Abstract

We demonstrate and characterize a highly linearly polarized (18.8 dB) narrow spectral emission (<80pm) from an all-fiber Tm laser utilizing femtosecond-laser-written fiber Bragg gratings. Thermally-dependent anisotropic birefringence is observed in the FBG transmission, the effects of which enable both the generation and elimination of highly linearly polarized output. To our knowledge, this is the first detailed study of such thermal anisotropic birefringence in femtosecond-written FBGs.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. De Young and N. P. Barnes, “Profiling atmospheric water vapor using a fiber laser LIDAR system,” Appl. Opt.49(4), 562–567 (2010).
    [CrossRef] [PubMed]
  2. N. Simakov, A. Hemming, S. Bennetts, and J. Haub, “Efficient, polarised, gain-switched operation of a Tm-doped fibre laser,” Opt. Express19(16), 14949–14954 (2011).
    [CrossRef] [PubMed]
  3. N. M. Fried and B. R. Matlaga, “Laser/light applications in urology,” in Lasers in Dermatology and Medicine (Springer, 2012), pp. 561–571.
  4. S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 µm Tm3+-doped silica fibre lasers,” Opt. Commun.230(1-3), 197–203 (2004).
    [CrossRef]
  5. T. S. McComb, M. Richardson, and M. Bass, “High-power fiber lasers and amplifiers,” in Handbook of Optics: Volume V- Atmospheric Optics, Modulators, Fiber Optics, X-Ray and Neutron Optics (McGraw-Hill, 2009), pp. 25.1–25.33.
  6. T. S. McComb, R. A. Sims, C. C. C. Willis, P. Kadwani, V. Sudesh, L. Shah, and M. Richardson, “High-power widely tunable thulium fiber lasers,” Appl. Opt.49(32), 6236–6242 (2010).
    [CrossRef] [PubMed]
  7. A. Tünnermann, T. Schreiber, F. Roeser, A. Liem, S. Hoefer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38(9), S681–S693 (2005).
    [CrossRef]
  8. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B27(11), B63–B92 (2010).
    [CrossRef]
  9. C. Lu and Y. Cui, “Fiber Bragg grating spectra in multimode optical fibers,” J. Lightwave Technol.24(1), 598–604 (2006).
    [CrossRef]
  10. G. P. Frith, B. Samson, A. Carter, J. Farroni, and K. Tankala, “High power (110W), high efficiency (55%) monolithic FBG-based fiber laser operating at 2 µm,” Proc. SPIE6453, 64532B, 64532B-2 (2007).
    [CrossRef]
  11. Y. J. Zhang, B. Q. Yao, S. F. Song, and Y. L. Ju, “All-fiber Tm-doped double-clad fiber laser with multi-mode FBG as cavity,” Laser Phys.19(5), 1006–1008 (2009).
    [CrossRef]
  12. Y. Zhang, W. Wang, S. Song, and Z. Wang, “Ultra-narrow linewidth Tm3+-doped fiber laser based on intra-core fiber Bragg gratings,” Laser Phys. Lett.6(10), 723–726 (2009).
    [CrossRef]
  13. Y. Zhang, W. Wang, R. L. Zhou, S. Song, Y. Tian, and Y. Wang, “Narrow linewidth Tm3+-doped large core fiber laser based on a femtosecond written fiber Bragg grating,” Chin. Phys. Lett.27(7), 074214 (2010).
    [CrossRef]
  14. Z. Zhang, A. J. Boyland, J. K. Sahu, W. A. Clarkson, and M. Ibsen, “High-power single-frequency thulium-doped fiber DBR laser at 1943 nm,” IEEE Photon. Technol. Lett.23(7), 417–419 (2011).
    [CrossRef]
  15. R. A. Sims, Z. A. Roth, C. C. C. Willis, P. Kadwani, T. S. McComb, L. Shah, V. Sudesh, M. Poutous, E. G. Johnson, and M. Richardson, “Spectral narrowing and stabilization of thulium fiber lasers using guided-mode resonance filters,” Opt. Lett.36(5), 737–739 (2011).
    [CrossRef] [PubMed]
  16. O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron.15(2), 344–353 (2009).
    [CrossRef]
  17. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, “2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers,” Opt. Express17(3), 1178–1183 (2009).
    [CrossRef] [PubMed]
  18. R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol.6(3), 299–323 (2000).
    [CrossRef]
  19. P. Torres, J. F. Botero-Cadavid, F. J. Velez, C. M. B. Cordeiro, and C. J. S. de Matos, “Spectral response of FBG written in specialty single-mode fibers,” AIP Conf. Proc.1055, 65–68 (2008).
    [CrossRef]
  20. L. J. Li, Y. G. Liu, S. Z. Yuan, and X. Y. Dong, “Study on temperature and stress characteristics of double-clad fiber Bragg gratings,” Proc. SPIE6351, 63513K, 63513K-5 (2006).
    [CrossRef]
  21. L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. S. Marques, “Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica,” Opt. Express20(22), 24103–24114 (2012).
    [CrossRef] [PubMed]
  22. K. Chah, D. Kinet, M. Wuilpart, P. Mégret, and C. Caucheteur, “Femtosecond-laser-induced highly birefringent Bragg gratings in standard optical fiber,” Opt. Lett.38(4), 594–596 (2013).
    [CrossRef] [PubMed]
  23. E. Wikszak, J. Thomas, S. Klingebiel, B. Ortaç, J. Limpert, S. Nolte, and A. Tünnermann, “Linearly polarized ytterbium fiber laser based on intracore femtosecond-written fiber Bragg gratings,” Opt. Lett.32(18), 2756–2758 (2007).
    [CrossRef] [PubMed]
  24. J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” App. Phys. A.86(2), 153–157 (2006).
    [CrossRef]
  25. J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev.6(6), 709–723 (2012).
    [CrossRef]
  26. J. F. Bayon, M. Douay, P. Bernage, and P. Niay, “Linearly polarized fiber-optic laser,” France Telecom, US Patent 5,561,675 (1996).

