 067901 (2002).
[CrossRef] [PubMed]

Ressayre, E.

M. L. Berre, E. Ressayre, and A. Tallet, “Self-oscillations of the mirrorlike sodium vapor driven by counterpropagating light beams,” Phys. Rev. A43, 6345 (1991).

M. L. Berre, E. Ressayre, and A. Tallet, “Physics in counterpropagating light-beam devices: Phase-conjugation and gain concepts in multiwave mixing,” Phys. Rev. A44, 5958 (1991).

Schwiesow, R. L.

R. L. Schwiesow and V. E. Derr, “A Raman scattering method for precise measurement of atmospheric oxygen balance,” J. Geophys. Res.75(9), 1629–1632 (1970).
[CrossRef]

Scully, M. O.

M. Fleischhauer, M. D. Lukin, A. B. Matsko, and M. O. Scully, “Threshold and linewidth of a mirrorless parametric oscillator,” Phys. Rev. Lett.84(16), 3558–3561 (2000).
[CrossRef] [PubMed]

A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett.83(20), 4049–4052 (1999).
[CrossRef]

Sharpe, S. J.

A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient nonlinear frequency conversion in an all-resonant double- lambda system,” Phys. Rev. Lett.84(23), 5308–5311 (2000).
[CrossRef] [PubMed]

Sheremet, A. S.

O. S. Mishina, N. V. Larionov, A. S. Sheremet, I. M. Sokolov, and D. V. Kupriyanov, “Stimulated Raman process in a scattering medium applied to the quantum memory scheme,” Phys. Rev. A78(4), 042313 (2008).
[CrossRef]

Shverdin, M.

A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient nonlinear frequency conversion in an all-resonant double- lambda system,” Phys. Rev. Lett.84(23), 5308–5311 (2000).
[CrossRef] [PubMed]

Sobolewska, B.

M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A32(1), 332–344 (1985).
[CrossRef] [PubMed]

Sokolov, I. M.

O. S. Mishina, N. V. Larionov, A. S. Sheremet, I. M. Sokolov, and D. V. Kupriyanov, “Stimulated Raman process in a scattering medium applied to the quantum memory scheme,” Phys. Rev. A78(4), 042313 (2008).
[CrossRef]

Tallet, A.

M. L. Berre, E. Ressayre, and A. Tallet, “Physics in counterpropagating light-beam devices: Phase-conjugation and gain concepts in multiwave mixing,” Phys. Rev. A44, 5958 (1991).

M. L. Berre, E. Ressayre, and A. Tallet, “Self-oscillations of the mirrorlike sodium vapor driven by counterpropagating light beams,” Phys. Rev. A43, 6345 (1991).

Tominaga, Y.

H. Urabe, Y. Tominaga, and K. Kubota, “Experimental evidence of collective vibrations in DNA double helix Raman spectroscopy,” J. Chem. Phys.78(10), 5937–5939 (1983).
[CrossRef]

Urabe, H.

H. Urabe, Y. Tominaga, and K. Kubota, “Experimental evidence of collective vibrations in DNA double helix Raman spectroscopy,” J. Chem. Phys.78(10), 5937–5939 (1983).
[CrossRef]

van der Wal, C. H.

C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science301(5630), 196–200 (2003).
[CrossRef] [PubMed]

Varcoe, B. T. H.

S. Brattke, B. T. H. Varcoe, and H. Walther, “Generation of photon number states on demand via cavity quantum electrodynamics,” Phys. Rev. Lett.86(16), 3534–3537 (2001).
[CrossRef] [PubMed]

Walmsley, I. A.

M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A32(1), 332–344 (1985).
[CrossRef] [PubMed]

Walsworth, R. L.

I. Novikova, Y. Xiao, D. F. Phillips, and R. L. Walsworth, “EIT and diffusion of atomic coherence,” J. Mod. Opt.52(16), 2381–2390 (2005).
[CrossRef]

C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science301(5630), 196–200 (2003).
[CrossRef] [PubMed]

Walther, H.