2013 (1)

2012 (2)

L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. S. Marques, “Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica,” Opt. Express20(22), 24103–24114 (2012).
[CrossRef] [PubMed]

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev.6(6), 709–723 (2012).
[CrossRef]

2011 (3)

2010 (4)

2009 (4)

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron.15(2), 344–353 (2009).
[CrossRef]

Y. J. Zhang, B. Q. Yao, S. F. Song, and Y. L. Ju, “All-fiber Tm-doped double-clad fiber laser with multi-mode FBG as cavity,” Laser Phys.19(5), 1006–1008 (2009).
[CrossRef]

Y. Zhang, W. Wang, S. Song, and Z. Wang, “Ultra-narrow linewidth Tm3+-doped fiber laser based on intra-core fiber Bragg gratings,” Laser Phys. Lett.6(10), 723–726 (2009).
[CrossRef]

C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, “2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers,” Opt. Express17(3), 1178–1183 (2009).
[CrossRef] [PubMed]

2008 (1)

P. Torres, J. F. Botero-Cadavid, F. J. Velez, C. M. B. Cordeiro, and C. J. S. de Matos, “Spectral response of FBG written in specialty single-mode fibers,” AIP Conf. Proc.1055, 65–68 (2008).
[CrossRef]

2007 (2)

E. Wikszak, J. Thomas, S. Klingebiel, B. Ortaç, J. Limpert, S. Nolte, and A. Tünnermann, “Linearly polarized ytterbium fiber laser based on intracore femtosecond-written fiber Bragg gratings,” Opt. Lett.32(18), 2756–2758 (2007).
[CrossRef] [PubMed]

G. P. Frith, B. Samson, A. Carter, J. Farroni, and K. Tankala, “High power (110W), high efficiency (55%) monolithic FBG-based fiber laser operating at 2 µm,” Proc. SPIE6453, 64532B, 64532B-2 (2007).
[CrossRef]

2006 (3)

L. J. Li, Y. G. Liu, S. Z. Yuan, and X. Y. Dong, “Study on temperature and stress characteristics of double-clad fiber Bragg gratings,” Proc. SPIE6351, 63513K, 63513K-5 (2006).
[CrossRef]

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” App. Phys. A.86(2), 153–157 (2006).
[CrossRef]

C. Lu and Y. Cui, “Fiber Bragg grating spectra in multimode optical fibers,” J. Lightwave Technol.24(1), 598–604 (2006).
[CrossRef]

2005 (1)

A. Tünnermann, T. Schreiber, F. Roeser, A. Liem, S. Hoefer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38(9), S681–S693 (2005).
[CrossRef]

2004 (1)

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 µm Tm3+-doped silica fibre lasers,” Opt. Commun.230(1-3), 197–203 (2004).
[CrossRef]

2000 (1)

R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol.6(3), 299–323 (2000).
[CrossRef]

Aitchison, J. S.

Andrusyak, O.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron.15(2), 344–353 (2009).
[CrossRef]

Barnes, N. P.

Becker, R. G.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev.6(6), 709–723 (2012).
[CrossRef]

Bennetts, S.

Botero-Cadavid, J. F.

P. Torres, J. F. Botero-Cadavid, F. J. Velez, C. M. B. Cordeiro, and C. J. S. de Matos, “Spectral response of FBG written in specialty single-mode fibers,” AIP Conf. Proc.1055, 65–68 (2008).
[CrossRef]

Boyland, A. J.

Z. Zhang, A. J. Boyland, J. K. Sahu, W. A. Clarkson, and M. Ibsen, “High-power single-frequency thulium-doped fiber DBR laser at 1943 nm,” IEEE Photon. Technol. Lett.23(7), 417–419 (2011).
[CrossRef]

Brückner, F.

Carter, A.

G. P. Frith, B. Samson, A. Carter, J. Farroni, and K. Tankala, “High power (110W), high efficiency (55%) monolithic FBG-based fiber laser operating at 2 µm,” Proc. SPIE6453, 64532B, 64532B-2 (2007).
[CrossRef]

Caucheteur, C.

Chah, K.

Clarkson, W. A.

Z. Zhang, A. J. Boyland, J. K. Sahu, W. A. Clarkson, and M. Ibsen, “High-power single-frequency thulium-doped fiber DBR laser at 1943 nm,” IEEE Photon. Technol. Lett.23(7), 417–419 (2011).
[CrossRef]

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B27(11), B63–B92 (2010).
[CrossRef]

Clausnitzer, T.

C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, “2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers,” Opt. Express17(3), 1178–1183 (2009).
[CrossRef] [PubMed]

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” App. Phys. A.86(2), 153–157 (2006).
[CrossRef]

Cordeiro, C. M. B.

P. Torres, J. F. Botero-Cadavid, F. J. Velez, C. M. B. Cordeiro, and C. J. S. de Matos, “Spectral response of FBG written in specialty single-mode fibers,” AIP Conf. Proc.1055, 65–68 (2008).
[CrossRef]

Cui, Y.

de Matos, C. J. S.

P. Torres, J. F. Botero-Cadavid, F. J. Velez, C. M. B. Cordeiro, and C. J. S. de Matos, “Spectral response of FBG written in specialty single-mode fibers,” AIP Conf. Proc.1055, 65–68 (2008).
[CrossRef]

De Young, R. J.

Dong, X. Y.

L. J. Li, Y. G. Liu, S. Z. Yuan, and X. Y. Dong, “Study on temperature and stress characteristics of double-clad fiber Bragg gratings,” Proc. SPIE6351, 63513K, 63513K-5 (2006).
[CrossRef]

Eberhardt, R.

El-Sherif, M. A.

R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol.6(3), 299–323 (2000).
[CrossRef]

Farroni, J.

G. P. Frith, B. Samson, A. Carter, J. Farroni, and K. Tankala, “High power (110W), high efficiency (55%) monolithic FBG-based fiber laser operating at 2 µm,” Proc. SPIE6453, 64532B, 64532B-2 (2007).
[CrossRef]

Fernandes, L. A.

Frith, G. P.

G. P. Frith, B. Samson, A. Carter, J. Farroni, and K. Tankala, “High power (110W), high efficiency (55%) monolithic FBG-based fiber laser operating at 2 µm,” Proc. SPIE6453, 64532B, 64532B-2 (2007).
[CrossRef]

Fuchs, U.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” App. Phys. A.86(2), 153–157 (2006).
[CrossRef]

Gafsi, R.

R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol.6(3), 299–323 (2000).
[CrossRef]

Glebov, L.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron.15(2), 344–353 (2009).
[CrossRef]

Gowin, M.