S. Brattke, B. T. H. Varcoe, and H. Walther, “Generation of photon number states on demand via cavity quantum electrodynamics,” Phys. Rev. Lett.86(16), 3534–3537 (2001).
[CrossRef] [PubMed]

Wunderlich, C.

X. Maître, E. Hagley, G. Nogues, C. Wunderlich, P. Goy, M. Brune, J. M. Raimond, and S. Haroche, “Quantum memory with a single photon in a cavity,” Phys. Rev. Lett.79(4), 769–772 (1997).
[CrossRef]

Xia, H.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett.77(21), 4326–4329 (1996).
[CrossRef] [PubMed]

Xiao, Y.

I. Novikova, Y. Xiao, D. F. Phillips, and R. L. Walsworth, “EIT and diffusion of atomic coherence,” J. Mod. Opt.52(16), 2381–2390 (2005).
[CrossRef]

Yin, G. Y.

A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient nonlinear frequency conversion in an all-resonant double- lambda system,” Phys. Rev. Lett.84(23), 5308–5311 (2000).
[CrossRef] [PubMed]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett.77(21), 4326–4329 (1996).
[CrossRef] [PubMed]

Yuan, C. H.

C. H. Yuan, L. Q. Chen, J. Jing, Z. Y. Ou, and W. P. Zhang, “Coherently enhanced Raman scattering in atomic vapor,” Phys. Rev. A82(1), 013817 (2010).
[CrossRef]

L. Q. Chen, G. W. Zhang, C. H. Yuan, J. Jing, Z. Y. Ou, and W. P. Zhang, “Enhanced Raman scattering by spatially distributed atomic coherence,” Appl. Phys. Lett.95(4), 041115 (2009).
[CrossRef]

Zhang, G. W.

C. L. Bian, L. Q. Chen, G. W. Zhang, Z. Y. Ou, and W. P. Zhang, “Retrieval of phase memory in two independent atomic ensembles by Raman process,” Europhys. Lett.97(3), 34005 (2012).
[CrossRef]

L. Q. Chen, G. W. Zhang, C. H. Yuan, J. Jing, Z. Y. Ou, and W. P. Zhang, “Enhanced Raman scattering by spatially distributed atomic coherence,” Appl. Phys. Lett.95(4), 041115 (2009).
[CrossRef]

Zhang, W. P.

C. L. Bian, L. Q. Chen, G. W. Zhang, Z. Y. Ou, and W. P. Zhang, “Retrieval of phase memory in two independent atomic ensembles by Raman process,” Europhys. Lett.97(3), 34005 (2012).
[CrossRef]

C. H. Yuan, L. Q. Chen, J. Jing, Z. Y. Ou, and W. P. Zhang, “Coherently enhanced Raman scattering in atomic vapor,” Phys. Rev. A82(1), 013817 (2010).
[CrossRef]

L. Q. Chen, G. W. Zhang, C. H. Yuan, J. Jing, Z. Y. Ou, and W. P. Zhang, “Enhanced Raman scattering by spatially distributed atomic coherence,” Appl. Phys. Lett.95(4), 041115 (2009).
[CrossRef]

Zheltikov, A. M.

A. M. Zheltikov, “Coherent anti-Stokes Raman scattering: from proof-of-the-principle experiments to femtosecond CARS and higher order wave-mixing generalizations,” J. Raman Spectros.31(8-9), 653–667 (2000).
[CrossRef]

Zibrov, A. S.