Grenier, J. R.

Haub, J.

Hemming, A.

Herman, P. R.

Hoefer, S.

A. Tünnermann, T. Schreiber, F. Roeser, A. Liem, S. Hoefer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38(9), S681–S693 (2005).
[CrossRef]

Ibsen, M.

Z. Zhang, A. J. Boyland, J. K. Sahu, W. A. Clarkson, and M. Ibsen, “High-power single-frequency thulium-doped fiber DBR laser at 1943 nm,” IEEE Photon. Technol. Lett.23(7), 417–419 (2011).
[CrossRef]

Jackson, S. D.

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 µm Tm3+-doped silica fibre lasers,” Opt. Commun.230(1-3), 197–203 (2004).
[CrossRef]

Johnson, E. G.

Ju, Y. L.

Y. J. Zhang, B. Q. Yao, S. F. Song, and Y. L. Ju, “All-fiber Tm-doped double-clad fiber laser with multi-mode FBG as cavity,” Laser Phys.19(5), 1006–1008 (2009).
[CrossRef]

Jung, M.

Kadwani, P.

Kinet, D.

Klingebiel, S.

Li, L. J.

L. J. Li, Y. G. Liu, S. Z. Yuan, and X. Y. Dong, “Study on temperature and stress characteristics of double-clad fiber Bragg gratings,” Proc. SPIE6351, 63513K, 63513K-5 (2006).
[CrossRef]

Liem, A.

A. Tünnermann, T. Schreiber, F. Roeser, A. Liem, S. Hoefer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38(9), S681–S693 (2005).
[CrossRef]

Limpert, J.

Liu, Y. G.

L. J. Li, Y. G. Liu, S. Z. Yuan, and X. Y. Dong, “Study on temperature and stress characteristics of double-clad fiber Bragg gratings,” Proc. SPIE6351, 63513K, 63513K-5 (2006).
[CrossRef]

Lu, C.

Ludewigt, K.

Marques, P. V. S.

McComb, T. S.

Mégret, P.

Nilsson, J.

Nolte, S.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev.6(6), 709–723 (2012).
[CrossRef]

E. Wikszak, J. Thomas, S. Klingebiel, B. Ortaç, J. Limpert, S. Nolte, and A. Tünnermann, “Linearly polarized ytterbium fiber laser based on intracore femtosecond-written fiber Bragg gratings,” Opt. Lett.32(18), 2756–2758 (2007).
[CrossRef] [PubMed]

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” App. Phys. A.86(2), 153–157 (2006).
[CrossRef]

A. Tünnermann, T. Schreiber, F. Roeser, A. Liem, S. Hoefer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38(9), S681–S693 (2005).
[CrossRef]

Ortaç, B.

Peschel, T.

Poutous, M.

Richardson, D. J.

Richardson, M.

Richter, D.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev.6(6), 709–723 (2012).
[CrossRef]

Roeser, F.

A. Tünnermann, T. Schreiber, F. Roeser, A. Liem, S. Hoefer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38(9), S681–S693 (2005).
[CrossRef]

Rotar, V.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron.15(2), 344–353 (2009).
[CrossRef]

Roth, Z. A.

Sahu, J. K.

Z. Zhang, A. J. Boyland, J. K. Sahu, W. A. Clarkson, and M. Ibsen, “High-power single-frequency thulium-doped fiber DBR laser at 1943 nm,” IEEE Photon. Technol. Lett.23(7), 417–419 (2011).
[CrossRef]

Samson, B.

G. P. Frith, B. Samson, A. Carter, J. Farroni, and K. Tankala, “High power (110W), high efficiency (55%) monolithic FBG-based fiber laser operating at 2 µm,” Proc. SPIE6453, 64532B, 64532B-2 (2007).
[CrossRef]

Schmidt, O.

Schreiber, T.

Shah, L.

Simakov, N.

Sims, R. A.

Smirnov, V.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron.15(2), 344–353 (2009).
[CrossRef]

Song, S.

Y. Zhang, W. Wang, R. L. Zhou, S. Song, Y. Tian, and Y. Wang, “Narrow linewidth Tm3+-doped large core fiber laser based on a femtosecond written fiber Bragg grating,” Chin. Phys. Lett.27(7), 074214 (2010).
[CrossRef]

Y. Zhang, W. Wang, S. Song, and Z. Wang, “Ultra-narrow linewidth Tm3+-doped fiber laser based on intra-core fiber Bragg gratings,” Laser Phys. Lett.6(10), 723–726 (2009).
[CrossRef]

Song, S. F.

Y. J. Zhang, B. Q. Yao, S. F. Song, and Y. L. Ju, “All-fiber Tm-doped double-clad fiber laser with multi-mode FBG as cavity,” Laser Phys.19(5), 1006–1008 (2009).
[CrossRef]

Sudesh, V.

Tankala, K.

G. P. Frith, B. Samson, A. Carter, J. Farroni, and K. Tankala, “High power (110W), high efficiency (55%) monolithic FBG-based fiber laser operating at 2 µm,” Proc. SPIE6453, 64532B, 64532B-2 (2007).
[CrossRef]

ten Have, E.

Thomas, J.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev.6(6), 709–723 (2012).
[CrossRef]

E. Wikszak, J. Thomas, S. Klingebiel, B. Ortaç, J. Limpert, S. Nolte, and A. Tünnermann, “Linearly polarized ytterbium fiber laser based on intracore femtosecond-written fiber Bragg gratings,” Opt. Lett.32(18), 2756–2758 (2007).
[CrossRef] [PubMed]

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” App. Phys. A.86(2), 153–157 (2006).
[CrossRef]

Tian, Y.

Y. Zhang, W. Wang, R. L. Zhou, S. Song, Y. Tian, and Y. Wang, “Narrow linewidth Tm3+-doped large core fiber laser based on a femtosecond written fiber Bragg grating,” Chin. Phys. Lett.27(7), 074214 (2010).
[CrossRef]

Torres, P.

P. Torres, J. F. Botero-Cadavid, F. J. Velez, C. M. B. Cordeiro, and C. J. S. de Matos, “Spectral response of FBG written in specialty single-mode fibers,” AIP Conf. Proc.1055, 65–68 (2008).
[CrossRef]

Tsybin, I.

Tünnermann, A.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev.6(6), 709–723 (2012).
[CrossRef]

C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, “2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers,” Opt. Express17(3), 1178–1183 (2009).
[CrossRef] [PubMed]

E. Wikszak, J. Thomas, S. Klingebiel, B. Ortaç, J. Limpert, S. Nolte, and A. Tünnermann, “Linearly polarized ytterbium fiber laser based on intracore femtosecond-written fiber Bragg gratings,” Opt. Lett.32(18), 2756–2758 (2007).
[CrossRef] [PubMed]

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” App. Phys. A.86(2), 153–157 (2006).
[CrossRef]

A. Tünnermann, T. Schreiber, F. Roeser, A. Liem, S. Hoefer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38(9), S681–S693 (2005).
[CrossRef]

Velez, F. J.

P. Torres, J. F. Botero-Cadavid, F. J. Velez, C. M. B. Cordeiro, and C. J. S. de Matos, “Spectral response of FBG written in specialty single-mode fibers,” AIP Conf. Proc.1055, 65–68 (2008).
[CrossRef]

Venus, G.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron.15(2), 344–353 (2009).
[CrossRef]

Voigtländer, C.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev.6(6), 709–723 (2012).
[CrossRef]

Wang, W.

Y. Zhang, W. Wang, R. L. Zhou, S. Song, Y. Tian, and Y. Wang, “Narrow linewidth Tm3+-doped large core fiber laser based on a femtosecond written fiber Bragg grating,” Chin. Phys. Lett.27(7), 074214 (2010).
[CrossRef]

Y. Zhang, W. Wang, S. Song, and Z. Wang, “Ultra-narrow linewidth Tm3+-doped fiber laser based on intra-core fiber Bragg gratings,” Laser Phys. Lett.6(10), 723–726 (2009).
[CrossRef]

Wang, Y.

Y. Zhang, W. Wang, R. L. Zhou, S. Song, Y. Tian, and Y. Wang, “Narrow linewidth Tm3+-doped large core fiber laser based on a femtosecond written fiber Bragg grating,” Chin. Phys. Lett.27(7), 074214 (2010).
[CrossRef]

Wang, Z.