C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science301(5630), 196–200 (2003).
[CrossRef] [PubMed]

A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett.83(20), 4049–4052 (1999).
[CrossRef]

Appl. Phys. B (1)

T. Müller, G. Grunefeld, and V. Beushausen, “High-precision measurement of the temperature of methanol and ethanol droplets using spontaneous Raman scattering,” Appl. Phys. B70(1), 155–158 (2000).
[CrossRef]

Appl. Phys. Lett. (2)

R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti ‐ Stokes Raman spectroscopy,” Appl. Phys. Lett.25(7), 387–390 (1974).
[CrossRef]

L. Q. Chen, G. W. Zhang, C. H. Yuan, J. Jing, Z. Y. Ou, and W. P. Zhang, “Enhanced Raman scattering by spatially distributed atomic coherence,” Appl. Phys. Lett.95(4), 041115 (2009).
[CrossRef]

Biochem. J. (1)

K. C. Chou, “Identification of low-frequency modes in protein molecules,” Biochem. J.215(3), 465–469 (1983).
[PubMed]

Biophys. Chem. (1)

K.-C. Chou, “Low-frequency collective motion in biomacromolecules and its biological functions,” Biophys. Chem.30(1), 3–48 (1988).
[CrossRef] [PubMed]

Europhys. Lett. (1)

C. L. Bian, L. Q. Chen, G. W. Zhang, Z. Y. Ou, and W. P. Zhang, “Retrieval of phase memory in two independent atomic ensembles by Raman process,” Europhys. Lett.97(3), 34005 (2012).
[CrossRef]

J. Am. Chem. Soc. (1)

E. J. Blackie, E. C. Le Ru, and P. G. Etchegoin, “Single-molecule surface-enhanced raman spectroscopy of nonresonant molecules,” J. Am. Chem. Soc.131(40), 14466–14472 (2009).
[CrossRef] [PubMed]

J. Chem. Phys. (2)

R. K. Khanna, “Raman-spectroscopy of oligomeric SiO species isolated in solid methane,” J. Chem. Phys.74, 2108 (1981).
[CrossRef]

H. Urabe, Y. Tominaga, and K. Kubota, “Experimental evidence of collective vibrations in DNA double helix Raman spectroscopy,” J. Chem. Phys.78(10), 5937–5939 (1983).
[CrossRef]

J. Geophys. Res. (1)

R. L. Schwiesow and V. E. Derr, “A Raman scattering method for precise measurement of atmospheric oxygen balance,” J. Geophys. Res.75(9), 1629–1632 (1970).
[CrossRef]

J. Mod. Opt. (1)

I. Novikova, Y. Xiao, D. F. Phillips, and R. L. Walsworth, “EIT and diffusion of atomic coherence,” J. Mod. Opt.52(16), 2381–2390 (2005).
[CrossRef]

J. Phys. Chem. B (1)

E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique,” J. Phys. Chem. B110(4), 1944–1948 (2006).
[CrossRef] [PubMed]

J. Raman Spectros. (1)

A. M. Zheltikov, “Coherent anti-Stokes Raman scattering: from proof-of-the-principle experiments to femtosecond CARS and higher order wave-mixing generalizations,” J. Raman Spectros.31(8-9), 653–667 (2000).
[CrossRef]

Metrologia (1)

A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia38(1), 25–61 (2001).
[CrossRef]

Microfluid. Nanofluid. (1)

Y. S. Huh, A. J. Chung, and D. Erickson, “Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis,” Microfluid. Nanofluid.6(3), 285–297 (2009).
[CrossRef]

Phys. Rev. A (6)

M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A32(1), 332–344 (1985).
[CrossRef] [PubMed]

O. S. Mishina, N. V. Larionov, A. S. Sheremet, I. M. Sokolov, and D. V. Kupriyanov, “Stimulated Raman process in a scattering medium applied to the quantum memory scheme,” Phys. Rev. A78(4), 042313 (2008).
[CrossRef]

C. H. Yuan, L. Q. Chen, J. Jing, Z. Y. Ou, and W. P. Zhang, “Coherently enhanced Raman scattering in atomic vapor,” Phys. Rev. A82(1), 013817 (2010).
[CrossRef]

M. L. Berre, E. Ressayre, and A. Tallet, “Self-oscillations of the mirrorlike sodium vapor driven by counterpropagating light beams,” Phys. Rev. A43, 6345 (1991).