Y. Zhang, W. Wang, S. Song, and Z. Wang, “Ultra-narrow linewidth Tm3+-doped fiber laser based on intra-core fiber Bragg gratings,” Laser Phys. Lett.6(10), 723–726 (2009).
[CrossRef]

Wikszak, E.

E. Wikszak, J. Thomas, S. Klingebiel, B. Ortaç, J. Limpert, S. Nolte, and A. Tünnermann, “Linearly polarized ytterbium fiber laser based on intracore femtosecond-written fiber Bragg gratings,” Opt. Lett.32(18), 2756–2758 (2007).
[CrossRef] [PubMed]

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” App. Phys. A.86(2), 153–157 (2006).
[CrossRef]

Willis, C. C. C.

Wirth, C.

Wuilpart, M.

Yao, B. Q.

Y. J. Zhang, B. Q. Yao, S. F. Song, and Y. L. Ju, “All-fiber Tm-doped double-clad fiber laser with multi-mode FBG as cavity,” Laser Phys.19(5), 1006–1008 (2009).
[CrossRef]

Yuan, S. Z.

L. J. Li, Y. G. Liu, S. Z. Yuan, and X. Y. Dong, “Study on temperature and stress characteristics of double-clad fiber Bragg gratings,” Proc. SPIE6351, 63513K, 63513K-5 (2006).
[CrossRef]

Zeitner, U.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” App. Phys. A.86(2), 153–157 (2006).
[CrossRef]

Zellmer, H.

A. Tünnermann, T. Schreiber, F. Roeser, A. Liem, S. Hoefer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38(9), S681–S693 (2005).
[CrossRef]

Zhang, Y.

Y. Zhang, W. Wang, R. L. Zhou, S. Song, Y. Tian, and Y. Wang, “Narrow linewidth Tm3+-doped large core fiber laser based on a femtosecond written fiber Bragg grating,” Chin. Phys. Lett.27(7), 074214 (2010).
[CrossRef]

Y. Zhang, W. Wang, S. Song, and Z. Wang, “Ultra-narrow linewidth Tm3+-doped fiber laser based on intra-core fiber Bragg gratings,” Laser Phys. Lett.6(10), 723–726 (2009).
[CrossRef]

Zhang, Y. J.

Y. J. Zhang, B. Q. Yao, S. F. Song, and Y. L. Ju, “All-fiber Tm-doped double-clad fiber laser with multi-mode FBG as cavity,” Laser Phys.19(5), 1006–1008 (2009).
[CrossRef]

Zhang, Z.

Z. Zhang, A. J. Boyland, J. K. Sahu, W. A. Clarkson, and M. Ibsen, “High-power single-frequency thulium-doped fiber DBR laser at 1943 nm,” IEEE Photon. Technol. Lett.23(7), 417–419 (2011).
[CrossRef]

Zhou, R. L.

Y. Zhang, W. Wang, R. L. Zhou, S. Song, Y. Tian, and Y. Wang, “Narrow linewidth Tm3+-doped large core fiber laser based on a femtosecond written fiber Bragg grating,” Chin. Phys. Lett.27(7), 074214 (2010).
[CrossRef]

AIP Conf. Proc. (1)

P. Torres, J. F. Botero-Cadavid, F. J. Velez, C. M. B. Cordeiro, and C. J. S. de Matos, “Spectral response of FBG written in specialty single-mode fibers,” AIP Conf. Proc.1055, 65–68 (2008).
[CrossRef]

App. Phys. A. (1)

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” App. Phys. A.86(2), 153–157 (2006).
[CrossRef]

Appl. Opt. (2)

Chin. Phys. Lett. (1)

Y. Zhang, W. Wang, R. L. Zhou, S. Song, Y. Tian, and Y. Wang, “Narrow linewidth Tm3+-doped large core fiber laser based on a femtosecond written fiber Bragg grating,” Chin. Phys. Lett.27(7), 074214 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron.15(2), 344–353 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. Zhang, A. J. Boyland, J. K. Sahu, W. A. Clarkson, and M. Ibsen, “High-power single-frequency thulium-doped fiber DBR laser at 1943 nm,” IEEE Photon. Technol. Lett.23(7), 417–419 (2011).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

A. Tünnermann, T. Schreiber, F. Roeser, A. Liem, S. Hoefer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38(9), S681–S693 (2005).
[CrossRef]

Laser Photon. Rev. (1)

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev.6(6), 709–723 (2012).
[CrossRef]

Laser Phys. (1)

Y. J. Zhang, B. Q. Yao, S. F. Song, and Y. L. Ju, “All-fiber Tm-doped double-clad fiber laser with multi-mode FBG as cavity,” Laser Phys.19(5), 1006–1008 (2009).
[CrossRef]

Laser Phys. Lett. (1)

Y. Zhang, W. Wang, S. Song, and Z. Wang, “Ultra-narrow linewidth Tm3+-doped fiber laser based on intra-core fiber Bragg gratings,” Laser Phys. Lett.6(10), 723–726 (2009).
[CrossRef]

Opt. Commun. (1)

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 µm Tm3+-doped silica fibre lasers,” Opt. Commun.230(1-3), 197–203 (2004).
[CrossRef]

Opt. Express (3)

Opt. Fiber Technol. (1)

R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol.6(3), 299–323 (2000).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (2)

L. J. Li, Y. G. Liu, S. Z. Yuan, and X. Y. Dong, “Study on temperature and stress characteristics of double-clad fiber Bragg gratings,” Proc. SPIE6351, 63513K, 63513K-5 (2006).
[CrossRef]

G. P. Frith, B. Samson, A. Carter, J. Farroni, and K. Tankala, “High power (110W), high efficiency (55%) monolithic FBG-based fiber laser operating at 2 µm,” Proc. SPIE6453, 64532B, 64532B-2 (2007).
[CrossRef]

Other (3)

T. S. McComb, M. Richardson, and M. Bass, “High-power fiber lasers and amplifiers,” in Handbook of Optics: Volume V- Atmospheric Optics, Modulators, Fiber Optics, X-Ray and Neutron Optics (McGraw-Hill, 2009), pp. 25.1–25.33.

N. M. Fried and B. R. Matlaga, “Laser/light applications in urology,” in Lasers in Dermatology and Medicine (Springer, 2012), pp. 561–571.

J. F. Bayon, M. Douay, P. Bernage, and P. Niay, “Linearly polarized fiber-optic laser,” France Telecom, US Patent 5,561,675 (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Spectral transmission of a 2 µm ASE source through each FBG. The HR FBG is shown along the a) slow axis and b) fast axis, and LR FBG is shown along the c) slow axis and d) fast axis.

Fig. 2
Fig. 2

a) Diagram of the all-fiber laser design, and b) 90° rotated splice between active fiber and LR FBG.

Fig. 3
Fig. 3

a) Slope efficiency of the all-fiber laser and b) its spectral output at the point of greatest linear polarization (HR FBG at 15 °C, LR FBG at 17.5 °C).

Fig. 4
Fig. 4

a) Polarization of the laser containing a 90° rotated splice between active fiber and LR FBG, which has a high linear polarization for most temperature permutations, and b) polarization of the system without a 90° rotated splice, which shows low linear polarization for most temperature permutations.

Fig. 5
Fig. 5

Wavelengths present in output spectrum at all temperature permutations (fixed pump power), where the upper surface is the longer output wavelength (continuous at all temperatures) and the lower surface is the shorter output wavelength (discontinuous). The shorter wavelength is discontinuous because it is not present in cases of high linear polarization.

Fig. 6
Fig. 6

Spectra showing the overlap of the HR and LR FBG reflectivities for cases of high and low linear polarization. The case of high polarization is shown in a) and b), where the spectral overlap along each optical axis is given for the temperature permutation HR FBG at 15 °C and LR FBG at 20 °C. The case of low linear polarization is shown in c) and d), where the spectral overlap along each optical axis is given for the temperature permutation HR FBG at 15 °C and LR FBG at 30 °C. Note that transmission was measured passively, and in a laser configuration heat loads are different, thus creating an offset between the peaks of the spectral reflectivities and the lasing wavelengths (denoted by vertical black lines).

Fig. 7
Fig. 7

A case of high polarization (16.16 dB) for orthogonal laser configuration, which can be used to demonstrate that the spectral feature at 1959.9 nm for the LR FBG (at 30 °C) is the result of noise.

Metrics