M. L. Berre, E. Ressayre, and A. Tallet, “Physics in counterpropagating light-beam devices: Phase-conjugation and gain concepts in multiwave mixing,” Phys. Rev. A44, 5958 (1991).

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A24(4), 1980–1993 (1981).
[CrossRef]

Phys. Rev. Lett. (9)

M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett.67(2), 181–184 (1991).
[CrossRef] [PubMed]

M. Fleischhauer, M. D. Lukin, A. B. Matsko, and M. O. Scully, “Threshold and linewidth of a mirrorless parametric oscillator,” Phys. Rev. Lett.84(16), 3558–3561 (2000).
[CrossRef] [PubMed]

A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett.83(20), 4049–4052 (1999).
[CrossRef]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett.77(21), 4326–4329 (1996).
[CrossRef] [PubMed]

A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient nonlinear frequency conversion in an all-resonant double- lambda system,” Phys. Rev. Lett.84(23), 5308–5311 (2000).
[CrossRef] [PubMed]

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66(20), 2593–2596 (1991).
[CrossRef] [PubMed]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett.89(6), 067901 (2002).
[CrossRef] [PubMed]

S. Brattke, B. T. H. Varcoe, and H. Walther, “Generation of photon number states on demand via cavity quantum electrodynamics,” Phys. Rev. Lett.86(16), 3534–3537 (2001).
[CrossRef] [PubMed]

X. Maître, E. Hagley, G. Nogues, C. Wunderlich, P. Goy, M. Brune, J. M. Raimond, and S. Haroche, “Quantum memory with a single photon in a cavity,” Phys. Rev. Lett.79(4), 769–772 (1997).
[CrossRef]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today50(7), 36–42 (1997).
[CrossRef]

Science (2)

C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science301(5630), 196–200 (2003).
[CrossRef] [PubMed]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced. Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Other (2)

C.-H. Yuan, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Entanglement enhanced phase sensitive Raman scattering in atomic vapors”, arXiv:1211.6540.

S. Sasic and S. Ekins, Pharmaceutical applications of Raman spectroscopy (John Wiley and Sons, Hoboken, New Jersey, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The schematic diagram of the experiment. P is the Raman pump field; CFF is the frequency converted field (Stokes or anti-Stokes) in forward direction; CFB is the converted field in backward direction; |g>, |m> and |e> are ground, metastable and excited energy levels, respectively; PBS is a polarization beam splitter. 0°M is a mirror at normal incidence. D is the photo detector. (b) and (c) Energy levels of 87Rb for Stokes generation (b) and anti-Stokes generation (c); CFB, S and CFB, AS are generated Stokes and anti-Stokes fields in backward direction; OP is the optical pumping laser. (d) Timing sequence.

Fig. 2
Fig. 2

(a) and (c) The temporal behavior of the converted field when P field is in (a) pulsed mode and (c) CW mode at P field power of 0.4mW; the inset is the frequency analysis of the converted field by a FP cavity; (b) and (d) Conversion efficiency from P to the generated fields in (b) pulsed mode and (d) CW mode; black solid square is for Stokes field and red hollow square is for anti-Stokes field.

Fig. 3
Fig. 3

(a) Intensity of the converted field as the frequency of P field is scanned; the left red curve is for anti-Stokes and the right black curve is for Stokes at P field power of 0.35mW. (b) Absorption spectrum of Rb (85 and 87) for frequency calibration in (a).

Fig. 4
Fig. 4

Demonstration of coherence of the generated field: beating signal (inset) and its Fourier transformation between two similarly generated fields.

Fig. 5
Fig. 5

(a) Experimental sketch of Raman conversion process without feedback. The conversion efficiency in (b) pulsed mode and (c) CW mode.

Metrics